
Object Detection as Probabilistic Set Prediction
- Supplementary Material

Georg Hess1,2 , Christoffer Petersson1,2, and Lennart Svensson1

1 Chalmers University of Technology, Gothenburg, Sweden georghe@chalmers.se
2 Zenseact, Gothenburg, Sweden

A Cost Matrix

Suppose that we have a PMB density with Poisson intensity λ(·) and with m
Bernoulli components where the i-th Bernoulli component has probability of
existence ri and existence-conditioned object density pi(·). Note that we can
model an MB as a PMB with Poisson intensity λ(·) = 0, which means that it is
enough to describe how to handle PMB densities. To evaluate the multi-object
density of a PMB, we have to calculate all possible assignments, which can be
computationally intractable when working with many elements. However, we can
approximate the PMB likelihood by only considering the assignments with the
highest likelihood. This section shows how to find these assignments by solving
an optimal assignment problem and how to select the corresponding cost matrix.

Before formulating the optimal assignment problem, we remind ourselves of
the problem setting. For an object with state yj ∈ Y = {y1, . . . , yn}, the single
object likelihood is proportional to λ(yj) if it is associated to the PPP and
proportional to ripi(yj) if it is associated to the i-th Bernoulli component. If this
Bernoulli component is not associated to any object states, then the likelihood
is 1− ri.

Next, to formulate the optimization problem of finding the assignment with
highest likelihood we introduce an association variable. Define a surjective asso-
ciation θ : {1, . . . , n} → {0, 1, . . . ,m} such that θ(i) = θ(j) ∈ {1, . . . ,m} if and
only if i = j. If θ(j) = 0, object yj is associated to the PPP, while θ(j) = i > 0
means that object state yj is associated to the i-th Bernoulli component. Fur-
ther, let Θ be the set of all such θ. Then, the PMB likelihood for the set of
objects Y can be expressed as

fPMB(Y) =
∑
θ∈Θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)
∏

i:∄θ(j)=i∀j

1− ri
∏

j:θ(j)=0

λ(yj) exp
(
−λ̄
)
,

∝
∑
θ∈Θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)
∏

i:∄θ(j)=i∀j

1− ri
∏

j:θ(j)=0

λ(yj).

(1)

When searching for the most likely associations θ, we disregard exp
(
−λ̄
)
=

exp
(
−
∫
λ(y′)dy′

)
since it is independent of θ.

https://orcid.org/0000-0002-6973-5203
https://orcid.org/0000-0003-0206-9186

2 G. Hess et al.

We note that (1) captures the association of every Bernoulli component. If
the i-th Bernoulli component does not appear in the second product in (1),
then it must appear in the first product in (1). We also note that the factor∏m

i=1(1 − ri) is independent of the association θ. This means that dividing (1)
by
∏m

i=1(1− ri) yields

fPMB(Y) ∝
∑
θ∈Θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)

1− rθ(j)

∏
j:θ(j)=0

λ(yj), (2)

and the association that maximizes the PMB likelihood can be found as

θ∗ = argmax
θ

∏
j:θ(j)>0

rθ(j)pθ(j)(yj)

1− rθ(j)

∏
j:θ(j)=0

λ(yj). (3)

Equivalently, we can search for the association that minimises the negative log-
arithm of (3), which gives us

θ∗ = argmin
θ

−
∑

j:θ(j)>0

log
rθ(j)pθ(j)(yj)

1− rθ(j)
−

∑
j:θ(j)=0

log λ(yj). (4)

In order to formulate this minimization as an optimal assignment problem,
we make a slight change in notation. Each association map θ can be represented
by a (m+n)×n assignment matrix A consisting of 0s or 1s. There is a bijective
mapping between θ and A: for i = 1, . . . ,m, j = 1, . . . , n, Ai,j = 1 if and only if
θ(j) = i. For i = m + j, j = 1, . . . , n, Ai,j = 1 if and only if θ(j) = 0, whereas
Ai,j is always 0 when i > m and i ̸= m+ j. The assignment matrix hence must
satisfy the constraints

∑
i Ai,j = 1, ∀j, and

∑
j Ai,j ≤ 1, ∀i.

