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A Additional Experiments

A.1 Does coarse training help on other datasets?

In the main paper we show that training on coarser labels significantly im-
proves WSOL performance on iNatLoc500. It is reasonable to ask whether we
can replicate this pattern on other datasets. In Fig. A1 we present results on
FGVC-Aircraft [5], CUB [10], and ImageNet [4]. We give dataset-specific details
below.

FGVC-Aircraft. The FGVC-Aircraft dataset consists of images of different
kinds of aircraft, which are organized into a label hierarchy with the follow-
ing tiers, ordered from coarsest to finest: manufacturer, family, and variant.
Fig. A1(top) shows that training with coarser labels improves WSOL perfor-
mance (+4.3 MaxBoxAccV2). This shows that the benefits of coarse training are
not limited to natural world datasets.

Training details: We use the best hyperparameters for CUB from [1], except that
we train for 10 epochs and decay the learning rate every 3 epochs.

CUB. Fig. A1(middle) shows that training with coarser labels improves WSOL
performance (+4.4 MaxBoxAccV2). This indicates that our observations on iNat-
Loc500 in the main paper generalize to images collected under different protocols
i.e. iNaturalist user photos vs. iconic images crawled from Flickr. Unlike iNat-
Loc500, we do not see a drop in performance at the coarsest level. This is is
consistent with our previous findings because CUB contains only birds, so its
hierarchy terminates before reaching the level of granularity where iNatLoc500
performance drops.

Training details: We use the filtered version of CUB as described in Sec. C and
train with the best hyperparameters for CUB from [1].
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ImageNet. Fig. A1(bottom) shows no benefit to coarsening the labels for Im-
ageNet. This is consistent with our claim in the main paper that the ImageNet
hierarchy does not measure granularity, and motivates the development of better
label hierarchies for datasets like ImageNet in future work.
Training details: Unlike iNatLoc500, FGVC-Aircraft, and CUB, the ImageNet
label hierarchy has leaf nodes at many different depths. To accommodate this, we
must modify the coarsening procedure from the main paper. Instead of coars-
ening every leaf node at every step, we only coarsen leaf nodes which are at
the deepest level of the hierarchy. Each granularity level is named cX where
X ∈ {0, 1, 2, . . .} is the number of times this coarsening has been applied. To
speed up training we sample 200 images per category for Dw. We use the filtered
version of ImageNet as described in Sec. C and train with the best hyperparam-
eters for ImageNet from [1].

A.2 What is the impact of longer training schedules?

In [1], the authors design their WSOL training schedules so that CUB and Open-
Images30k use the same computational budget. They use a budget of 300k im-
ages processed, which equates to 50 epochs for CUB and 10 epochs for OpenIm-
ages30k. To respect this budget, in the main paper we train on iNatLoc500 for 2
epochs (276k images processed). In Fig. A2 we see that a longer training sched-
ule can improve performance slightly (Family, Phylum) or significantly (Species,
Genus, Order, Class). However, the pattern is the same whether we train for 2
epochs or 10 epochs, i.e. performance drops for labels that are too coarse or too
fine.

A.3 How does WSOL performance depend on the IoU threshold?

Throughout the main paper we use the MaxBoxAccV2metric proposed by [1]. This
metric averages performance over three IoU thresholds: 30%, 50%, and 70%. In
Fig. A3 we show the performance of CAM on iNatLoc500 separately for each
IoU threshold. Not surprisingly, we see that performance decreases significantly
as the IoU threshold becomes more demanding (i.e. larger). We also observe
that, regardless of the IoU threshold, the best performance is obtained at a label
granularity that is neither too fine nor too coarse. In the right panel of Fig. A3
we see that the relative performance improvement is larger for more demanding
IoU thresholds. This may be because there is less room to improve for “easier”
IoU thresholds.

A.4 How stable are the CAM results?

Each result in the main paper is the result of a single run, so it is important to
quantify how much test performance varies when we re-train. In Fig. A4 we show
the results of re-training CAM on iNatLoc500 five times at each granularity level
with identical hyperparameters. The standard deviations at different granularity
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Fig.A1. WSOL performance as a function of training set label granularity for
FGVC-Aircraft (top), CUB (middle) and ImageNet (bottom). Like iNatLoc500, FGVC-
Aircraft and CUB show significant gains at coarser granularities. There is no apparent
benefit for ImageNet, which lacks a consistent label hierachy.
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Fig.A2. Comparison of our standard training schedule (2 epochs, reducing learning
rate after 1 epoch) and a longer training schedule (10 epochs, reducing learning rate
every 3 epochs) for CAM on iNatLoc500. Training for longer does not change the
observation that coarser labels result in better localization.

