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Supplemental Material

In this section, we provide additional information regarding,

– Implementation details (Appendix A)
– Limitations (Appendix B)
– Qualitative results (Appendix C)
– Additional results (Appendix D)
– Related works (Appendix E)

A Implementation Details

A.1 MAVL

Similar to MDETR [29], we train MAVL on LMDet dataset containing approx-
imately 1.3M aligned image-text pairs. Unlike MDETR which converges in 40
epochs, our MAVL converges only in 20 epochs with overall better class-agnostic
object detection (OD) accuracy. However, the inference for MAVL is approxi-
mately 30% slower (see Table 10).

MAVL is trained using a learning rate of 1e−3 which decays by a factor of 10
after 16 epochs. The vision backbone (ResNet-101 [23]) and language backbone
(RoBERTa [43]) use learning rates of 1e−4 and 1e−5 respectively. The number
of object queries is set to 300. In the late-fusion transformer, a series of six self-
attention blocks are used, where a detection head is applied after each block for
calculating the individual auxiliary losses which are then summed up (see Fig. 2
in the main paper).

Table 10: Comparison of MDETR [29] and MAVL (ours) in terms of conver-
gence epochs, parameters, inference speed and class-agnostic OD performance
on COCO [40] dataset. MAVL converges in half epochs with better accuracy at
the cost of slightly slower inference. The frames per second (FPS) are measured
on a Quadro RTX 6000 GPU by averaging the time for 1K inference passes.

Model Epochs Parameters Inference FPS COCO AP50

MDETR 40 185M 13.0 40.7
MAVL 20 188M 8.95 43.6

A.2 MViTs as Class Agnostic Object Detectors

We explore the interactive nature of multi-modal vision transformers (MViTs)
for class-agnostic OD task. We construct intuitive natural language text queries
by exploring the semantic space of MViTs using an open-source natural language
processing (NLP) library, spacy [24]. Specifically, we find words closer to the
keyword ‘object’ in the semantic space and construct multiple text queries for
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the class-agnostic OD task. The detected boxes from the multiple text queries are
combined, a class-agnostic non-maximum suppression (NMS) at IoU threshold
of 0.5 is applied and top-N boxes are selected. We use N=50 and report average
precision and recall at IoU threshold of 0.5 in all experiments. For the salient
and camouflaged object detection (SOD and COD) tasks, we only consider boxes
with objectness scores greater than 0.7.

For Pascal VOC [14], COCO [40], Objects365 [56], LVIS [19], Clipart, Comic
and Watercolor [26], we use combined detections from queries ‘all objects’, ‘all
entities’, ‘all visible entities and objects’, and ‘all obscure entities and objects’.
Additionally, ‘all small objects’ text query is included for the evaluation on
KITTI [17], Kitchen [18] and DOTA [72] as these datasets have a larger number
of small sized objects. Moreover, multi-scale evaluation is used for DOTA dataset
due to the significant scale variations in the satellite imagery. Here the original
image is split into 8 equal crops and the detections from the individual crops
are combined. We observe the multi-scale inference improves the performance
on DOTA as it contains more tiny objects as compared to other datasets.

A.3 Detection of Small Objects

We observe that the targeted queries like ‘all small objects’ and ‘all little ob-

jects’ can improve the detection accuracy of small objects as compared to a
rather general text query ‘all objects’. Quantitative and qualitative results are
presented in Fig. 4a (main paper). For quantitative comparison, all objects cov-
ering less than 5% of the image area are considered small, between 5% and 20%
are considered medium and greater than 20% are considered large.

A.4 Open-world Object Detection

The proposals from MAVL are used to generate the pseudo-labels for unknown
categories in Open-world Object Detector (ORE) [28] training. To avoid any
data leakage, MAVL is trained on a subset of LMDet dataset, removing all the
captions that contain any of the 60 unknown categories in ORE task-1. This
filtering leaves us with a dataset having approximately 0.76M (out of 1.3M)
image-text pairs. MAVL is trained from scratch on this filtered dataset for 20
epochs and then used to produce unknown pseudo-labels using class-agnostic
object proposal generation.

To do so, firstly, proposals with objectness score less than 0.7 are discarded.
Secondly, all proposals having an IoU greater than 0.5 with any ground-truth
bounding box of a known category are removed. Rest of the proposals potentially
belong to unknown categories and are used as pseudo-labels of unknowns in ORE
training. All relevant scripts and annotations will be publicly released.

