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Abstract. 3D object detection in point clouds is a core component for
modern robotics and autonomous driving systems. A key challenge in
3D object detection comes from the inherent sparse nature of point oc-
cupancy within the 3D scene. In this paper, we propose Sparse Window
Transformer (SWFormer), a scalable and accurate model for 3D ob-
ject detection, which can take full advantage of the sparsity of point
clouds. Built upon the idea of window-based Transformers, SWFormer
converts 3D points into sparse voxels and windows, and then processes
these variable-length sparse windows efficiently using a bucketing scheme.
In addition to self-attention within each spatial window, our SWFormer
also captures cross-window correlation with multi-scale feature fusion
and window shifting operations. To further address the unique challenge
of detecting 3D objects accurately from sparse features, we propose a
new voxel diffusion technique. Experimental results on the Waymo Open
Dataset show our SWFormer achieves state-of-the-art 73.36 L2 mAPH
on vehicle and pedestrian for 3D object detection on the official test
set, outperforming all previous single-stage and two-stage models, while
being much more efficient.

1 Introduction

3D point cloud representation learning is critical for autonomous driving, espe-
cially for core tasks like 3D object detection. The challenges of learning from 3D
point clouds mainly come from two aspects. The first aspect is that 3D points
are sparsely distributed in the 3D space due to the nature of LiDAR sensors.
This forces 3D models to be different from dense models in natural language pro-
cessing (where words in a sentence are dense) or image understanding (where
pixels in an image are dense). The second aspect is that both the number of
points in a point cloud frame and the point cloud sensing region are increasing
along with the improvement of the LiDAR sensor hardware. Some of the latest
commercial LiDARs can sense up to 250m [15] and 300m [44] in all directions
around the vehicle, leading to a large range of point clouds.

To address these challenges, previous works have proposed many methods
that can be roughly organized as five categories. PointNet [30,32,38] based
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method treats 3D point clouds as unordered sets and encodes them with MLPs
and max pooling. Hierarchical structure is introduced to deal with the large in-
put space and to better capture local information. These methods usually have
inferior representation capacity compared with more recent methods. PointPil-
lars-style methods [18] divide the space into grids of fixed sizes to convert the
sparse 3D problem to a dense 2D problem. This method scales quadratically
with the range, making it hard to scale with the advancement of LiDAR hard-
wares. Sparse submanifold convolutions [14,36,40] based method can handle
the sparse input efficiently. Usually these methods use small 3 × 3 convolution
kernels which cannot connect features that are sparsely disconnected without
adding normal sparse convolution and striding. This weakness limits its repre-
sentation capacity. Another weakness of this method is their need for heavily
optimized custom ops to be efficient on the modern GPUs and incompatibility
with matmul optimized accelerators such as TPUs. Range image is a compact
representation of point cloud. Multi-view methods [50,40,43,2] run dense convo-
lutions in this view to extract features and fuse with BEV features learned in the
PointPillars-style to improve 3D representation learning. It is hard to regress 3D
objects directly from the range image due to its lack of 3D information encoding
in the dense 2D perspective convolutions. To tackle this weakness, graph-style
kernels [4,12] replace convolutions to make use of the range information in range
images to capture 3D information which greatly improves the accuracy but is
still inferior to the state of the art. Transformer [41] is designed to process
sequences of data. The challenge in applying it to a point cloud is to solve the
quadratic complexity on the number of inputs. Recent methods tackle this prob-
lem by attending to neighboring points [29], neighboring voxels [23] or voxels
in fixed windows [11]. A generic and efficient transformer-only model without
limitations like limited receptive field, irregular memory access pattern, and lack
of scalability is still to be designed.

In this paper, we adapt window-based Transformers to 3D point clouds. The
Transformer [41] architecture has been hugely successful in modeling language
sequences and image patches. In particular, on 2D images, Swin Transformer [22]
proposed to partition images into windows and merge context information in
a hierarchical manner. Our Sparse Window Transformer (SWFormer) builds
upon similar ideas, but with several key adaptations for sparse windows. Our
first adaption is to add a bucketing-based window partition for sparse windows.
Although each window has the same spatial size, such as a 10×10 voxel grid, the
number of non-empty voxels in each window can vary significantly, so we group
these windows into buckets with different effective sequence lengths. Our second
adaptation is to limit the expensive window shifting. Swin Transformer [22]
uses window shifting once per Transformer layer to connect features between
windows and increases receptive fields, but this shifting operation is expensive
in the sparse world as it needs to re-order all the sparse features with gather
operations. Moreover, it is extremely slow on matmul optimized accelerators such
as TPUs. To address this issue, SWFormer employs a new hierarchical backbone
architecture, where each SWFormer block has many Transformer layers but only
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one shifting operation, as shown in Figure 3. It relies on multi-scale features to
achieve large receptive fields for context information, and a multi-scale fusion
network to effectively combine these features. The model uses additional custom
downsample and upsample algorithms to properly handle the sparse features
during feature fusion.

