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Abstract. LiDAR and Camera sensors have complementary properties:
LiDAR senses accurate positioning, while camera provides rich texture
and color information. Fusing these two modalities can intuitively im-
prove the performance of 3D detection. Most multi-modal fusion meth-
ods use networks to extract features of LiDAR and camera modality re-
spectively, then simply add or concancate them together. We argue that
these two kinds of signals are completely different, so it is not proper
to combine these two heterogeneous features directly. In this paper, we
propose EMMF-Det to do multi-modal fusion leveraging range and cam-
era images. EMMF-Det uses self-attention mechanism to do feature re-
weighting on these two modalities interactively, which can enchance the
features with color, texture and localiztion information provided by Li-
DAR and camera signals. On the Waymo Open Dataset, EMMF-Det
acheives the state-of-the-art performance. Besides this, evaluation on
self-built dataset further proves the effectiveness of our method.

Keywords: 3D detection, Self-attention, Range images, Multi-modal
fusion

1 Introduction

Recently, 3D object detection has attracted more and more attention due to its
importance in autonomous driving. In the 3D object detection task, the network
predicts 3D objects using multiple kinds of signals. Among them, LiDAR signal
is sparse and provides accurate location information of objects. Different from
LiDAR signal, camera signal is compact and provides rich texture and color
information. It is intuitive to leverage these signals to improve 3D detection
performance.

From the Fig.1, we can observe that the road conditions are complicated in
real world. Even human eyes cannot identify objects from background only using
LiDAR representation. If relying too much on LiDAR signal, the model will pro-
duce a number of wrong detection results. To take the Human Visual System’s

⋆ Corresponding author.



2 Hao Li, Z. Zhang, et al.

Fig. 1. Visualization of some instances in autonomous driving scenes. The yellow circle
is a person while the red one is actually a camera mounted on a pole. It is difficult for
even the human being to distinguish the category of objects only relying on LiDAR
representation. This is mainly because that only the shape and relative position of ob-
jects is not enough to distinguish them from background. Therefore, color and texture
information are very important for the 3D detection tasks.

characteristics into account, texture and color information play a important role
in recognizing and locating objects. This raises an interesting question: Can we
integrate the texture and color information from camera images with LiDAR
points to make LiDAR representation of objects more differentiated? The an-
swer is yes, however, it is a non-trival work for two reasons. In the one respect,
camera image and LiDAR representation are two heterogenous signals that have
different characteristics. There exists a big domain gap between them. In the
other respect, camera images record the color, texture information that are sen-
sitive to occlusion. Previous works mostly use 2D/3D CNN to extract LiDAR
features and camera features and concatenate them together on the bird’s-eye
view (BEV) or the point-wise view. However, these methods only establish a
simple correspondence between LiDAR features and camera image features and
concatenate the multi-modal features naively. The two main issues mentioned
above remain unsolved. The success of transformer in Natural Language Pro-
cessing (NLP) attracts the attention of the vision community. Transformer es-
tablishes the topology graph between discrete tokens and aggregates the features
according to the attention coefficients. Benefiting from the self-attention mech-
anism, transformer is a suitable alternative to fuse multi-modal features that
have a large domain gap. However, directly calculating self-attention on the
whole 3D scene is computationally demanding. Therefore, we design a fusion
method using local self-attention to enhance the LiDAR features with camera
feature. The other advantage of local self-attention is that it can alleviate the
point misalignment caused by occlusion. And we call the resulting 3D detector
EMMF-Det.

EMMF-Det uses range images and camera images as input. This is mainly
because range image is a compact and regular LiDAR signal that can be pro-
cessed by 2D convolutions like camera image. To process the range image, we
apply a 2D encoder-decorder network to extract high-level point-wise feature.



Enhancing Multi-modal Features Using Local Self-attention 3

Prior works also have the similar idea to process range images for 3D detec-
tion [24, 10] and segmentation [29] tasks. For the camera images, we adopt the
pretrained UniverseNet-50 [39] followed by a feature pyramid network(FPN) [25]
to generate a group of camera image features that consists of high-level features
at different scales. After obtaining the LiDAR features and camera features, we
use the self-attention mechanism of transformers to integrate the LiDAR features
and camera feature. To be specific, we first divide the whole 3D scene into local
regions and calculate the local attention matrices for LiDAR and camera modal-
ities. Then we swap the attention matrices and use camera(LiDAR) attention
matrix to do feature-reweighting on the LiDAR(camera) features. In this way,
color, texture information from local region are utilized to enhance the LiDAR
feature.