Fig.A3. CAM performance on iNatLoc500 as a function of label granularity and
IoU threshold. The left panel shows absolute performance. The right panel shows per-
formance relative to the species-level performance, which is the traditional baseline
approach. More specifically, the right panel is generated by normalizing each curve in
the left panel by its left-most endpoint.

levels range from ∼ 0.2 to ∼ 0.8, which is much smaller than the effect sizes we
discuss in the main paper. Interestingly, training seems to be most stable for the
best-performing coarse-grained levels (order and class), and least stable for the
genus level.

A.5 What is the effect of additional hyperparameter tuning?

In their paper, [1] searches over 30 random hyperparameter sets for each WSOL
method. We use a less computationally intensive protocol. For iNatLoc500, we
start from their best hyperparameters for ImageNet and re-optimize the learn-
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Fig.A4. Distribution of CAM performance at each granularity level of iNatLoc500
for five runs with identical hyperparameters. The orange line denotes the mean.

ing rate by searching over {10−5, 10−4, 10−3, 10−2, 10−1}. To quantify the perfor-
mance difference between our reduced hyperparameter search and the full search
in [1], we conduct both procedures on iNatLoc500 using CAM at the species
level. The full hyperparameter search (30 hyperparameter sets) achieves 60.8
MaxBoxAccV2 compared to 60.2 MaxBoxAccV2 for our abbreviated hyperparame-
ter search (5 hyperparameter sets). As expected, the additional hyperparameter
optimization provides an improvement for CAM but the difference is surprisingly
modest. We would expect a similar boost to occur for any granularity level. We
also note that the gap may be greater for methods with more hyperparameters
to tune. We provide the learning rates used in our paper in Table A3.

B Dataset Construction Details for iNatLoc500

In this section we detail the process of merging and cleaning data from iNat17
and iNat21 to produce iNatLoc500.

Species matching. In total there are 4486 species names that occur in both
iNat17 and iNat21. We discard any images which do not correspond to a species
shared by both datasets. We also omit any species that does not have bounding
box annotations. In particular, this means that we discard all plant species, since
iNat17 does not have any bounding boxes for plants.

Removing duplicate observations. Each image on the iNaturalist platform
has an associated observation id which corresponds to a unique encounter with
an individual plant or animal. We find all observation IDs which occur in both
iNat17 and iNat21 and we remove all of the corresponding images from iNat21.
It is important to remove duplicates at the observation id level instead of the
image level, since an iNaturalist observation may be associated with multiple
similar but distinct images of the same individual organism.
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Instance count filtering. Since our focus is object localization (as opposed to
detection), any images with multiple bounding box annotations are discarded.

Box size filtering. Any image whose box is smaller than 32 pixels in either
dimension is removed. In addition, any image whose box width (height) is more
than 96% of the image width (height) is removed. This step speeds up the anno-
tation process by filtering out a significant number of “bad” images. Very small
boxes are problematic because annotators are more likely to make mistakes,
while very large boxes tend to be extreme close-ups.

Split considerations. While the majority of observations on iNaturalist are
associated with only one image, some do have multiple images. When splitting
the fully supervised images into Df and Dtest we ensure that all of the images
for one observation go into exactly one split. This is important because images
from the same observation can be highly similar.

Manual Annotation. Well-annotated validation and test sets are essential for
reliable model selection and benchmarking. The image-level fine-grained class
labels reflect the consensus of the iNaturalist community, and like prior iNat-
uralist datasets [9,8] we assume they are correct. However, the bounding box
annotations were crowd-sourced with non-expert workers. We therefore manu-
ally validate the bounding box annotations for the images in the Df and Dtest

splits. Images with any of the issues listed below were excluded from the dataset.
Note that the distribution of images in Df and Dtest is likely to be somewhat
different than the distribution of images in Dw due to this cleaning process.
Examples of problematic images are given in the supplementary material.

- Missing instances. Images with multiple bounding box annotations are filtered
out before annotation cleaning. Unfortunately, the bounding box annotations
for an image are sometimes incomplete, which means that an image with one
bounding box annotation for a species can contain multiple instances of that
species. Images with multiple instances of the labeled species are removed.

- Inaccurate bounding boxes. Some bounding boxes are too large or too small, e.g.
boxes which miss appendages such as legs or tails or boxes which only contain
the face of the animal. Images with inaccurate bounding boxes are removed. We
also remove any images for which it is unclear whether or not the bounding box
is correct, which may occur when an image is blurry or poorly illuminated.