Our innovation continues from the backbone into the 3D object detection
head. Existing 3D object detection methods [51,18,50,43,13,36,4,40,24,46] can
mostly be viewed as either anchor based methods with implicit or explicit an-
chors or DETR [3] based methods [26]. The detection performance is closely
related with the distribution of the difference between anchor and groundtruth.
Methods with inaccurate anchors [4,24] have poor performance in detecting large
objects such as vehicles though they can have reasonable performance on pedes-
trians. One way to solve this problem is to have a two-stage model to refine
the boxes [24,36] which greatly improves the detection accuracy. CenterNet-
style detection methods [13,46,40] strive to define anchors in the center of the
groundtruth boxes only which enforces distributions of closer to zero mean and
smaller variance. However, when detecting objects directly from sparse features
(e.g. features from PointNet, Submanifold convolutions, sparse Transformers),
there are not necessarily features close to the object centers. To alleviate this
issue, [40] applies normal sparse convolutions to insert points in the convolution
output; [11] scatters the sparse features to a dense BEV grid and runs dense
convolutions to expand features to missing positions. These methods are expen-
sive. In this paper, we propose a voxel diffusion module to address this issue
efficiently in a scalable way by segmenting and diffusing foreground voxels to
their nearby regions as described in §3.4.

Extensive experiments are conducted on the challenging Waymo Open Dataset
[39] to show state of the art results of SWFormer on 3D object detection. We
summarize our contributions as follows:

– We propose a hierarchical Sparse Window Transformer (SWFormer) back-
bone for 3D representation learning. Its flexible receptive fields and multi-
scale features make it suitable for different self-driving tasks like object de-
tection and semantic segmentation.

– We propose a generic voxel diffusion module to address the unique challenge
of anchor placement in 3D object detection from sparse features.

– We conduct extensive experiments on Waymo Open Dataset [39] to demon-
strate the state of the art performance of our SWFormer model.

2 Related Work

2.1 3D object detection

As one of the most important tasks in autonomous driving, 3D object detection
has been extensively studied in prior works. Early works like PointNet [30] and
PointNet++ [32] directly apply multilayer perceptions on individual points, but
it is difficult to scale them to large point clouds with good accuracy. The current
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mainstream 3D object detectors often convert point clouds into bird eye view 3D
[51] or 2D voxels [18] (2D voxels are also referred as pillars), where each voxel
aggregates the information from points it contains. In this way, regular 2D or
3D convolutional neural networks can be applied to process these bird-eye-view
representations. The pseudo image of voxels also makes it easier to reuse the
rich research advancements in 2D object detection, such as two-stage or anchor-
based detection heads [46]. The downside is that the pseudo image of voxels
grows cubically/quadratically with the voxelization granularity and detection
range, not to mention that many of the voxels are effectively empty. Therefore,
another type of approach is to perform 3D object detection without voxelization.
This includes methods that detect objects from the perspective view [25,4,12],
or lookup nearest neighbors for each point [28]. However, the detection accuracy
is typically inferior to the voxelization route.

To have the best of both worlds, recent approaches [45,40,36] start to explore
multi-view approaches and make use of sparse convolutions on the voxelized
point cloud. For example, the recent range sparse net (RSN [40]) adopts a two-
step approach, where the first step performs class-specific segmentation on the
range image view, and the second step applies sparse 3D convolutions on the
voxel view for specific classes. However, submanifold sparse convolutions cannot
connect features that are sparsely disconnected without adding normal sparse
convolutions and striding, and they often require heavily optimized customized
ops to be efficient on modern accelerators.

Our work aims to learn the 3D representations from sparse point clouds with-
out using any dense or sparse convolutions. Instead, we resort to a hierarchical
Transformer to achieve our goal.