The cost matrix of the corresponding assignment matrix A is the (m+n)×n
matrix C where

Ci,j = − log
ripi(yj)

1− ri
, i = 1, . . . ,m, j = 1, . . . , n, (5)

and where the lower part of C is a “diagonal” matrix such that Cm+j,j =
− log λ(yj), j = 1, . . . , n, and entries not on the diagonal are ∞. The cost of
assignment matrix A is then given by the Frobenius inner product

trace(ATC) =

m+n∑
i=1

n∑
j=1

Ci,jAi,j , (6)

Object Detection as Probabilistic Set Prediction 3

and the problem of finding the optimal assignment A∗ becomes

A∗ = argmin
A

m+n∑
i=1

n∑
j=1

Ci,jAi,j (7a)

s.t.

m+n∑
i=1

Ai,j = 1,

n∑
j=1

Ai,j ≤ 1, (7b)

Ci,j =

− log

(
pi(yj)
1−ri

ri

)
if i ≤ m,

− log λ(yj) if i = m+ j,

∞ otherwise.

(7c)

B Experimental Details

B.1 Model Implementation

For implementing the DETR, RetinaNet and Faster-RCNN models, we used the
probabilistic extension [2] of the Detectron2 [3] object detection framework. In
that framework, models are trained to predict the covariance matrix Σb for the
corresponding bounding box b. Specifically, models output the parameters of a
lower triangular matrix L of the Cholesky decompositionΣb = LLT . While orig-
inally trained with a Gaussian distribution, we found that using an independent
Laplace distribution for each parameter in b yielded better results. Using the
diagonal elements of L as [σ1, σ2, σ3, σ4], we find the scale of each Laplace distri-
bution as si = σi/

√
2. The choice of a diagonal matrix is partially motivated by

the evaluations in [2]. While their study was limited to Gaussian distributions,
they found that diagonal covariance matrices perform on par with, or better
than, their full equivalent.

B.2 Training Details

Fine-tuning toward MB-NLL was done given the pre-trained weights in [2]3.
For DETR and Faster-RCNN, models trained with ES were used as a starting
point, while the model trained with NLL was used for RetinaNet. Faster-RCNN
and RetinaNet were fine-tuned for 135,000 gradient steps, where the learning
rate was dropped by a factor of 10 at 105,000 iterations, and again at 125,000
iterations. The initial learning rate was set to 0.001 for RetinaNet and 0.0025
for Faster-RCNN. DETR was also fine-tuned for 135,000 iterations, but with
an initial learning rate of 5 · 10−5 and with learning rate drops at 60,000 and
100,000 iterations. Otherwise, no changes to hyperparameters from the standard
Detectron2 framework were done.

As both RetinaNet and Faster-RCNN rely on non-maximum suppression to
remove duplicate detections, we applied NMS when training with the MB-NLL

3 https://github.com/asharakeh/probdet

https://github.com/asharakeh/probdet

4 G. Hess et al.

loss. Here, we used the standard IoU threshold of 0.5 and used the top 100
detections. For DETR, this was not necessary since it predicts the set of objects
directly.

B.3 Inference Details

Following the COCO standard, detectors are limited to 100 predictions per im-
age. We do not apply any confidence thresholding, but for RetinaNet and Faster-
RCNN the 100 predictions with highest existence probability after NMS are used.
For DETR, no selection is needed as the model only produces 100 predictions
per image.

C Additional Results

C.1 Qualitative Results

In addition to the example detections shown in Section 4, we provide further
examples for DETR, RetinaNet and Faster-RCNN in figures 1, 2 and 3. We can
identify similar trends in these examples as in the ones described in our results.
First, Fig. 3b shows additional examples where the assignment is ambiguous.
There, the cat predictions for Faster-RCNN trained with MB-NLL either have
large regression or classification errors, depending on which one of them is as-
signed to the true object. Second, we see that MB-NLL reduces the number of
confident false detections across all models. When comparing the models trained
with ES and MB-NLL, the reduction of false detections can also be interpreted
as a different representation of spatial uncertainty. In both Fig. 1a and Fig. 2a,
there is uncertainty in where the surfboard ends on the left side. The MB-NLL
models have a single prediction with larger regression uncertainty, while the
ES models have many detections, each with relatively small spatial uncertainty.
Further, the MB-NLL loss is normalized with the number of predictions during
training.