B Limitations

Although MViTs (GPV-1 [20], MDETR [29] and MAVL) show state-of-the-art
class-agnostic OD performance across various dataset domains, they cannot be
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directly adapted to specialized out-of-domain detection tasks such as in medical
imaging.

Fig. 6: Illustration of MAVL detections
on the DeepLesion [76] dataset. The
green boxes indicate the ground-truth
bounding box enclosing the lesion on the
CT images and the red boxes are the
class-agnostic predictions. The samples
indicate a failure case of class-agnostic
detection of MViT’s on lesion detection.

We evaluate the class-agnostic OD
performance of MAVL on DeepLe-
sion [76] dataset (Fig. 6). The ground-
truth annotations represented by the
green boxes in Fig. 6, indicate that the
target lesions do not well represent
the concept of an object, and require
expert based supervision to identify
the abnormalities. In medical domain,
lesion detection task involves locating
the congenital malformations in dif-
ferent types of medical images includ-
ing X-rays, CT scans, MRI scans and
Ultrasoud. These applications require
specialized data along with expert su-
pervision (obtained from well-trained
domain specialists) to perform well.
Hence, in most cases, the general class-agnostic OD methods (e.g., MViTs)
cannot be direclty used. We observe that the generic class-agnostic detection
mechanism of MViTs trained on out-of-domain natural images is not well-suited
for generating proposals that can cater the need of specific medical applications.

C Qualitative Results

We present examples of class-agnostic predictions of MDETR and MAVL across
natural image dataset Pascal VOC [14], COCO/LVIS [40,19], autonomous driv-
ing dataset KITTI [17] and indoor Kitchen dataset [18] in Fig. 7 and out-of-
domain datasets that include sketches, painting, cartoons [26] and satellite im-
ages [72] in Fig. 8. The detections are generated using the natural language text
query, ‘all objects’. In Fig. 9, we present some qualitative examples of class-
agnostic OD with DETReg [3] trained using off-the-shelf proposals from Selec-
tive Search [64] in comparison with DETReg trained using MAVL proposals.

Fig. 10 shows some examples of improved Open-world detector (ORE) trained
with MAVL unknown pseudo-labels. The images on the left of each example cor-
respond to the ORE trained with unknown pseudo-labels from RPN and on the
right correspond to the ORE trained with unknown pseudo-labels from MAVL.
The visualizations indicate that the improved model is better capable of detect-
ing unknowns. Additionally, it reduces the misclassifications of unknown cate-
gories with other known categories. For example, the second sample in Fig. 10
(top row - right side), corresponds to a sample in task 3 where ‘laptop’ belongs to
the unknown categories set, was misclassified as ‘TV’, which is however correctly
classified as an unknown with the improved model. This is advantageous as it
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(a) Pascal VOC [14] (b) MS COCO [40] / LVIS [19]

(c) Kitchen [18]

(d) KITTI [17]

Fig. 7: Class-agnostic detections of MViTs (MDETR [29] and MAVL) on natural
image datasets, Pascal VOC, MS COCO/LVIS, Kitchen and KITTI.

can better aid continual learning, i.e., the model can learn about the unknown
categories when additional information about the unknowns are obtained via
supervision. In Fig. 11, we present examples of qualitative results obtained for
salient OD and camouflaged OD with specific queries, ‘all salient objects’ and
‘all camouflaged objects’ respectively, along with the bounding box annotations
from the ground-truth masks.

D Additional Results

D.1 Gains from MSDA in MAVL

We ablate the contribution of MSDA in Table 11 for our MAVL model. The
class-agnostic OD results show the significance of MSDA.

D.2 Impact of Late Fusion in MAVL

The late fusion is crucial to our MAVL since it enables an efficient MViT design
while keeping the multi-scale spatial information intact. Notably, early fusion
(as in MDETR) ignores the spatial structure of images which makes it infeasible
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(a) Comic [26] (b) Clipart [26]

(c) Watercolor [26] (d) DOTA [72]

Fig. 8: Class-agnostic detections of MViTs (MDETR [29] and MAVL) on out-of-
domian datasets, Comic, Clipart, Watercolor and DOTA.