2.2 Transformers

Transformers [41] have shown great success in natural language processing [7].
Recently, researchers have brought this architecture to computer vision [1,33,42,6].
ViT [9] partitions images into patches, which greatly advanced the use of Trans-
formers for image classification. Swin Transformer [22] further demonstrated
better ways to fuse contextual information through window shifting and hierar-
chy, and also generalized to other tasks such as segmentation and detection.

Interestingly, Transformers are naturally suitable for sparse point clouds, be-
cause they can take any length of sequences as inputs and do not require dense
2D/3D image representations. Therefore, recent works have attempted to adopt
Transformers for 3D representation learning, but they are primary developed for
object scans and indoor applications [47,10,27,29]. Voxel Transformer [24] is the
submanifold sparse convolution [14] counterpart in the Transformer world, by
replacing the convolution kernel with attention. Its irregular memory access pat-
tern is computationally inefficient, and its accuracy is worse than state of the art
methods. Recently, SST [11] proposes a single-stride transformer for 3D object
detection and achieved impressive results on Waymo Open Datasets especially
for pedestrian object detection. However, due to its single stride nature, SST
has a limited receptive field and thus has difficulty dealing with large objects,
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making it ineffective in important tasks like large vehicle detection, large ob-
ject segmentation (e.g. buildings), lane detection, and trajactory prediction. It
needs to scatter features to a dense BEV grid to run several dense convolutions
which limits its scalability. It is also computationally expensive as it needs to
run many layers of transformers on the high resolution feature map which limits
its applications in realtime systems.

Our work is inspired by window-based Transformers (e.g., SwinTransformer [22])
in the sense that we also adopt the hierarchical window-based Transformer back-
bone, but to address the unique challenges of 3D sparse point clouds, we propose
several novel techniques such as the improved SWFormer blocks, multi-scale fea-
ture fusion, and voxel diffusion.

3 Sparse Window Transformer

3.1 Overall Architecture

SWFormer is a pure Transformer-based model without any convolutions. Fig-
ure 1 shows the overall network architecture: given a sequence of point cloud
frames as inputs, each point is augmented with per-frame voxel features [18] and
an auxiliary frame timestamp offset [40]. It uses dynamic voxelization [50] and
a point net [18,30] based feature embedding net to get sparse voxel features.
Note, our voxels are also referred as pillars in other works [18]. These sparse
voxels are then processed by a hierarchical sparse window Transformer network
described in §3.2. The resulting multi-scale features are then fused with a Trans-
former based feature fusion blocks. To address the unique challenge of detecting
3D boxes from sparse features, we first segment the foreground voxels and then
apply a voxel diffusion module to expand foreground voxels to neighboring lo-
cations with pseudo voxels. In the end, we apply a center net [46,40,49] style
detection head to regress 3D boxes.

3.2 Hierarchical Sparse Window Transformer Encoder

A key concept of our SWFormer is the sparse window in the birds eye view.
After points are converted to a grid of 2D voxels on bird eye view, the voxel
grid is further partitioned into a list of non-overlapping windows with fixed size
H ×W (e.g., 10 × 10), similar to Swin Transformer[22]; however, since points
are often sparse, many voxels are empty with no valid points. Therefore, the
number of non-empty voxels in each window may vary from 0 to HW . As we
will explain later, all non-empty voxels within the same window will be flattened
to a single variable-length sequence and fed into Transformer layers. In practice,
these variable-length sequences prevent us from batch training, causing lower
training efficiency. To solve this issue, we borrow a widely used ideas from nat-
ural language processing [41,8] and recent works [11], which group these sparse
windows into different buckets based on their sequence lengths. Concretely, we
divide sparse windows into at most k buckets {B0, B1, ..., Bk}, where windows
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Fig. 1. Overview of SWFormer model architecture. Given a sparse point cloud, we
first perform voxelization to generate a grid of 2D voxels. These voxels are then pro-
cessed with a 5-scale sequence of hierarchical SWFormer blocks (Figure 3), with strides
{1, 2, 4, 16, 32}. The output features are combined with a multi-scale feature fusion net-
work (section 3.3). The fused features are fed to a head, which performs foreground
segmentation and voxel diffusion (section 3.4), and computes center net style classifi-
cation and box regression loss (section 3.5). Different object classes (e.g. vehicles and
pedestrians) may use a separate head on different feature scales.

in Bi are always padded to a maximum sequence length of HW/2i. All padded
tokens are masked in Transformer layers.