C.2 PMB-NLL Decomposition

To complement the PMB-NLL decomposition in Table 2, we also provide cor-
responding histograms for DETR, RetinaNet and Faster-RCNN in figures 4, 5
and 6. The histograms show how predictions contribute to the overall PMB-NLL
in the assignment with the highest likelihood. Further, for matched predictions,
histograms are also decomposed based on the size of the true object. Here, we
follow the COCO standard for defining small, medium and large objects. For
the regression of matched Bernoullis and PPP, the values have been limited to
40 for enhanced visualizations. For the classification of matched Bernoullis, the
upper limit is set to 3.

Generally, the models are worse at detecting small objects, which is shown
by them being assigned to the PPP more often than medium or large objects.

Object Detection as Probabilistic Set Prediction 5

(a) Example 1.

(b) Example 2.

(c) Example 3.

Fig. 1: Examples from COCO validation data with predictions made by DETR
detectors trained with ES (left), NLL (middle), and MB-NLL (right). True ob-
jects are shown in green and without confidence values. Predictions with r < 0.1
are not shown.

6 G. Hess et al.

(a) Example 1.

(b) Example 2.

(c) Example 3.

Fig. 2: Examples from COCO validation data with predictions made by Reti-
naNet detectors trained with ES (left), NLL (middle), and MB-NLL (right).
True objects are shown in green and without confidence values. Predictions with
r < 0.1 are not shown.

Object Detection as Probabilistic Set Prediction 7

(a) Example 1.

(b) Example 2.

(c) Example 3.

Fig. 3: Examples from COCO validation data with predictions made by Faster-
RCNN detectors trained with ES (left), NLL (middle), and MB-NLL (right).
True objects are shown in green and without confidence values. Predictions with
r < 0.1 are not shown.

8 G. Hess et al.

Further, the detectors are more confident when predicting larger objects, as can
be seen from the classification histograms over matched Bernoullis. This is of
course expected as large objects are inherently easier to detect. Lastly, we can
observe that the histograms for models trained with ES or NLL tend to have
more outliers, i.e., predictions whose values have been clipped to the visualization
limits.

(a) Matched Bernoullis regression.

(b) Matched Bernoullis classification.

(c) Matched PPP.

(d) Unmatched Bernoullis.

Fig. 4: Histograms over PMB-NLL decomposition for DETR trained with differ-
ent loss functions: ES (left), NLL (middle), and MB-NLL (right). Note varying
y-axes across models.

Object Detection as Probabilistic Set Prediction 9

(a) Matched Bernoullis regression.

(b) Matched Bernoullis classification.

(c) Matched PPP.

(d) Unmatched Bernoullis.

Fig. 5: Histograms over PMB-NLL decomposition for Retinanet trained with
different loss functions: ES (left), NLL (middle), and MB-NLL (right). Note
varying y-axes across models.

10 G. Hess et al.

(a) Matched Bernoullis regression.

(b) Matched Bernoullis classification.

(c) Matched PPP.

(d) Unmatched Bernoullis.

Fig. 6: Histograms over PMB-NLL decomposition for Faster-RCNN trained with
different loss functions: ES (left), NLL (middle), and MB-NLL (right). Note
varying y-axes across models.

Object Detection as Probabilistic Set Prediction 11

D Comparison to DETR loss

The DETR object detector [1] popularized the concept of treating object de-
tection as a direct set prediction task. Similar to our method, they rely on a
one-to-one matching between predictions and ground truth objects. We aim to
compare their formulation to ours, highlighting similarities and differences.

D.1 DETR Loss Revisited

We start by reviewing the methods used in DETR. To find the matching between
predictions and true objects, they rely on the Hungarian algorithm to minimize

σ̂ = argmin
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)), (8)

where ŷ = {ŷi}Ni=1 is the set of predictions and y is the ground truth set of
objects, where we assume y to be padded to size N with ∅ (no object). An
object yi = (ci, bi) consists of a class label (which can be ∅) and a bounding

box bi ∈ R4, while a prediction ŷi = (p̂i,cls(ci), b̂i) consists of a class distribution
p̂i,cls(ci) which assigns probabilities to all classes including ∅ and a predicted

bounding box b̂i. Further, SN is the set of all permutations of N elements and
Lmatch(yi, ŷσ(i)) is a pair-wise matching cost defined as

Lmatch(yi, ŷσ(i)) = −1ci ̸=∅p̂σ(i),cls(ci) + 1ci ̸=∅Lbox(bi, b̂σ(i)), (9)

with

Lbox(bi, b̂σ(i)) = λiouLiou(bi, b̂σ(i)) + λL1||bi − b̂σ(i)||1, (10)

where hyperparameters are typically set to λiou = 2 and λL1 = 5. We can note
that the matching cost for ci = ∅ is zero.

