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Abstract. The superior performance of object detectors is often es-
tablished under the condition that the test samples are in the same
distribution as the training data. However, in most practical applica-
tions, out-of-distribution (OOD) instances are inevitable and usually
lead to detection uncertainty. In this work, the Feature structured OOD-
IDentification (FOOD-ID) model is proposed to reduce the uncertainty
of detection results by identifying the OOD instances. Instead of out-
putting each detection result directly, FOOD-ID uses a likelihood-based
measuring mechanism to identify whether the feature satisfies the cor-
responding class distribution and outputs the OOD results separately.
Specifically, the clustering-oriented feature structuration is firstly devel-
oped using class-specified prototypes and Attractive-Repulsive loss for
more discriminative feature representation and more compact distribu-
tion. With the structured features space, the density distribution of all
training categories is estimated based on a class-conditional normaliz-
ing flow, which is then used for the OOD identification in the test stage.
The proposed FOOD-ID can be easily applied to various object detectors
including anchor-based frameworks and anchor-free frameworks. Exten-
sive experiments on the PASCAL VOC-IO dataset and an industrial
defect dataset demonstrate that FOOD-ID achieves satisfactory OOD
identification performance, with which the certainty of detection results
is improved significantly.
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1 Introduction

Over the last decade, the success of object detection has boosted widespread
applications in various fields. However, their superior performance often relies
on the assumption that test instances and training instances are in the same
distribution [10][33]. When encountering out-of-distribution (OOD) inputs, the
detector may make some seemingly stupid mistakes as shown in Fig. 1. The
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Fig. 1. The object detectors may falsely detect two types of OOD objects, including
unknown-category objects and confusing-category objects. Our proposed FOOD-ID
can perform OOD identification to improve detection certainty.

sheep is mistakenly classified as a dog and the cow is mistakenly classified as
a horse. The former belongs to the unknown-category objects, which do not
appear in the training set but are mistakenly detected and classified as a known
class. The latter belongs to confusing-category objects, although it is a known
class object, it is misclassified into another known class since it is located in
low-probability distribution regions. The above drawback limits the deployment
of object detectors in safety-critical applications, in which the detection results
should be with high certainty to avoid high risks.

The phenomenon is more obvious in industrial automatic production. To
avoid immeasurable risks, each unqualified product needs to be detected by a
defect detector. However, it is difficult to balance the miss rate and false rate
well because few or zero misses tend to bring more false positives. We observe
that most of the false detections are made by the reason that their features are
out of training distribution, which makes the detection results high uncertainty.
Thus, identifying whether each detected object is OOD or not, can reduce the
detection uncertainty, and then the false rate can be decreased effectively. At
the same time, rather than simply suppressing such OOD false detections, they
need to be output separately for further confirmation by humans.

Most existing object detectors follow the in-distribution (IND) assumption
and can not identify OOD objects. Recently, some methods [24, 21, 27, 43, 49,
38] leverage an independent classifier to recognize OOD image input, preventing
them from entering downstream tasks. However, OOD objects and their combi-
nation with IND object detection are rarely explored. Besides, Open set detection
methods [4, 29, 31] are dedicated to simultaneously performing known-category
object detection and new unknown-category object recognition. However, apart
from unknown-category instances, OOD objects also include confusing-category
objects such as the cow that is mistakenly detected as a horse in Fig. 1.

To address the above challenges, we propose FOOD-ID, a unified model ca-
pable of object detection and OOD identification. Specifically, FOOD-ID adds a
dynamic prototype branch to the detector head, which can dynamically store and
update the multi-scale feature prototypes of training categories. The clustering-
oriented feature structuration is developed by class-specified prototypes and
Attractive-Repulsive loss for discriminative feature representation and compact
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distribution. With the structured feature space, the density distribution of all
categories is estimated based on a class-conditional normalizing flow (CCNF).
At test time, the log-likelihood of each detected object feature in the distribu-
tion of all categories will be predicted by the trained CCNF, based on which
OOD identification is performed. With OOD identification, the detector is able
to express uncertainty by picking out the OOD objects which have a higher error
probability, and then the certainty of detection can be improved significantly.

Our contributions can be summarized as follows:

1. We propose FOOD-ID, a unified model capable of object detection and out-
of-distribution identification.

2. We propose the clustering-oriented feature structuration developed by class-
specific prototypes and Attractive-Repulsive loss. Furthermore, we adopt a
class-conditional normalizing flow for feature distribution modeling, which
can be used to estimate the likelihood and identify OOD objects.

3. We conduct experiments on various object detection frameworks and datasets.
FOOD-ID achieves satisfactory OOD identification performance and im-
proves the certainty of detection results.