Based on the aforementioned sparse windows, our encoder adopts hierarchi-
cal Transformers to process the inputs and produce a list of multi-scale BEV
features. As shown in Figure 1, each scale starts with a sparse window partition
layer followed by a multi-layer SWFormer block.

Sparse Window Partition: We divide the BEV voxels into non-overlapping
windows with fixed sizeH×W , which are then grouped into buckets {B0, B1, ..., Bk}.
For each bucket Bi, we flatten all voxels within the same window into a sequence
and zero-pad the sequence length to HW/2i. These sequences are then batched
and fed to the Transformer blocks, where the self-attention shares the keys and
values for all query voxels coming from the same window [22]. Since SWFormer
processes inputs in a hierarchical fashion with multiple feature scales, we need
to apply strided window partitions at the beginning of each scale. The strided
window partition is similar to traditional strided convolutions, except that it
always picks the closest voxel to the center of the window with deterministic
rules to break ties. Notably, no max or average pooling operations are applied
because they are not friendly to sparse implementations. Figure 2 illustrates an
example of a stride-4 window partition.

Sparse Window Transformer block: Transformer[41] is inherently suit-
able for sparse point clouds, as it does not require the dense 2D/3D inputs as in
convolutional networks; unfortunately, due to the quadratic complexity of self-
attention with respect to the input sequence length, it is prohibitively expensive
to feed the whole point cloud (with millions of points) or voxel features (with
tens of thousands valid voxels) as a single input sequence to Transformer. In this
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Fig. 2. Strided Sparse Window Partition. Left shows a grid of 16x16 BEV voxels, where
grey voxels are empty and others are non-empty. Right shows the results of stride-4
window partition, leading to a grid of 4x4 voxels. For each striding window, it picks
the nearest neighbor non-empty voxel feature (light green) from the center (black dot)
with any deterministic rule to break ties; if all voxels are empty in the striding window,
then the corresponding voxel after striding is also empty. Best viewed in color.
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Fig. 3. Sparse Window Transformer Block. Given a sequence of sparse features, it first
applies a multi-head self-attention (MSA) on all valid voxel within the same window,
followed by a MLP and layer norm. After repeating the Transformer layer N times,
it performs a shifted sparse window partition to re-generate the sparse windows, and
then process the shifted windows with another M Transformer layers. If N and M are
the same, we name it as N-layer SWFormer block for simplicity.

paper, we adopt the idea of Swin Transformer [22]: the sparse BEV voxels are
first partitioned into windows, and Transformer is applied to each window sep-
arately. To increase the receptive field and connect the features across windows,
SwinTransformer uses a window shifting technique to re-partition the window
for every layer of Transformer. However, as we are operating on sparse voxel fea-
tures, such shift-window operation is memory-read/write intensive, especially for
matrix-optimized accelerators like TPUs. To alleviate this problem, we propose
to limit the shift-window operation to once per stride rather than per layer. Fig-
ure 3 shows the detailed architecture of a SWFormer block: it largely follows the
same style of SwinTransformer to perform self-attention within a local window,
except it only performs shift-window operation once in the middle. Formally, our
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SWFormer block can be described as follows:

z0 = [x; maskz] + PEz (1)

ẑl = LN
(
zl−1 + MSA(zl−1)

)
l = 1...N

zl = LN
(
ẑl + MLP(ẑl)

)
l = 1...N

u0 = [shift-window(z
N

); masku] + PEu (2)

ûl = LN
(
ul−1 + MSA(ul−1)

)
l = 1...M

ul = LN
(
ûl + MLP(ûl)

)
l = 1...M

where x is the input features after sparse window partition, maskz is the mask for
input padding, PEz is the positional encoding. The process contains two stages:
(1) the first stage applies N Transformer layers to z0 and output zN . Each
Transformer layer consists of a standard multi-head self-attention (MSA) and
multilayer perceptron (MLP), but slightly different from the standard version,
here we adopt the post-norm scheme where layer norm (LN) is added after MSA
and MLP. For simplicity, we use the standard sine/cosine absolute positional
encoding in this paper. (2) The second stage first applies window-shift to zN , and
adds the updated masku and positional encoding PEu based on zN ; afterwards,
M Transformer layers are added to process u0 and generate the final output
uM . Notably, each SWFormer block has N+M Transformer layers but only one
window-shift operation.