Given the optimal matching σ̂, the final loss is calculated as

LHungarian(y, ŷ) =

N∑
i=1

[
− log(p̂σ̂(i),cls(ci)) + 1ci ̸=∅Lbox(bi, b̂σ̂(i))

]
. (11)

However, rather than using the negative log-likelihood for class predictions, the
log-probability term is down-weighted by a factor 10 when ci = ∅. This is
motivated in [1] to handle class imbalance.

D.2 MB-NLL Relation to DETR

This section aims at describing the MB-NLL using the same notation as DETR;
to simplify the comparison we focus on MB-NLL rather than PMB-NLL. We
start by comparing the matching costs before moving on to the loss formulation.

12 G. Hess et al.

Matching Cost. We can compare (9) with the cost of matching objects to
Bernoulli predictions used in this work. As described in Section 3.1, we use
r = 1 − p̂cls(∅). Further, for the Bernoulli predictions, the class distribution is
assumed to be conditioned on existence, i.e., it has non-zero probability only for
foreground classes. Hence, to clarify the relation to DETR we define

pcls(c) =

{
0 if c = ∅,

p̂cls(c)/r otherwise,
(12)

as the class distribution over foreground classes. We scale the predicted distri-
bution p̂cls(c) by 1

r such that pcls(c) becomes a proper distribution and fulfills∑
c pcls(c) = 1.
In Appendix A, we showed how to find the assignment that maximizes the

likelihood (1) and consequently minimizes the negative log-likelihood. To enable
easier comparison, we want to use the same notation as DETR and formulate a
minimization over permutations

σ̂ = argmin
σ∈SN

N∑
i

Lmatch,MB(yi, pσ(i)), (13)

where Lmatch,MB is a pair-wise matching cost. Using (1), we can express Lmatch,MB

as

Lmatch,MB(yi, pσ(i)) =− 1ci ̸=∅
(
log(rσ(i)pσ(i)(yi))

)
− 1ci=∅ log

(
1− rσ(i)

)
=− log(p̂σ(i),cls(ci))− 1ci ̸=∅ log(pσ(i),reg(bi)),

(14)

since the cost of assigning a prediction to a true object is − log(rσ(i)pσ(i)(yi)),
while the cost of assigning it to background is − log(1− rσ(i)). In (14), we have
also used the fact that pi(yi) = pi,cls(ci)pi,reg(bi), and the relation

p̂i,cls(ci) =

{
rpi,cls(ci) if ci ̸= ∅
1− r if ci = ∅,

(15)

to obtain an expression that resembles (9) and (11).
Further, if we assume pσ(i),reg(bi) to be a Laplace distribution with indepen-

dent box parameters b = [b1, b2, b3, b4], with means b̂ = [b̂1, b̂2, b̂3, b̂4] and scales
ŝ = [ŝ1, ŝ2, ŝ3, ŝ4], we can rewrite

− log(pσ(i),reg(bi)) = − log

(
4∏

k=1

1

2ŝkσ(i)
exp

(
−
|bki − b̂kσ(i)|

ŝkσ(i)

))
,

= −
4∑

k=1

log

(
1

2ŝkσ(i)
exp

(
−
|bki − b̂kσ(i)|

ŝkσ(i)

))
,

=

4∑
k=1

|bki − b̂kσ(i)|
ŝkσ(i)

+ log
(
ŝkσ(i)

)
+ log (2) .