Besides the multi-modal fusion module design, we find that the performances
of most existing multi-modal fusion methods are limited by the lack of data aug-
mentations used in LiDAR-only methods, especially copy paste. In the proposed
EMMF-Det, we introduce two practical data augmentation strategies during
training to complement this shortage. One is the multi-modal copy-paste that
adds some groundtruths to range images and camera images simultaneously. Be-
sides, we find that laser has poor reflectivity on transparent materials or objects
with black color. Hence we randomly corrupt the points in range images during
training, to enable LiDAR features more robust.

In summary, our contributions are summarized as follow:

– We propose a multi-modal feature fusion framework EMMF-Det, which uses
a local transformer fusion module to do feature re-weighting on the multi-
modal features locally.

– We explore the characteristics of LiDAR signal and introduce two effective
multi-modal data augmentation strategies to improve the 3D detection per-
formance.

– We evaluate our method on the Waymo Open Dataset and self-built dataset.
EMMF-Det achieves state-of-the-art results in range-view-based methods on
the Waymo Open Dataset, and the experiment results on self-built dataset
further prove the effectiveness of our method.

2 Related work

2.1 Lidar-only 3D Object Detection

Lidar-only 3D object detection methods aim to predict 3D object boxes using
LiDAR returns. They can be divided into voxel-based, point-based, and range-
view-based methods based on different representations. Voxel-based methods [63,
51, 18, 21, 53, 48, 17, 38, 13, 62, 48, 58] use voxelization to encode unordered points
into voxels, which can be processed by 3D convolutions. In these methods, Voxel-
Net [63] is an end-to-end 3D detection network, which uses voxels as input. Sec-
ond [51] uses sparse 3D convolution to accelerate VoxelNet. PointPillar [18] uses
pillars that can be seen as a variant of voxels to encode points. Point-based [37,
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50, 36, 52, 13] methods take raw point cloud as input. Among these methods,
PointRCNN [37] is a two-stage 3D detection framework using PointNet++ [34]
to extract features from points. PV-RCNN [36] uses a RoIgrid pooling layer
to improve the quality of 3D proposals generated by the voxel CNN. Recently,
some methods [41, 24, 10, 23, 1] use range-view as input to extract 3D features.
RangeIoUDet [24] uses 2D convolution to process range images and inherits the
RPN module from PointPillars. In [1], the authors propose a range conditioned
pyramid to alleviate the scale variation in range images. [41] designs a Range
Sparse Net using sparse convolutions to process the foreground features. How-
ever, during training, RSN needs to train each category separately, which makes
it impractical.

Voxel-based and Point-based methods use 3D convolution layers as the back-
bone to achieve high performance. But 3D convolution is difficult to optimize on
practical chips. This is the reason why most onboard algorithms are still dom-
inated by methods like pointpillars, which use 2D convolutional layers as the
backbone. Our approach EMMF-Det achieves SOTA performance only using
2D convolutional layers, which is efficient and easy to deploy. Compared with
other range-view-based methods, our method also has obvious advantages on
performance.

2.2 Multi-modal fusion 3D Object Detection

Multi-modal fusion 3D object detection uses multiple modalities information to
predict the 3D object bounding boxes. Existing multi-modal fusion methods can
be divided into early and late fusion. As for late fusion methods, F-ConvNet [50]
and F-PointNet [33] directly do 3D detection in frustum, which is projected by
2D bounding box. AVOD [16] and MV3D [6] perform multi-modal fusion for 3D
proposals using the ROI-pooling layer. MVP [55] proposes to use 2D detection
to generate dense 3D virtual points to augment an otherwise sparse 3D point-
cloud. In summary, late-fusion methods fuse the 2D detection or segmentation
results with the 3D detector, relying heavily on the 2D tasks. If the 2D mod-
els fails during the inference, it will hurt the performance seriously. Instead of
late fusion, more and more researchers focus on early fusion, leveraging 2D and
3D features simultaneously. Existing early fusion methods can be divided into
two categories according to the form of feature alignment. One family of early
fusion methods [56, 22, 56] construct camera feature maps and LiDAR feature
maps separately and concatenate the multi-modal features on the BEV). How-
ever, it is not proper to do fusion on the BEV directly because the field of view
(FOV) of cameras is totally different from BEV. So the cross-view transforma-
tion will cause feature blurring during the fusion, so 3D-CVF [56] proposes the
auto-calibration, which projects multi-modal features to a smooth BEV map.
The other family [40, 45, 44] fuses the multi-modal features by the point-wise
manner, which uses each point in the point cloud as the medium to concatenate
the multi-modal features point by point. MVX-Net [40] extracts the multi-modal
features separately and fuses them in point cloud coordinates system. Pointpaint-
ing concatenates the 2D segmentation scores with original LiDAR to enrich the
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information. EPNet [15] proposes an adaptive fusion module to combine LiDAR
features and RGB features point by point. However, it is not easy to combine
these two heterogenous signals together without loss. Our proposed EMMF-Det
utilizes self-attention to aggregate the multi-modal features by applying feature
re-weighting in the local region to improve the performance of LiDAR-only 3D
detction methods.