By restricting window-shift operations, our SWFormer block is more efficient
than the conventional Swin Transformer; however, it also limits the receptive
field, since each Transformer layer is only applied to a small window. To address
this challenge, SWFormer is designed as a hierarchical network with multiple
scales, where the strides are gradually increased: for simplicity, this paper uses
strides {1, 2, 4, 16, 32} for the five scales. For each scale, we always keep the
window size fixed (e.g., 10× 10); however, as the later scales have larger strides,
the same window in later scales will cover much larger area. As an example, for
the last scale with stride 32, a 10×10 window would cover 320×320 area on the
original BEV voxel grid, and a single window-shift would connect all features
within an area as large as 480× 480.

3.3 Multi Scale Feature Fusion

Inspired by feature pyramid network (FPN [20]), SWFormer adopts Transformer-
based multi-scale feature network to effectively combine all features from the
hierarchical Transformer encoder. Figure 4 shows the overall architecture of the
feature network: given a list of encoder features {P0, P1, ..P5}, it iteratively fuses
(Pi+1, Pi) from large-stride P5 to small-stride P0. Formally, our feature fusion
process can be described as:

P̂5 = P5 (3)

P̂i = SWFormer(Concat(Pi,Upsample(P̂i+1))) i = 0, ..., 4 (4)



SWFormer 9

Pi Pi+1
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P’i

Fig. 4. Feature Fusion. Fea-
ture Pi+1 is upsampled and
concatenated with Pi to gener-
ate P ′

i and the final Pi. During
upsampling, we only duplicate
Pi+1 features to locations that
are non-empty in Pi.

Starting from the last feature map P5, we first
upsample it to have the same stride as P4 such
that they can be concatenated into a single fea-
ture map; afterwards, we simple apply a 1-layer
SWFormer block to process the concatenated fea-
ture and generate the new P̂4. The process is it-
erated until all fused features {P̂0, ..., P̂5} have
been generated, which have the same strides as
{P0, ..., P5} features. The fused features are fur-
ther used in voxel diffusion and box regression as
described in the following sections.

One challenge in sparse upsamping is that one
cannot naively duplicate the feature to all up-
sampled locations (like commonly done in dense
upsampling), which will cause unnecessary exces-
sive feature duplication and significantly reduce
the sparsity. In this paper, we restrict features in
Pi+1 to only duplicate to locations that have non-
empty features in Pi, as shown in Figure 4. In this
way, we can ensure P̂i has the same sparsity as Pi.

3.4 Voxel Diffusion

Diffusion0.9

0.5

Fig. 5. Voxel Diffusion. After foreground segmentation, each voxel receives a segmen-
tation score s ∈ [0, 1]. All voxels with scores greater than a threshold γ = 0.05 are
scattered to a dense BEV grid, and then we apply a k × k max pooling on the dense
BEV grid to expand valid voxel features to their neighboring locations where k is set
to 5 in this example. (Left) before diffusion, there are only two foreground voxels with
segmentation scores {0.5, 0.9} greater than γ; (Right) after voxel diffusion, 47 voxels
become valid. Best viewed in color.

To detect 3D objects from sparse voxel features, a unique challenge is that
there might be no valid voxel feature near object centers which are the best posi-
tions to place implicit [46] or explicit anchors [34]. Prior works have attempted to
resolve this issue by: 1) second-stage box refinement [36], 2) sparse convolutions
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[40] or coordinate refinement [29] that can expand features to empty voxels close
to the object centers, 3) scattering sparse voxel features to dense and applying
dense convolutions [11]. In this paper, we propose a novel voxel diffusion module
to effectively and efficiently address this challenge.

Voxel diffusion is based on two simple ideas: First, we segment all foreground
voxels by jointly performing foreground/backgrond segmentation, thus effec-
tively filtering out the majority of background voxels. Second, we expand all
foreground voxels by zero-initializing their features into neighboring locations
with a simple k × k max pooling operations on the dense BEV grid, where k
is the detection head specific diffusion factor to control the magnitude of ex-
pansion. The diffused voxel features are further connected and processed with a
few Transformer layers. Combining these two ideas, we can simultaneously keep
voxel features sparse (by filtering out background voxels) and features filled (by
voxel diffusion) for voxels closer to the object center. Figure 5 illustrates an
example of voxel diffusion.