(16)

Object Detection as Probabilistic Set Prediction 13

As log(2) is present in all matching costs between pairs of predictions and true
objects, it does not affect the optimal assignment and can be disregarded. Fur-

ther, if we let ŝki = s,∀i, k, we can use the same argument to disregard log
(
ŝkσ(i)

)
and replace − log(pj,reg(bi)) in (14) with ||bi − b̂σ(i)||1/s, obtaining

Lmatch,MB(yi, pσ(i)) =− log(p̂σ(i),cls(ci)) + 1ci ̸=∅||bi − b̂σ(i)||1/s. (17)

We can now compare the expressions for the matching losses in (17) and (9),
used by MB-NLL and DETR, respectively, and analyze their similarities and dif-
ferences. Rather than using the log-probabilities, the original DETR matching
loss uses the class probabilities directly. In [1] this is motivated as making the
classification part of the cost comparable to the regression part. Interestingly,
we find that the classification log-probability is comparable to the L1 regression
under the constant scale assumption. Further, the classification cost in (9) only
evaluates the probability of the true class when the object is not ∅. For back-
ground, the cost is set to zero. In contrast, the MB matching cost also considers
the log-probability of the prediction being background and favours predictions
for which the probability of background p̂cls(∅) is small. The reason for also
considering the cost of assigning predictions to background in MB-NLL is that
predictions with large existence probabilities infer large penalties in the final loss
function if they are not assigned to a true object.

We further highlight the difference in how p̂cls(∅) is handled by the two
matching costs with an example. Imagine a scenario that contains two predictions
and one true object, a car. Both predictions have the same regression error,
but differ in their classification. Suppose that both predictions have the same
p̂cls(car) = rpcls(car) but that the first prediction has a small r and a large
pcls(car) whereas the second prediction has a large r and a small pcls(car). In (9),
both these predictions would be treated as equally good. For MB-NLL however,
it is better to assign the second prediction to the car, simply because that implies
that the first prediction, which has a small r, is assigned to the background.

For the regression part, (9) contains both an additional IoU-loss, and the
hyperparameters λiou, λL1 when compared to (17). While the IoU-part has no
related term in (17), we find an inverse relationship for λL1 and the assumed
constant Laplace scale s, i.e., λL1 = 1

s . Thus, the choice λL1 = 5 is equivalent
of assuming a constant Laplace scale s = 0.2, and increasing λL1 translates to
assuming smaller spatial uncertainties.

Loss Function. The MB-NLL training loss

LMB(y, ŷ) =

N∑
i

− log(p̂σ̂(i)(ci)) + 1ci ̸=∅

4∑
k=1

|bki − b̂kˆσ(i)
|

ŝkσ̂(i)
+ log

(
ŝkσ̂(i)

) , (18)

is very similar to the matching loss, but makes use of the scaling parameters
ŝkσ(i) predicted by our networks, whereas the matching loss uses a fixed scaling
parameter s.

14 G. Hess et al.

We see that both (11) and (18) contain two terms, one for classification
and one for regression. However, in contrast to the original DETR loss (11),
we do not down-weigh the log-probability when predictions are assigned to ∅.
We believe this is one of the contributing factors to the reduced number of
false detections when training with the MB-NLL loss. By down-weighing the
penalty for predictions assigned to ∅, the detector is encouraged to produce
artificially high classification confidence. In mAP, the measure that DETR most
likely has been optimized toward, the high classification confidence is generally
not penalized as it only relies on the ranked confidences among predictions and
not the absolute confidence values.

Similar to the matching cost, (18) lacks the IoU cost found in (11), but has
an identical L1-loss when λL1 = 1

ŝ1
σ(i)

= · · · = 1
ŝ4
σ(i)

. Naturally, L1-losses increase

with larger λL1, but using (18) this can also be explained as assuming smaller
regression uncertainties. Finally, when training with MB-NLL, the relation be-
tween the Laplace scale and λL1 also shows how the network can self-regulate
the regression penalties. For the network to chose suitable scales, it has to bal-

ance the two terms log
(
ŝkσ̂(i)

)
and

|bki −b̂kˆσ(i)
|

ŝk
σ̂(i)

. While the first term encourages

smaller scales, choosing too small scales may yield a large cost if the regression
performance |bki − b̂kˆσ(i)

| is poor.

References

1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European Conference on Computer
Vision. pp. 213–229. Springer (2020)

2. Harakeh, A., Waslander, S.L.: Estimating and evaluating regression predictive un-
certainty in deep object detectors. In: International Conference on Learning Repre-
sentations (2021)

3. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https:

//github.com/facebookresearch/detectron2 (2019)

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Object Detection as Probabilistic Set Prediction - Supplementary Material