2.3 Transformer in 3D Vision

Recently, the success of transformer [43] in NLP attracts the attention of vision
community and inspires a lot of works to investigate the power of attention in
visual recognition [8, 26, 42, 59]. Recently, several works have investigated using
transformer in 3D perception tasks. In [60, 12], authors design self-attention net-
works for scene segmentation, object part segmentation and object classification.
[2, 35, 27, 31] introduce the self-attention layers to learn point cloud representa-
tion, aiming to improve the performance of existing 3D detection models. In [30],
3DETR is proposed to use an end-to-end transformer framework for 3D object
detection, which can be seen as a variant of DETR [3]. Transfuser [32] proposes
to integrate image and LiDAR representation using transformers in strategy pre-
diction task. In [49], DETR3D is proposed to use multi-view images to predict
3D bounding boxes. SST [9] uses a single-stride sparse transformer module to
process point clouds and achieves the SOTA performance on the open dataset.
To our best knowledge, our proposed method, EMMF-Det, is the first work to
use transformer to fuse multi-modal features in the 3D detection task.

3 Methods

This section presents the details of our proposed method EMMF-Det, which is
a multi-modal fusion 3D detector. EMMF-Det consists of four components. In
section 3.1, we design an one-stage 3D detector as our baseline; In section 3.2,
we describe the details of processing 2D features; In section 3.3, a novel fusion
strategy based on transformer is introduced for multi-modal fusion.

3.1 LiDAR Detector Pipeline

Range image is a compact, regular LiDAR signal that can be processed by 2D
convolution like camera images. Inspired by some prior range-based detection
and segmentation works [23, 29, 24], we apply a 2D encoder-decorder network to
extract high-level point-wise features using range images. The encoder-decorder
network is a symmetric architecture, which has four down-sampling blocks and
four up-sampling blocks. Benefitting from the symmetric architecture and cor-
respondence between range image and LiDAR points, we can obtain point-wise
LiDAR high-dimensional features, which are suitable for our multi-modal fusion
framework. The projection from LiDAR points to range images can be calculated
by eq.1.
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Fig. 2. The overall architecture of our proposed EMMF-Det. In the left part, we use a
2D FCN to extract point-wise LiDAR features from range images, and a 2D detection
network with FPN to extract camera image features at three scales. Then we project
the LiDAR features and camera features onto point cloud and perform multi-modal
fusion using local self-attention. The details of multi-modal fusion module are described
in section 3.3. Finally, we scatter the point-wise features to a BEV map and use an
anchor-free detector to predict the 3D bounding boxes.
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[1− (arcsin(zl, r) + fdown)f
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(1)

where (xl, yl, zl) represents the point coordinates in the LiDAR coordinate sys-
tem. (ur, vr) is the pixel coordinates in the range image. r =

√
x2
l + y2l + z2l is

the range value. w and h symbolize the width and height of the range image.
f = fup + fdown is the vertical field-of-view of the LiDAR sensor, where fup and
fdown represent the distance below and above the ground plane respectively.

Given N points, we can obtain the point-wise features f l
i with high dimen-

sions (64 dims). The pointwise features can be projected to the x-y plane to
generate the BEV features. Similar with other anchor-free 3D detection meth-
ods [46, 47, 54], we design a 2D FCN to process the BEV features to predict a
keypoint heatmap. Each peak in the heatmap represents a ground truth center.
As for the regression head for size, rotation and location of objects, we use the
features stored at the peak to regress the location refinement o ∈ R2 in map
view, height-above-ground hg ∈ R, 3D box size s ∈ R and a yaw rotation an-
gle {sin(x), cos(x)} ∈ R2. Using these information, we can predict the full state
information of 3D objects.