- Indirect evidence. iNaturalist accepts images showing indirect evidence of an
animal (e.g. footprints, feathers, droppings), not just images of the animal itself.
We omit images which show only indirect evidence of an animal. We also omit
images of animal carcasses, which are not uncommon for e.g. deer.

- Body part close-ups. Some images in iNaturalist are clearly intended to show
the structure of some specific body part in scientific detail, such as an image of
a paw next to a ruler. We omit these images.
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C Label Hierarchies

We visualize the label hierarchies for CUB, ImageNet, and iNatLoc500 in Fig. A5.
Producing our final hierarchies for CUB and ImageNet required some care. We
give details below.

CUB. CUB was not released with a label hierarchy, so we constructed one.
We start by attempting to map each category to a node on the tree of life, like
iNatLoc500. CUB consists of 200 bird categories, where some of these categories
correspond to species (e.g. Black-footed Albatross) and some do not (e.g.
the genus Sayornis or umbrella terms like frigatebird). We discard any CUB
category whose name could not be unambiguously mapped to a single species.
By checking these species names against the iNaturalist taxonomy, we obtained
the genus, family, order, and class for each species. All bird species belong to
the class Aves, so this is the root node of the label hierarchy. Since we retained
only species-level categories, every leaf node lies at the same distance from the
root node. Our CUB label hierarchy has 184 leaf nodes.

ImageNet. ImageNet is equipped with a label hierarchy based on WordNet [6].
One problem with this hierarchy is that some nodes have multiple parents, which
violates the assumptions of the label coarsening procedure outlined in the main
paper. We remedy this using a simple greedy approach in which we iterate over
the nodes with multiple parents in some fixed (but arbitrary) order and delete
all but one parent node. In particular, for each node with multiple parents we
perform the following operations:

1. Choose a parent and compute the number of leaf nodes that are still reach-
able if that parent is retained and the others are deleted. Repeat for each
parent.

2. Keep the parent node for which the greatest number of leaf nodes remain
reachable from the root.

3. Delete the other parent nodes.
4. Delete any descendants of deleted nodes which are no longer reachable from

the root.

After executing this process, we obtain a label hierarchy in which each (non-root)
node has a unique parent. Our ImageNet label hierarchy has 927 leaf nodes.

D Descriptive Statistics

D.1 Class Imbalance and Label Granularity

We give basic statistics on the distribution of images over categories for iNat-
Loc500 at different granularity levels in Table A1. We also visualize the distri-
bution of images over categories at different granularity levels in Fig. A7. At the
species level, the categories are approximately balanced, but the spread between
the largest and the smallest category is much larger for coarser label sets.
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Fig.A5. Label hierarchies for CUB (top left), iNatLoc500 (top right), and ImageNet
(bottom). Root nodes are shown in red. The hierarchies for CUB and iNatLoc500 have
uniform depths (4 and 6, respectively). The hierarchy for ImageNet is considerably
more irregular.

D.2 Box Size

In Fig. A6 we compare the box size distributions for iNatLoc500, ImageNet, and
CUB. For each curve in Fig. A6 we compute the area of each box, divide the box
areas by the corresponding image sizes, and compute the CDF. The box distri-
bution for iNatLoc500 seems to interpolate between the the box distributions
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Table A1. Summary statistics for iNatLoc500 at each granularity level. For each
granularity level, we provide the number of categories as well as the minimum, maxi-
mum, and mean number of images per category. We also calculate the imbalance factor,
which is the size of the largest class divided by the size of the smallest class [3]. Re-
fer to Fig. A7 for a visualization of the distribution of images over categories at each
granularity level.

Granularity # Categories Min Max Mean Imbalance

Species 500 149 307 276 2.1
Genus 317 149 3575 435 24.0
Family 184 149 7113 750 47.7
Order 61 149 23947 2262 160.7
Class 18 265 29741 7666 112.2
Phylum 5 1345 93576 27599 69.6

for CUB and ImageNet, e.g. iNatLoc500 has more “small” boxes than CUB but
not as many as ImageNet.
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Fig.A6. Comparison of CDFs of box sizes for iNatLoc500, ImageNet, and CUB. All
box sizes are normalized by the size of the image.

E Performance Scores

For ease of comparison we provide the raw MaxBoxAccV2 scores for each WSOL
method (and CAM-Agg) at each granularity level in Table A2.
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Fig.A7. Distribution of images over categories at different granularity levels for iNat-
Loc500. We show violin plots for Species, Genus, Family, and Order. Class and Phylum
contain only a small number of categories so we can show each point individually. See
Table A1 for summary statistics at each granularity level.