Fig. 9: Class-agnostic OD performance of DETReg [3] trained using Selective
Search [64] versus MAVL proposals. The images on the left side of each example
correspond to DETReg trained with Selective search and the images on the right
side correspond to the one trained with MAVL that results in better localized
predictions

to operate with MSDA (that requires spatial information for deformable atten-
tion). Thus, MAVL effectively combines MSDA with late vision-text fusion and
provides gain over MDETR in class-agnostic OD benchmarks. Unlike MDETR,
our MAVL does not rely on contrastive alignment and thus removing MSDA
significantly affects the results (Table 11).
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Fig. 10: Qualitative results of unknown detections in ORE [28] when trained
using RPN (left) versus MAVL (right) unknown pseudo-labels. Using proposals
from MAVL as unknown pseudo-labels improves the prediction of unknowns. It
reduces the misclassifications of unknown categories with other known categories.
The second example (shown in top row - right side), corresponds to a sample in
task 3 where ‘laptop’ belongs to the unknown categories set, was misclassified
as ‘TV’, which is however correctly classified as an unknown with the improved
model. This better aids in continual learning.

Fig. 11: Top Rows: Qualitative results of MAVL for Salient OD. Bottom
Rows: Camouflaged OD (right) tasks. The ground-truth masks along with the
generated bounding boxes are shown on top right of the image

D.3 Generalization Ability onto Novel/Rare Classes

Table 12 shows quantitative results on LVIS rare, common and frequent cat-
egories. (1) Similar to frequent and common, our MAVL provides good recall
rates for rare LVIS categories, indicating its robust class-agnostic behavior. We
note that most of the rare category instances in LVIS are of tiny size (area <7×7
pixels) and have low recall (∼19%) as compared to the medium/large instances
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Pascal-VOC MSCOCO KITTI
Model AP50 R50 AP50 R50 AP50 R50

MAVL w/o MSDA 59.9 82.4 33.3 51.6 33.2 50.1
MAVL 65.0 89.1 39.3 62.0 39.0 61.0

Table 11: Effect of removing MSDA from MAVL. It decreases the class-agnostic
OD performance, indicating the importance of MSDA. The models are evaluated
after 10 epochs for ablation.

with much high recall (∼86%). (2) MAVL-ORE is trained by removing 60/80
common COCO categories from LMDet leaving only 0.76M/1.3M image-text
pairs. This strict setting with much less training data also shows favorable rare
class recall.

Model Lang. Rare Common Frequent All

1:MAVL × 30.0 31.6 32.4 32.1

2:MAVL ✓ 38.0 40.5 37.1 37.0
3:MAVL-ORE ✓ 33.4 36.7 33.2 33.1

Table 12: Class-agnostic recall (R50) of MAVL on LVIS rare, common and fre-
quent categories. MAVL-ORE is trained on a filtered dataset generated by re-
moving all captions listing any of 60 unknown COCO categories evaluated in
ORE [28].

D.4 Querying All Class Names

Table 13 shows the class-agnostic OD results of MAVL when queried using a
general (e.g., combination of queries in Table 3) versus combining detections from
all category specific queries. Specifically, we use query ‘every < category name >’
for each category of a dataset and combine proposals using class-agnostic NMS.
We note that MAVL generates better class-agnostic detections with general text
queries.

Pascal-VOC MSCOCO KITTI
Model AP50 R50 AP50 R50 AP50 R50

MAVL (ours) 68.6 91.3 43.6 65.0 48.2 63.5
MAVL (cat-wise) 61.7 91.2 36.7 64.6 47.7 59.8

Table 13: Comparison of using general versus category-specific queries for class-
agnostic OD on three datasets.

D.5 Salient Object Detection

A common formulation of deep learning based Salient Object Detection (SOD)
approaches is to predict a saliency map for each input image. We evaluate MAVL
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against state-of-the art SOD approaches by converting the bounding box predic-
tions of the the MViT model to masks using a COCO [40] trained Mask-RCNN
[22] mask head. These converted masks are evaluated against the saliency predic-
tions of PoolNet [41] and CPD [71] models on DUT-OMRON [77] and ECSSD
[57] datasets (Table 14a). Following [41] and [71], F-measure (Fb) and mean
absolute Error (MAE) are reported.