The above range-view-based model is a single-stage 3D detector that only
uses 2D convolutions and achieves superior performance compared to other
range-view-based methods. However, only using the location information en-
coded by LiDAR features is not enough to compete with SOTA methods. So we
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use the attention mechanism to fuse camera images and range images to further
improve the performance.

3.2 Camera Feature Pipeline

In parallel to the 3D detection pipeline, we introduce an existing 2D detector and
use the 2D features generated by FPN to incorporate with the LiDAR feature.
Here we choose the pretrained UniverseNet-50 [39] followed by a feature pyramid
network (FPN) [25] to generate a group of RGB features that consists of high-
level features at different scales (8×, 16×, 32× downsampling from the original
size) for each image.

To fuse the LiDAR features and camera features, we project the LiDAR point
onto the image at first by the equation [28, 11]:

α[uc, vc, 1]
T = K(Rp+ t) (2)

where (uc, vc) is the pixel coordinate in the camera image and p denotes the point
coordinates (xl, yl, zl). K is the intrinsic calibration matrix of camera. R and t
are the rotation and translation vector from LiDAR coordinates to the camera
coordinates. However, the high-level features we obtain have different resolution
from the original image. So we need to divide projected pixels coordinates by
the downsampling scale factor and round them to integer. Through this way, we
can collect the three scales point-wise camera features for N points. To align
with the LiDAR point features, we concatenate the three scales camera features
together and use a MLP to reduce the dimension to 64, so the point-wise camera
features f c

i ∈ R1×64, i ∈ {1, 2, ..., N} can be obtained.

3.3 Feature Re-Weighting using Self-attention

Once obtaining features (f l
i , f

c
i ), i ∈ {1, 2, ..., N} for N points from two modal-

ities, most multi-modal fusion methods will concatenate or add them together.
We argue that it is not very proper to do this. LiDAR signals and camera signals
are heterogeneous signals that have a large domain gap. By the characteristics of
Human Visual System, color and texture information can help to distinguish the
objects from background, while range information helps to locate the objects.
So our key idea is to exploit the self-attention mechanism from transformers to
incorporate the texture, color information with range information to improve
the 3D detection performance.

Fusion Candidate Sets. Transformer takes a sequence consisting of discrete
tokens as input . Unlike the tokens used in Natural Language Processing (NLP),
we use each LiDAR point as one token in 3D detection. However, directly cal-
culating self-attention on the whole scene in 3D vision tasks will takes up a lot
of memory. So we propose to split the whole point cloud into small point sets,
defined as fusion candidate sets, and compute the self-attention in the local re-
gion. The advantages are: first, caculating self-attention in the local region can
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reduce the computational complexity; second, local texture features and colors
are more meaningful to distinguish the boundary of objects.

One remaining issues is that how to generate local partition of a point cloud.
Given N input points {p1, p2, ..., pN} with pi ∈ R1×3, we first use farthest point
sampling (FPS) [34] to choose N ′ points {pc1 , pc2 , ..., pcN′} with pci ∈ R1×3 as
the set of centroids. For centroid point pci , we apply k-nearest neighbor algorithm
to select k points in the neignborhood of pci and denote these points as set Ωi.
Through this, we have divided the point cloud into N ′ partitions, which are
k-nearest neighbor sets.

Feature Re-Weighting Layer. Following [43], we denote the Q,K,V as
queries, keys and values separately. Given the LiDAR feature set {f l

1, f
l
2, ..., f

l
n},

f l
i ∈ R1×64 and camera feature set {f c

1 , f
c
2 , ..., f

c
n}, f c

i ∈ R1×64 for k input points.
Q,K,V for fusion candidate set Ωi can be generated by the linear transforma-
tions of the multi-modal points features . Then the attention matrices of Ωi can
be caculated via matrix dot-product operations:

Amod
i = (αmod

i )m,n = Qmod
i ·Kmod

i

⊤

m,n ∈ 1, ..., k, mod ∈ {l, c}
(3)

where Amod
i is the attention matrix of k points. l and c denote the LiDAR

modality and camera modality separately.
For points set Ωi, we calculate the attention matrices (Al

i,A
c
i ) in LiDAR

and camera modality separately. αl
i in matrix Al

i represents the attention co-
efficients that are mostly determined by location information in LiDAR signal.
αc
i in matrix Ac

i represents the attention coefficients that are mostly determined
by texture, color information in camera signal. These two attention matrices
(Al

i,A
c
i ) help to build the topology graph for fusion candidate set Ωi. After

obtaining attention matrices (Al
i,A

c
i ), we propose to do feature re-weighting on

the LiDAR point features by aggregating the value vector Vl
i with attention

matrix Ac
i . By this way, the correlation of LiDAR points in local region can

be enhanced by the texture and color information provided by camera image.
Coupled with the attention matrix Al

i from its own modality, we can get the
final output features Fl

i for LiDAR modality. In turn, we can also use attention
matrix Al

i from LiDAR modality to enhance the camera features Vc
i . The whole

process be described as follows:

Fmod
i = softmax(

Al
i/2 +Ac

i/2√
dk

) ·Vmod
i (4)

where the dk is the dimension of querys and keys. We adapt this equation from
[43], which proposes the transformer for the first time. The attention matrices
(Al

i,A
c
i ) from two modalities represent the attention coefficients among points

in the fusion candidate sets. The operation of attention swapping introduces
attention matrix from one modality to do feature re-weighting on the other
modality.
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Fig. 3. Examples of multi-modalities copy paste data augmentation. The left one is
the visualization of LiDAR point. The right one is the visualization of camera images.
The cyclist in the yellow is pasted on by eq.5 and eq.6.

After processing with two feature re-weighting layers, we can get the output
features {F̃l

i, F̃
c
i}, i ∈ {1, ..., N ′} for set Ωi. The point-wise features in set F̃mod

i

are fused in the local region. Then we pick out the point-wise features from two
modalities and concatenate them point-by-point. Note that, some points may
appear multiple times in different sets, so we use average pooling to de-duplicate
the features of these points. Finally, we use the point-wise features after fusion
as the input to the RPN head.

Our proposed feature re-weighting layer using local self-attention enhances
the LiDAR features with texture and color information provided by camera
images. The enhanced features improve the performance of range-view-based
detector in section 3.1, and help it to achieve state-of-the-art performance.

3.4 Data Augmentation

Multi-modalities Copy Paste. In LiDAR-only methods, GT-Paste augmen-
tation is a widely used data augmentation strategy. In EMMF-Det, we extend
the copy-paste strategy into multi-modalities. First, we generate a database con-
taining the labels of all ground truths and their associated point cloud data,
image patches. Then during training, we randomly select some ground truths
from this database and introduce them into the current training scene, both in
LiDAR points and RGB images. To avoid physically impossible outcomes, we
perform a collision test in both LiDAR points and camera images, and remove
any ground truths that collide with other objects. For the camera modality, if
we directly replace the corresponding area of original training image Ii with as-
sociated image patch p from Ij , generated image Ĩi will look very different from
authentic images in terms of co-occurrences of color or layout. We propose to use
a linear combination of pixels instead of ”copy-paste”. The linear combination
of pixels [20, 19, 57] can be described as follow:

Ĩi = Mp ⊙ Ij + (1−Mp)⊙ Ii (5)
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where Mp is a mask with the same size as the image Ij . The value of p area in
mask Mp obeys 2D Gaussian distribution in eq.6, and other area in Mp is filled
with zero values.

Mp =

e
− (x−x0)2

(w/2)2
− (y−y0)2

(h/2)2 , (x, y) ∈ p

0, otherwise
(6)

where (x, y) is the coordinates in image coordinates system. w and h are the
width and height of patch p. In the Fig.3, we present some augmented examples.

Noise jitter for Range Image. According to the properties of LiDAR
sensor, the laser has poor reflectivity when it encounters transparent materials
or objects with black color. To address this issue, we propose a data augmenta-
tion method for corrupting range images, which has been used in the 2D vision
community [5, 7] and has not been explored in 3D vision. EMMF-Det uses range
images as input. We randomly generate some patches of variable size on the
range image and replace the point cloud data in these patches with zero values.
By adding data corruption, we train a network to learn robust representation
for LiDAR signals.

4 Experiments

Here we first describe the implementation details of EMMF-Det in section 4.1.
Then we compare with the SOTA methods on Waymo Open Dataset and our
actual operation scenario dataset in section 4.2 and section 4.3. We also conduct
extensive ablation studies to analyze the effectiveness of different components in
section 4.4.