F Implementation Details

F.1 Qualitative Analysis of WSOL

In this section we define the terms used in the qualitative analysis figures in
the main paper. In what follows we choose the threshold t to be the optimal
threshold for an IoU of 0.50, as defined by [1].

– Area of Predicted Box: The area of the predicted box divided by the area
of the ground truth box. The predicted box is computed using a threshold t.

– GT Box Activation: The sum of the heatmap pixels inside the ground truth
box divided by the sum of the heatmap pixels outside the ground truth box.

– Number of Connected Components: The number of connected components
in the predicted heatmap after it has been binarized with threshold t.

F.2 WSOL Methods

We consider six standard WSOL methods in this work: CAM [14], HaS [7],
ACoL [12], SPG [13], ADL [2], and CutMix [11]. We leave the details of those
methods to their respective papers. For each WSOL method, we use the train-
ing procedures and optimal hyperparameters used by [1] for ImageNet. The
only exceptions are as follows. First, we always use enlarged 28 × 28 feature
maps, instead of letting the choice between 14×14 and 28 × 28 be an ad-
ditional hyperparameter. Second, we use a weight decay of 10−5 instead of
10−4. Third, we always re-optimize the learning rate by searching over the set
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Table A2. MaxBoxAccV2 scores for different WSOL methods trained at different levels
of granularity. As in the main paper, ACoL is excluded due to poor performance.
We also include provide scores for CAM-Agg, an alternative method of using using
granularity information for WSOL described in the main paper.

Method Species Genus Family Order Class Phylum

CAM 60.2 62.7 63.3 65.4 65.2 60.3
HaS 60.0 61.5 63.4 64.1 62.3 52.1
ACoL - - - - - -
SPG 60.7 63.5 63.2 64.6 62.4 55.6
ADL 58.9 63.4 63.7 63.9 64.3 59.8
CutMix 60.1 63.3 63.7 66.7 64.1 61.1

CAM-Agg 60.2 59.8 58.6 55.0 48.8 40.1

{10−5, 10−4, 10−3, 10−2, 10−1} and using the value of MaxBoxAccV2 on Df to
select the best one. The best learning rate values for each WSOL method and
granularity level are provided in Table A3 and the method-specific hyperparam-
eters can be found in Table A4. We summarize the rest of the training details,
which match [1], below.

Architecture. All methods use an ImageNet-pretrained ResNet-50 backbone
with an input resolution of 224× 224.

Image preprocessing. Training images are resized to 256 × 256, randomly
cropped to 224×224, then horizontally flipped with probability 0.5. At test time,
images are simply resized to 224× 224. All images are normalized according to
ImageNet statistics.

Optimization. We train using SGD with Nesterov momentum, a momentum
parameter of 0.9, and a batch size of 32. The learning rate for the final linear
classifier layer is set to be 10× larger than the learning rate for the rest of the
network. For fairness, [1] trains on each dataset for a number of epochs which
equates to processing 300k images. To respect this criterion, we train iNatLoc500
for 2 epochs (276k images processed) and decay the learning rate by a factor of
10 after the first epoch.

Evaluation. The search space for the optimal heatmap threshold consists of
1000 linearly spaced values between 0 and 1. Note that all heatmaps are min-
maxed normalized before evaluation, so their values fall in [0, 1]. Final MaxBoxAccV2
numbers are an average over three IoU thresholds: 30, 50, and 70.

F.3 Center Baseline

We perform baseline experiments using the “center” baseline for WSOL intro-
duced in [1], which simply generates a centered Gaussian heatmap for each im-
age. Since [1] did not fully specify the implementation of their center baseline,
our re-implementation may differ slightly. We opt for a simple implementation
which does not depend on the image shape. Specifically, we generate an image
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Table A3. Best learning rates for WSOL methods at different granularity levels.
Learning rates are selected from {10−5, 10−4, 10−3, 10−2, 10−1} based on the value of
MaxBoxAccV2 on train-fullsup. Note that learning rates for ACoL at coarser granu-
larity levels are omitted due to poor performance.

Method Species Genus Family Order Class Phylum

CAM 10−2 10−1 10−2 10−2 10−2 10−2

HaS 10−2 10−1 10−2 10−2 10−2 10−2

ACoL 10−3 - - - - -
SPG 10−1 10−1 10−1 10−1 10−1 10−2

ADL 10−1 10−1 10−1 10−2 10−2 10−2

CutMix 10−2 10−1 10−2 10−2 10−2 10−2

Table A4. Method-specific hyperparameters used for iNatLoc500. These are the same
hyperparameters used by [1] for ImageNet.