Our foreground segmentation is jointly trained with object detection. Specif-
ically, for each voxel, we assign a binary groundtruth label: 0 (background, voxel
does not overlap with any objects) and 1 (foreground, voxel overlaps with at
least one object). The foreground segmentation is trained with a two-class focal
loss [21] for each object class c:

Lcseg =
1

N

∑
i

Li (5)

where N is the total number of valid voxels and Li is the focal loss for voxel
i. At inference time, we keep voxels as foreground if their foreground scores are
greater than a threshold γ.

3.5 Box Regression

SWFormer follows [40] to use a modified CenterNet [49,13,40,46] head to regress
boxes from voxel features. The heatmap loss is computed as a penalty-reduced
focal loss [49,21] per object class.

Lchm = − 1

N

∑
i

{(1− h̃i)α log(h̃i)Ihi>1−ε+

(1− hi)βh̃αi log(1− h̃i)Ihi≤1−ε},
(6)

where h̃i and hi are the predicted and ground truth heatmap values for object
class c respectively at voxel i. N is the number of boxes in class c. We use
ε = 1e− 3, α = 2 and β = 4 in all experiments, following [49,19,40]. SWFormer
parameterize 3D boxes as b = {dx, dy, dz, l, w, h, θ} where dx, dy, dz are the box
center offsets relative to the voxel centers. l, w, h, θ are box length, width, height
and box heading. We follow [40] to apply a bin loss [38] to regress heading θ,
smooth L1 to regress other box parameters, and an IoU loss [48] to improve
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overall box accuracy on the voxels with ground truth heatmap values above a
threshold δ1.

Lcθi = Lbin(θi, θ̃i), (7)

Lcbi\θi = SmoothL1(bi\θi − b̃i\θ̃i), (8)

Lcbox =
1

N

∑
i

(Lθi + Lbi\θi + Lioui
)Ihi>δ1 , (9)

where b̃i, bi are the predicted and ground truth box parameters respectively, θ̃i,
θi are the predicted and ground truth box heading respectively.

The net is trained end to end with the total loss defined as

L =
∑
c

(λ1L
c
seg + λ2L

c
hm + Lcbox) (10)

When decoding prediction boxes, we first filter voxels with heatmap less than
a threshold δ2, then run max pool on the heatmap to select boxes corresponding
to the local heatmap maximas without any non-maximum-suppression.

4 Experiments

We describe the SWFormer implementation details, and demonstrate its effi-
ciency and accuracy in multiple experiments. Ablation studies are conducted to
understand the importance of various design choices.

4.1 Waymo Open Dataset

Our experiments are primary based on the challenging Waymo Open Dataset
(WOD) [39], which has been adopted in many recent state of the art 3D detec-
tion methods [36,46,40,11,31]. The dataset contains 1150 scenes, split into 798
training, 202 validation, and 150 test. Each scene has about 200 frames, where
each frame captures the full 360 degrees around the ego-vehicle. The dataset has
one long range LiDAR with range capped at 75 meters, four near range LiDARs
and five cameras. SWFormer uses all five LiDARs in the experiments.

4.2 Implementation Details

We normalize intensity and elongation in the raw point cloud with the tanh
function.The dynamic voxelization uses 0.32m voxel size in x, y and infinite size
in z. During training, we ignore all ground truth boxes with fewer than five
points inside. The voxel feature embedding net has two layers of MLPs with
channel size of 128. All of the transformer layers have channel size of 128, 8
heads, and inner MLP ratio of 2. We also use stochastic depth [16] with survival
probability 0.6. The segmentation cutoff γ in §3.4 is set to 0.05. The heatmap
threshold δ1, δ2 are set to 0.2, 0.1 respectively for both vehicle and pedestrian
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heads. For training efficiency, we cap the number of regression targets in each
frame by 1024 for vehicle and 800 for pedestrian sorted by ground truth heatmap
values. λ1, λ2 are set to 200 and 10 in Eq. 10.

Data augmentation. We have adopted the several popular 3D data aug-
mentation techniques described in [5] during training: randomly rotating the
world by yaws uniformly chosen from [−π, π] with probability 0.74, randomly
flipping the world along y-axis with probability 0.5, randomly scaling the world
with scaling factor uniformly chosen within [0.95, 1.05), randomly dropping points
with probability of 0.05.