4.1 Implementation details

Network Details. The overall framework is shown in Fig.2. The 2D FCN part
in section 3.1 uses four blocks to downsample the features by a factor of 8 and
another four blocks to recover the features to the original size. All blocks apply a
series of dilated convolutions to extract multi-scale features. For the anchor-free
head, we follow the settings in CenterPoint [54]. In the feature re-weighting layer,
we use the hyperparameters k = 8 to search candidate fusion set Ω for Waymo
Open Dataset and self-built dataset. The choice of Nc is mainly determined by
k and the number of points in the point cloud. Here we empirically set 10, 240
for Waymo Open Dataset and 2, 048 for self-built dataset when k equals 8.

Training and Inference Details. We train the network for 30 epochs on 8
Tesla V100 GPUs using the ADAM optimizer with batch size 16. For the learning
rate, we use a one-cycle learning rate policy with max learning rate 0.003, weight
decay 0.01, and momentum 0.85 to 0.95. During the inference stage, we keep the
top 500 predictions and use NMS with IoU threshold 0.5 and score threshold
0.1.
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Table 1. Performance comparison on Waymo validation set. The AP/APH results for
Level 1 and Level 2 are shown in the table below. Note that all methods we compared
with only use one frame LiDAR signal as input. † : implemented by ourselves using open
source code. ⋆ : from [9]. ‡ : design two model for vehicle and pedestrian seperately.
∗: use IoU prediction module in [61]. Some papers only provide evaluation results on
one category, so we use ’−’ instead of those that are not provided. The best result is
marked in red, and the second result is marked in blue.

Method Input
Vehicle (AP/APH) Ped (AP/APH) All (AP/APH)

L1 L2 L1 L2 L1 L2

Two-stage:

PV-RCNN† [36] Point Cloud 75.2 74.6 66.4 65.9 65.9 58.1 58.2 51.1 70.6 66.4 62.3 58.5

Single-stage:
MVF [62] Point Cloud 62.9 - - - 65.3 - - - 64.1 - - -

PointPillars [18] Point Cloud 56.5 - - - 59.3 - - - 57.9 - - -
Pillar-based [48] Point Cloud 69.8 - - - 72.5 - - - 71.2 - - -

SECOND† [51] Point Cloud 70.3 69.8 62.6 62.1 62.1 52.9 54.0 45.9 66.2 61.4 58.3 54.0
CenterPoint-pillar⋆ [54] Point Cloud 74.6 74.1 66.3 65.8 71.5 59.6 64.1 53.2 73.1 66.9 65.2 59.5
CenterPoint-voxel⋆ [54] Point Cloud 74.8 74.2 66.7 66.2 75.8 69.6 68.3 62.4 75.3 71.9 67.5 64.3

SST [9] Point Cloud 74.2 73.8 65.5 65.1 78.7 69.5 70.0 61.6 76.5 71.7 67.8 63.4
AFDetV2-Lite∗ [14] Point Cloud 77.6 77.1 69.7 69.2 80.2 74.6 72.2 67.00 78.9 75.9 71.0 68.1

PointAugmenting [45] Point Cloud, Cam 67.4 - 62.7 - 75.4 - 70.6 - 71.4 - 66.7 -

RCS [1] Range 69.6 69.2 - - - - - - - - - -

RSN ‡ [41] Range 74.6 - - 65.5 77.8 - - 63.7 76.2 - - 64.6
RangeDet [10] Range 72.9 - - - 75.9 - - - 74.4 - - -

RangeIoUDet [24] Range 72.2 - - - 60.4 - - - 66.3 - - -
PPC-EdgeConv [4] Range 65.2 - - 56.7 73.9 - - 59.6 69.6 - - 58.2

PPC-EdgeConv-Cam [4] Range, Cam - - - - 75.5 - - 61.5 - - - -
EMMF-Det Range, Cam 76.2 75.5 67.8 67.3 77.5 69.1 69.8 61.9 76.9 72.3 68.8 64.6
EMMF-Det∗ Range, Cam 77.1 76.7 69.1 68.4 80.5 74.7 72.6 65.9 78.8 75.7 70.9 67.2

4.2 3D Detection on Waymo Dataset

Waymo dataset is one of the most popular 3D detection datasets, which contains
totally 798 scenes for training and 202 scenes for validation. Each pair of sample
consists of one frame of LiDAR return and five frames of camera images. These
five camera images only cover the 250 degree range in total compared with the
LiDAR which covers 360 degree range. To address this issue, we use LiDAR-only
model to complete the prediction result.