Method Hyperparameters

CAM N/A
HaS drop rate = 0.09, drop area = 31
ACoL erasing threshold = 0.79
SPG δB1

l = 0.02, δB1
h = 0.03, δB2

l = 0.05, δB2
h = 0.47, δCl = 0.29, δCh = 0.36

ADL drop rate = 0.68, erasing threshold = 0.93
CutMix size prior = 0.10, mix rate = 0.93

C ∈ RM×M where

Ci,j = exp

(
−
((i− M−1

2 )2 + (j − M−1
2 )2)

2σ2

)
for the pixel in row i and column j. We then apply min-max normalization to
C. We set M = 224 and σ = M/4.

Note that in the continuous domain, the value of σ would not matter, since,
for any σ, a square centered box of any size could be obtained by choosing the
right heatmap threshold. In practice, the heatmap threshold is optimized over a
fixed grid of values. In this case, each value of σ yields a different collection of
centered boxes, which results in different performance numbers.

F.4 FSL-Seg: Few-Shot Localization via Segmentation

The FSL-Seg baseline for WSOL was introduced in [1], but they did not fully
specify the implementation details so our approach may differ. Our training
protocols are identical to those we use for WSOL methods, except for the mod-
ifications described below.
Architecture. Like the WSOL methods, we begin with an ImageNet-pretrained
ResNet-50 with an input resolution of 224 × 224. We modify the network by
replacing the final fully connected layer with a 1 × 1 convolution layer with a
sigmoid activation. Since the feature maps have shape 2048×28×28, the output
of this modified ResNet-50 is a single “score map” S ∈ [0, 1]28×28.
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Loss. We train using a weighted per-pixel binary cross-entropy loss given by∑
ij

[
Yij

∥Y ∥0
logSij +

(1− Yij)

∥1− Y ∥0
log(1− Sij)

]

where Y ∈ {0, 1}28×28 is a binary label mask and ∥Y ∥0 denotes the number
of nonzero values in Y . This weighting has the effect of equally balancing pos-
itive and negative labels. For OpenImages30k, binary label masks are directly
available. However, CUB, ImageNet, and iNatLoc500 only have bounding box
annotations. For these three datasets we compute Y by converting the bounding
box annotations into binary masks. Note that these masks are noisy because
most objects do not completely fill their bounding boxes.
Optimization. For each dataset we train for 10 epochs and decay the learning
rate by a factor of 10 every 3 epochs.

F.5 FSL-Det: Few-Shot Localization via Detection

For FSL-Det we use a Faster-RCNN object detection architecture. We use an off-
the-shelf TensorFlow Object Detection API training configuration file originally
meant for training a Faster-RCNN model on COCO. Other than changing the
input image size and the dataset, we do not modify the architecture or any
training procedures. The configuration can be found here:

https://github.com/tensorflow/models/blob/65407126c5adc216d606d360429fe12ed3c3f187/research/

object_detection/configs/tf2/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8.config

G Manual Annotation

We performed extensive filtering and quality control to produce train-fullsup
and test splits data for iNatLoc500. We show randomly selected examples from
iNatLoc500 in Fig. A8. We also show examples of images which were rejected
and give the reason in each case in Fig. A9.

H Qualitative Examples

We show some hand-picked predictions for CAM-based WSOL in Fig. A10.

https://github.com/tensorflow/models/blob/65407126c5adc216d606d360429fe12ed3c3f187/research/object_detection/configs/tf2/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8.config
https://github.com/tensorflow/models/blob/65407126c5adc216d606d360429fe12ed3c3f187/research/object_detection/configs/tf2/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8.config
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Fig.A8. Randomly selected sample images from the iNatLoc500 dataset.
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Fig.A9. Examples of problematic images from iNat17 which were filtered out of the
iNatLoc500 dataset. Each image is identified with a tuple (i, j) where i is the row and
j is the column. We now describe the problem in each image. (1, 1): The box is too
small. (1, 2): The box is too large. (1, 3): The target class is the crab, not the otter,
so the box is too large. (1, 4): The box is too large and there are multiple instances
of the target species. (2, 1): The box is too large and there are multiple instances of
the target species. . (2, 2): The image is an extreme close-up. (2, 3): The correct box
is ambiguous due to blurring. (2, 4): The box is too large.
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Order PhylumSpecies

Fig.A10. Examples of CAM-based WSOL predictions at different levels of granular-
ity. In each row we provide activation map for classifiers trained at the phylum, order,
and species level. Each activation map shows the ground truth bounding box (red) and
WSOL-based bounding box (yellow).
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