Table 14: Segmentation based evaluation of MAVL on salient and comouflaged
object detection in comparison with the corresponding state-of-the art ap-
proaches. The MAVL proposals are converted to masks using COCO [40] trained
mask head of Mask-RCNN [22].

Dataset → DUT-OMRON ECSSD
Model MAE ↓ F-b ↑ MAE ↓ F-b ↑

CPD [71] 0.06 0.79 0.04 0.94
PoolNet [41] 0.05 0.87 0.04 0.95
MAVL(Ours) 0.21 0.64 0.24 0.66

(a) MAVL proposals from text query, ‘all
salient objects ’are used.

Model Sα ↑ Eϕ ↑ Fw
β ↑ MAE ↓

SINET-V2 [15] 0.78 0.87 0.66 0.04
MAVL(ours) 0.49 0.53 0.28 0.27

(b) MAVL proposals generated using ‘all
camouflaged objects’ query are used.

D.6 Camouflaged Object Detection

In this section, we compare camouflaged masks predictions of SINET-V2 [15]
with MAVL. Similar to SOD task, the bounding box predictions from the MViT
are converted to object masks using the mask head of COCO [40] trained Mask-
RCNN [22] model. Following [16], S-measure (Sα), E-measure (Eϕ), weighted
F-measure (Fw

β ) and MAE of mask predictions are reported in Table 14b.

D.7 Effect of Various Backbones

ResNet vs. EfficientNet: We explore the class-agnostic OD performance of
MViTs for different convolutional backbones. Following [29], we compare the
ResNet-101 [23] taken from Torchvision with EfficientNet-E5 [63] taken from
Timm Library [68]. The ResNet model is trained on ImageNet [55] and achieves
77.4% top-1 accuracy on ImageNet validation, while the EfficientNet model
is trained using Noisy-Student [75] on an additional 300M unlabelled images
achieving 85.1% top-1 accuracy on ImageNet validation.

Table 15 indicates that using a stronger backbone improves the class-agnostic
OD accuracy across different dataset domains. The performance boost is signif-
icant for out of domain datasets, Kitchen [18], Clipart, Comic and Watercolor
[26], indicating better generalization of MViT when trained using a stronger
backbone model.
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Table 15: Class-agnostic object detection performance of MDETR [29] for dif-
ferent convolutional backbones. The results indicate that the use of strong back-
bone improves the results especially on the out-of-domain (Kitchen [18], Clipart,
Comic, Watercolor [26]) datasets.

Dataset Pascal VOC COCO KITTI Kitchen Clipart Comic Watercolor DOTA
Model AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50

MDETR-R101 66.0 90.1 40.7 62.2 46.7 67.2 38.4 91.4 44.9 90.7 55.8 89.5 63.6 94.3 1.94 21.8
MDETR-E5 69.6 90.0 42.3 61.3 48.1 65.2 53.3 91.5 62.3 92.7 69.9 90.5 74.4 95.0 3.71 24.9

E Related work

Class-Agnostic Detection: The class-agnostic OD is relatively less studied
compared to class-aware detection.However, many object proposal generation
algorithms have been proposed, since it remains a critical step in many applica-
tions like recognition and detection. The proposal generation algorithms can be
categorized into three categories: (a) bottom-up segmentation based, (b) edge
information based and (c) data-driven approaches based on deep neural network
(DNN) architectures. In the first category that uses segmentation to derive pro-
posals, multiple pixel groupings (superpixels) are merged according to various
heuristics. Alexe et al. proposed an objectness [2] scoring method that combines
various low-level features such as edges, color and superpixels to score object
proposals. Selective Search [64] uses multiple hierarchical segmentations based
on superpixels for object proposals. Similarly, MCG [52] uses segment hierar-
chy to group regions. Among the second category approaches, EdgeBoxes [84]
scores bounding box proposals based on contours that the boxes enclose. BING
algorithm [10,81] generates binary features based on edge information for fast
objectness estimation.