Waymo uses (Average precision) AP and APH which incorporates heading
information as the metric. We compare our method with many SOTA 3D detec-
tion methods, including the most popular one-stage 3D detector CenterPoint[54],
two-stage 3D detector PV-RCNN [36], transformer based method SST [9], the
latest multimodal detection method pointaugmenting [45] and some methods [1,
10, 24, 4] using range images as input. For fair comparison, the results provided
in this table only use single frame LiDAR as input. Table.1 shows the perfor-
mance of our method on the validation set. Since some works only train their
models on vehicle or pedstrian and the results reported in their papers arev not
complete, we use their open-source codes to reproduce on all categories. The
reproduced accuracy of PV-RCNN is 4.0 points better than results reported in
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Table 2. Performance comparison on self-built dataset. † : implemented by ourselves
using open source code. The best result is marked in red, and the second result is
marked in blue.

Method Model
Car Bus Pedestrian Cyclist Tricycle Mean

Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

Two-stage:
PV-RCNN† [6] 3D conv 98.6 95.3 84.2 72.9 53.6 45.9 77.3 72.3 73.3 61.5 77.3 69.6

Single-stage:
MVX-Net† [40] 3D conv 96.9 96.4 72.1 63.8 56.2 46.8 79.6 73.8 64.7 58.7 73.9 67.9
SECOND† [51] 3D conv 98.5 95.3 83.8 72.8 50.0 42.9 76.6 70.1 64.8 57.3 71.3 67.7

CenterPoint† [54] 3D conv 99.0 95.1 85.1 76.1 53.1 44.3 79.7 72.2 68.4 64.7 77.1 70.5
PointPillars† [18] 2D conv 96.4 95.2 80.3 66.4 47.6 39.6 71.3 64.9 58.9 51.0 70.9 63.4
RangeIoUDet† [24] 2D conv 98.9 96.2 82.7 70.0 52.3 44.2 76.0 69.6 66.7 59.5 75.3 67.9

EMMF-Det 2D conv 99.4 96.7 87.2 78.4 58.9 51.3 82.9 76.8 72.3 66.1 80.1 73.9

original paper. CenterPoint only reports the APH on Level2 difficulty, so we
use the results of the latest published paper SST [9] as a reference. Compared
with RSN [41], our method performs better on vehicle but worse on pedestrian’s
APH. However, it designs two networks and trains two categories seperately,
while we only uses one network. Inspired by AFDetV2 [14], we integrate the IoU
module[61] with EMMF-Det and achieves 77.1 L1 AP on vehicle and 80.5 L1
AP on pedestrian. Compared with all other 3D detection methods, it can be
observed that EMMF-Det outperforms on the vehicle class. And compared with
other range-view-based methods, the performance of EMMF-Det is significantly
ahead.

4.3 3D Detection on Self-Built Lidar-Vision Dataset

We also evaluate our proposed method on the self-built dataset. This dataset is
collected by a HESAI Pandar40 LiDAR sensor and a front-view camera. There
are 18, 000 samples collected for training, 3, 000 samples for validation and 3, 000
samples for testing in total. We label these samples with five categories includ-
ing: car, bus, pedestrian, cyclist and tricycle. The 3D detection performance is
measured by the average precision (AP) with 40 recall positions. The IoU thresh-
old for vehicle category is set as 0.7. For other non-vehicle categiories, the IoU
threshold is set as 0.5. Furthermore, we use the pixel height of the box on the
camera image to measure the difficulty of bounding boxes.

Table.2 shows the performance of our method on the test set of self-built
dataset. We adopt the open-source code to reproduce the SOTA methods on our
dataset. For each method, we adjust the parameters based on our dataset and
report the best accuracies. From the Table.2, we can observe that our model
boost the performance on all categories significantly. The results can prove that
our proposed EMMF-Det still has a good performance even if the LiDAR sensor
is changed.
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Table 3. Quantitative performance comparison on Waymo validation set of using
Multi-Modal Feature Re-Weighting. (averaged by 5 trials)

Method
Vehicle (AP/APH) Ped (AP/APH) All (AP/APH)

L1 L2 L1 L2 L1 L2

Range-Based-Method 70.7 70.1 62.3 61.8 74.7 65.5 66.2 58.4 72.7 67.8 64.3 60.1
+ Naive Fusion 71.1 71.0 63.1 62.6 75.4 66.1 66.5 59.1 73.3 68.5 64.8 60.8

+ Feature Re-Weighting 72.2 71.8 65.0 64.7 76.3 67.1 67.8 60.7 74.3 69.5 66.4 62.7

Table 4. Quantitative performance comparison of differnet choices of k on Waymo
validation set. (averaged by 5 trials)