Training and Inference. The SWFormer models are trained end-to-end
with 32 TPUv3 cores using the Adam optimizer [17] for a total number of 128
epochs with an initial learning rate set to 1e-3. We apply cosine learning rate
decay and 8 epoch warmup with initial warmup learning rate set to 5e-4.

4.3 Main Results

We measured the detection results using the official WOD detetion metrics: BEV
and 3D average precision (AP), heading error weighted BEV, and 3D average
precision (APH) for L1 (easy) and L2 (hard) difficulty levels [39]. The official
metrics used to rank in the leaderboard uses IoU cutoff of 0.7 for vehicle, 0.5
for pedestrian. We report additional AP results at IoU of 0.8 for vehicle, 0.6
for pedestrian. Large vehicles that have max dimension greater than 7 meters
are also reported. Table 1 reports the main results on validation set, Table 2
reports additional results for high IoU and large vechiels on the validation set,
and Table 3 shows the test set results by submitting our predictions to the official
test server. Results from methods with test time augmentation or emsemble are
not included.

As shown in Table 1, SWFormer achieves new state-of-the-art results for ve-
hicle detection on the WOD validation set : it has 1.5 APH/L2 higher than the
prior best single-stage model RSN [40]. SWFormer even outperforms the prior
best performing two-stage method PVRCNN++[37] by 0.42 APH/L2. Impor-
tantly, SWFormer performs very well at detecting large vehicles, 6.35 AP/L2
higher than the prior art of RSN [40] as shown in Table 2. SWFormer slightly
outperforms the state of the art single stage method SST 3f [11] by 0.12 APH/L2.
Notably, the single frame single stage SWFormer 1f also outperforms all prior
single frame methods.

We have compiled the model with XLA [35] and ran inference for the 15th
frame in scene 8907419590259234067 1960 000 1980 000 that has 68 vehicles and
69 pedestrians on a Nvidia T4 GPU with fused transformer kernels. The latency
is 20ms, more efficient than the popular realtime detector PointPillars [18] which
takes about 100ms on the same GPU with our own implementation.

Table 3 shows vehicle and pedestrian detection result comparison with pub-
lished results on the WOD test set, which shows SWFormeroutperforms all previ-
ous single-stage or two-stage methods on the official ranking method mAPH/L2.
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Table 1. WOD validation set results. † is from [40]. Top methods are highlighted. Top
one-frame (cyan), single-stage (blue) are colored. TS: two-stage. BEV: BEV L1 AP.

Method TS
AP/APH Vehicle AP/APH Pedestrian

3D L1 3D L2 BEV 3D L1 3D L2 BEV

PVRCNN++ [37] 3 79.3/78.8 70.6/70.2 - 81.8/76.3 73.2/68.0 -
VoTr-TSD[24] 3 75.0/74.3 65.9/65.3 - - - -
SST TS 3f [11] 3 78.7/78.2 70.0/69.6 - 83.8/80.1 75.9/72.4 -
CenterPoint TS [46] 3 76.6/76.1 68.9/68.4 - 79.0/73.4 71.0/65.8 -
PointPillars [18] † 7 63.3/62.7 55.2/54.7 82.5 68.9/56.6 60.0/49.1 76.0
MVF++ 1f [31] 7 74.6/- - 87.6 78.0/- - 83.3
RSN 1f [40] 7 75.1/74.6 66.0/65.5 88.5 77.8/72.7 68.3/63.7 83.4
RSN 3f [40] 7 78.4/78.1 69.5/69.1 91.3 79.4/76.2 69.9/67.0 85.0
SST 1f [11] 7 74.2/73.8 65.5/65.1 - 78.7/69.6 70.0/61.7 -
SST 3f [11] 7 77.0/76.6 68.5/68.1 - 82.4/78.0 75.1/70.9

SWFormer 1f (Ours) 7 77.8/77.3 69.2/68.8 91.7 80.9/72.7 72.5/64.9 86.1
SWFormer 3f (Ours) 7 79.4/78.9 71.1/70.6 92.6 82.9/79.0 74.8/71.1 87.5

Table 2. Additional WOD validation set results. Top methods are highlighted.