DNNs have also been investigated for generating object proposals. DeepBox
[33] proposes a network that can be used to rerank any bottom-up proposals,
e.g., the ones generated by EdgeBox [84]. DeepMask [49] generates rich object
segmentations and an associated score of the likelihood of the patch to fully con-
tain a centered object. A refinement of this method is proposed in SharpMask
[50]. Alternatively, Ren et al. proposed region proposal network (RPN) [54] for
generating object proposals, that identifies a set of regions that potentially con-
tain objects along with corresponding objectness score. These are then refined for
classification and localization for class-aware object detection. These are widely
used in many two-stage objects detectors e.g., RCNN variants [54,22,38]. Jaiswal
et al. proposed an adversarial framework [27] for class-agnostic object detec-
tion which replaces object type classification head with a binary classifier for
class-agnostic detection. Another recent work proposes an Object Localization
Network (OLN) [31] that replaces the classifier head in Faster-RCNN [54] with
localization quality estimators such as centerness and IoU score for objectness
estimation. Alternatively, Siméoni et al. proposed a method [58] that extracts
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features from a DINO [7] self supervised pre-trained transformer that uses patch
correlations in an image to propose object proposals.

Multi-modal Transformers: Multi-modal Vision Transformers (MViT) typi-
cally involve learning task agnostic vision-language (V+L) representations using
millions of image-text pairs and then transferring the knowledge to downstream
tasks [37,9,29]. Inspired from the success of BERT [12] in natural language pro-
cessing (NLP), VisualBERT [36], ViLBERT [44] and LXMERT [62] jointly learn
V+L representations using image-caption pairs. They utilize a pretrained region
proposal method [54] and learn the V+L correlation using self-supervised tasks
such as mask language modeling and sentence image alignment. In a concurrent
work, VL-BERT [60] performs pretraining on both text-only and visual-linguistic
datasets and achieve an improved performance on multiple downstream visual
comprehension tasks. UNITER [9] introduces Word-Region Alignment (WRA)
pretraining task using Optimal Transport (OT) [48] which facilitates the align-
ment between text and image regions. It only masks one modality at a time
while keeping the other modality intact which helps it to better capture the
V+L relationships.

All these methods utilize an off-the-shelf region proposal method [54] which
usually produces noisy regions. OSCAR [37] tries to mitigate this problem by
using object detector tags for modeling V+L understanding. It relies on the
fact that the salient objects in the image are easy to detect and are typically
mentioned in the caption. Alternatively, MDETR [29] leverages explicit align-
ment between text and ground-truth bounding boxes to learn visual-language
alignment. It builds on-top-of recently proposed DETR [5] model, generalizes to
unseen concepts and outperforms the previous methods on many V+L down-
stream tasks. Going further, 12-in-1 [45] utilizes the pretrained V+L representa-
tions and performs a joint training of a single model on 12 datasets. This learning
paradigm improves the single task performance as compared to the typical task-
wise training by achieving superior results on 11 out of 12 tasks. Gupta et al.
proposed GPV-I [20], a unified architecture for multi-task learning, where the
task is inferred from the text prompt. It takes an image and a task description as
input and outputs text with the corresponding bounding boxes. It is also based
on DETR [5]. We observe that these [29,20] multi-modal transformers, which are
trained using aligned image-text pairs, produce high quality object proposals by
using simple text queries e.g., ‘all objects’.

Unsupervised Approaches: Recently, many unsupervised pretraining meth-
ods are proposed for the object detection task. Xiao et al. introduced ReSim
[73] to encode both the region and global representations during self-supervised
pretraining. In addition to the standard contrastive learning objective [21,8], it
slides a window in the overlapping region of the different views of an image and
maximizes the feature similarity of the corresponding features across all convolu-
tional layers. DetCo [74] approaches this problem by generating both the global
views and local patches from an image and defines hierarchical global-to-global,
local-to-local and global-to-local contrastive objectives. UP-DETR [11] proposes
‘random query patch detection’ pretext task for pretraining of DETR [5]. The
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random patches from the image are generated and the model is trained on a
large-scale dataset to locate these patches. DETReg [3] argues that it is neces-
sary to pre-train both the backbone and the detection network for learning good
representations for object detection downstream tasks. It utilizes an off-the-shelf
selective search [64] proposal generation algorithm for acquiring pseudo-labels
for localization and pretrained contrastive clustering based SwAV [6] model for
separating categories in the feature space. All these methods can be used for
generating class-agnostic object proposals after the unsupervised pretraining.
However, as shown in our analysis, the unsupervised approaches do not per-
form as well as the proposed class-agnostic OD framework based on supervised
MViTs.