Method
Vehicle (AP/APH) Ped (AP/APH) All (AP/APH)

L1 L2 L1 L2 L1 L2

k = 8 72.2 71.8 65.0 64.7 76.3 67.1 67.8 60.7 74.3 69.5 66.4 62.7
k = 16 71.6 71.4 64.2 63.6 76.1 67.2 68.0 60.5 73.9 69.3 66.1 62.1

4.4 Ablation Studies

In this section, we present ablation studies on Waymo Open Dataset to better
understand how each component affects the performance. Unless specified, we
train the model for 30 epochs with 20% training samples and evaluate on the
entire validation set for the reason that training with whole Waymo dataset is
computationally demanding.

Effectiveness of Feature Re-Weighting. In Table.3, we compare the perfor-
mance with model without feature re-weighting. ’Range-based-method’ denotes
the 3D detector only using range images as input. ’naive fusion’ denotes the
method directly concatenating the multi-modal features together to improve the
range image features with camera image features. ’Feature re-weighting’ denotes
the method using self-attention to do feature re-weighting mentioned in sec-
tion 3.3. It can be observed that our proposed feature re-weighting is a effective
fusion method for range and camera images.

Effectiveness of k in Fusion Candiate Set. For the hyperparameter k in
fusion candidate set, we refer to the ball query operation in pointnet++ [34] and
empirically try several choices of k. The comparisons are illustrated in Table.4.
When k is set as 8, the model achieves the best performance. If we set k too
large, the performance becomes poor. This is partly because redundant points
in the set Ω will have a negative impact on the localization of objects. However,
the improvment is robust to the hyperparameter k. Whether K is set as 8 or 16,
the performance is still better than directly concancating multi-modal features.
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Table 5. Comparison of using different augmentation strategies. * denotes using ’linear
combination of pixels’ instead of ’copy paste’ in camera modality.(averaged by 5 trials)

Method
Vehicle (AP/APH) Ped (AP/APH) All (AP/APH)

L1 L2 L1 L2 L1 L2

+ wo copy-paste 70.5 70.2 62.8 61.7 72.1 63.9 65.1 58.0 71.3 67.1 64.0 59.9
+ multi-modal copy-paste 71.2 70.8 63.3 62.8 74.6 65.0 66.2 59.6 73.0 67.8 64.8 61.2
+ multi-modal copy-paste* 71.8 71.2 63.8 63.2 74.7 65.5 66.8 60.0 73.3 68.4 65.3 61.6

+ noise jitter 72.2 71.8 65.0 64.7 76.3 67.1 67.8 60.7 74.3 69.5 66.4 62.7

Effectiveness of Data Augmentations. To further improve our proposed
EMMF-Det, we introduce two data augmentation strategies. One is multi-modal
copy-paste, and the other is noise jitter for range images. In the Table.5, ’multi-
modal copy-paste’ means directly pasting the image patches on the original
images in camera modality, while ’multi-modal copy-paste∗’ denotes using linear
combination of pixels instead. It can be observed that multi-modal copy-paste
strategy improve the performance over the baseline. If we use linear combination
of pixels, the performance can be further improved. Noise jitter for range images
enables the model to learn robust features. The improvement in Table.5 further
supports our motivation of introducing certain disturbances during training.

5 Conclusion and Discussion

In this paper, we propose the EMMF-Det, which is a novel multi-modal fusion
3D detector using range images and camera images as input. EMMF-Det uses
a one-stage anchor-free 3D detector as the baseline, and fuse the LiDAR fea-
tures with the camera features to further improve the performance. To enhance
the LiDAR features with the texture, color information provided by camera im-
ages, multi-modal feature re-weighting layer is designed for local fusion within
the points/pixels neighborhood. Furthermore, we introduce two effective data
augmentation strategies including multi-modal copy-paste and noise jitter for
range images based on the properties of LiDAR and camera signal. Experiments
evaluated on several 3D detection benchmarks demonstrate the effectiveness of
our method.

Limitation of Range-view-based Methods. EMMF-Det uses range images
as input, which are raw signal scaned by mechanical LiDAR. The results and
conclusions are under the premise that Waymo and self-built dataset both are
collected by mechanical LiDAR. If the dataset is collected by solid-state LiDAR,
there will be information loss during the transformation from point cloud to
range image. We will explore and try to solve this problem in future work.
Acknowledgement: Supported by National key R&D Program of China (Grant
No.2020AAA010400x)
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