Method
Vehicle L1 AP Pedestrian L1 AP

3D IoU=0.8 BEV Large 3D Large 3D IoU=0.6

MVF++ 1f [31] 43.3 - - 56.0
RSN 3f [40] 46.4 53.1 45.2 -

SWFormer 3f (Ours) 47.5 60.1 51.5 62.1

Table 3. WOD test set results. † is from [40]. Top methods are highlighted. mAPH/L2
is the official ranking metric on the WOD leaderboard. TS is short for two-stage.

Method TS
mAPH Vehicle AP/APH 3D Pedestrian AP/APH 3D

L2 L1 L2 L1 L2

CenterPoint [46] 3 69.1 80.20/79.70 72.20/71.80 78.30/72.10 72.20/66.40
SST TS 3f [11] 3 72.94 80.99/80.62 73.08/72.74 83.05/79.38 76.65/73.14
PVRCNN++ [37] 3 71.24 81.62/81.20 73.86/73.47 80.41/74.99 74.12/69.00
P.Pillars [18] † 7 55.10 68.60/68.10 60.50/60.10 68.00/55.50 61.40/50.10
RSN 3f [40] 7 69.70 80.70/80.30 71.90/71.60 78.90/75.60 70.70/67.80

SWFormer 3f (Ours) 7 73.36 82.89/82.49 75.02/74.65 82.13/78.13 75.87/72.07

4.4 Ablation Study

Voxel diffusion is one of the primary contributions of this paper. We study its
impacts by varying the diffusion window size k introduced in §3.4. The result in
Table 4 shows the significance of voxel diffusion. Disabling voxel diffusion (i.e.
setting k = 1) results in 6.37 and 3.22 3D AP drop compared with k = 9 on
vehicle and pedestrian detection respectively. Increasing k can slightly improve
the detection accuracy especially on vehicle.
Multi-scale feature improves the model accuracy as shown in Table 5 espe-
cially going from one scale to two scales. The impact is larger on vehicle detection
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(+2.72 3D AP) than pedestrian detection (+1.15 3D AP). The 3-scale model has
pretty close accuracy as the full 5-scale model. In practice, we can trade-off be-
tween accuracy and latency by adjusting the number of scales. Note that some
autonomous driving tasks such as lane detection, behavior prediction require
larger receptive field. The success of training a deep five-scale SWFormer model
shows its potential in those tasks.

Table 4. Impact of Voxel Diffusion. Compared to the baseline (window size = 1), our
voxel diffusion improves accuracy, especially with large diffusion window size.

Diffusion Window Size 1 3 5 9

Vehicle 3D AP/L1 72.13 78.07 78.58 78.50
Pedestrian 3D AP/L1 79.23 82.28 82.44 82.45
Vehicle BEV AP/L1 82.42 91.19 92.09 92.03
Pedestrian BEV AP/L1 83.65 87.01 87.15 87.47

Table 5. Impact of Multi-Scale and Window Shifting. Compared to single scale, multi-
scale have much better accuracy. Window shifting is also important for performance.

Number of Scales Window Shift
1 2 3 5 7 X

Vehicle 3D AP/L1 74.96 77.68 78.88 79.36 76.74 79.36
Pedestrian 3D AP/L1 81.24 82.39 82.19 82.91 81.19 82.91
Vehicle BEV AP/L1 89.55 91.83 92.23 92.60 90.74 92.60
Pedestrian BEV AP/L1 86.48 87.30 87.13 87.54 86.46 87.54

Window shifting is introduced in SwinTransformer [22] to connect the features
among windows. We have limited its usage to one per scale. What happens if we
completely remove it? Table 5 shows clear accuracy drop especially on vehicles if
the window-shift operations are removed from the SWFormer blocks. This meets
our intuition that it is important to keep one window shift operation per scale
to make sure every voxel gets the similar receptive field in all directions.

5 Conclusion

This paper presents SWFormer, a scalable and accurate sparse window transformer-
only model, to effectively learn 3D point cloud representations for object detec-
tion. Built upon window-based Transformers, it addresses the unique challenges
brought by the sparse 3D point clouds, and proposes a bucketing-based multi-
scale Transformer neural network. SWFormer takes full advantage of the sparsity
of point clouds, and can effectively processes sparse windows of point clouds using
pure Transformer layers without any convolutions. It also proposes a novel voxel
diffusion module to further detect 3D objects from sparse features. Experiments
show state-of-the-art results on the challenging Waymo Open Dataset.
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