2 Related Work

2.1 In-Distribution Object Detection

In recent years, object detectors have achieved rapid development from anchor-
based frameworks [13, 12, 39, 26, 25, 37] to recent anchor-free frameworks [42, 7,
19, 48]. Continuous breakthroughs in accuracy and speed have allowed them to
be widely deployed in various applications. Object detectors are trained to detect
objects of known classes labeled in the training set, and perform detection based
on the assumption that test inputs satisfy the training distribution. The ideal
in-distribution setting ignores the existence of OOD inputs, which will often
encounter in practical applications. In this case, it is difficult for the detector to
make confident and correct predictions of these OOD objects due to a lack of
knowledge, resulting in large uncertainty in detection results. The above flaws
limit their deployment in safety-critical real-world applications.

2.2 Out-of-Distribution Detection

OOD detection aims to detect OOD inputs in advance and prevent them from
entering downstream tasks, e.g. localization or segmentation. Recent works im-
prove OOD detection by using the ODIN score [24, 16], Mahalanobis distance
[21], energy score [27], ensemble [43, 47], flows [49, 1] and generative models [38].
However, the above studies usually focus on image classification, simply clas-
sifying the input as IND or OOD image, and rarely explore OOD objects in
more complex object detection tasks. Recently, the work VOS [6] has begun to
investigate the integration of OOD detection into object detection, but their fo-
cus on OOD objects is still on all detections on unknown categories from other
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datasets. VOS synthesizes outliers by sampling and trains the head to classify
OOD in a supervised way. While our FOOD-ID is only based on IND samples
and does not rely on OOD supervision. Open set detection requires correctly
classifying known classes and labeling other classes that are not in the training
set as unknown. Various discriminative [2, 46] and generative models [11, 32, 34,
36] have been proposed to improve open set recognition. Although most studies
still focus on image classification, some studies have paid attention to suppress-
ing open set false positives in object detection. MC Dropout-based [29], Gaussian
Mixture Model[31] and distance-based methods [30] are used to extract model
uncertainty and reject open-set error. Unlike the above studies, the OOD objects
we target do not necessarily belong to an independent new unknown-category,
but can also be confusing-category objects that are located in low-probability re-
gions of known class distribution. In addition, we do not wish to simply suppress
OOD detections, but rather perform OOD identification across all detections,
and output OOD separately for human experts to utilize.

2.3 Uncertainty Estimation in Object Detection

The key to performing OOD identification is that model needs the ability to es-
timate its epistemic uncertainty, which is the uncertainty caused by the model’s
lack of knowledge [17]. Sampling-based methods (such as Bayesian-based [9],
ensemble-based [20] and test-time augmentation [44]) are often used in regres-
sion, but they are difficult to apply in object detection due to time consumption.
Recently proposed non-sampling uncertainty estimation methods (such as Gaus-
sian yolov3 [3], Gaussian FCOS [22], GFLv2 [23]) measure uncertainty in terms
of variance by modeling the localization output as a distribution rather than a
deterministic value. The above methods pay more attention to the uncertainty
of localization to achieve accurate bounding box regression to improve detec-
tion performance. However, they are still based on the IND assumption and do
not consider OOD inputs. Instead, we focus on the uncertainty in the detection
results of OOD objects due to the model’s lack of knowledge. Our proposed
method adopts a sampling-free manner, and can be used as a plug-in to enhance
object detection frameworks.

3 Method

3.1 Problem Statement

We consider a object detection model MC which is trained with the training
set D, which contains C known categories K = {1, 2, ..., C} ⊂ N+. On the
one hand, the detection model MC needs to perform the correct classification
and localization of IND objects xIND, which include known objects that sat-
isfy a high-probability distribution of known classes K in the training set D.
On the other hand, the MC needs to identify OOD objects xOOD, including
confusing-category and unknown-category objects. The former are located in
low-probability regions of known class distribution. The latter do not belong to
a known class K in the training set D.
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Fig. 2. Overview of the proposed FOOD-ID.

3.2 Overview

We propose Feature structured OOD-IDentification (FOOD-ID), a unified model
for object detection and OOD identification. Fig.2 overviews the training and
testing procedures for FOOD-ID. In the first training stage, all labeled ground-
truth bounding boxes are mapped to Feature Pyramid Networks (FPN) and
their multi-scale features are extracted by the RoIAlign layer and Average Pool-
ing layer. Then the features are used to dynamically update the prototypes of
the corresponding class. The Attractive-Repulsive loss is added to the detector
to form a more discriminative feature space (detailed in Section 3.3). In the sec-
ond training stage, both class labels and ground-truth features extracted by the
trained detector are input to the class-conditional normalizing flow to model the
density distribution of the feature space (detailed in Section 3.4). In the testing
stage, the detector firstly obtains preliminary detection results and maps them to
FPN for feature extraction. Each object feature is then fed into the trained nor-
malizing flow to estimate the log-likelihood of satisfying each class distribution.
Objects with a high likelihood class that is different from the original detected
class or objects with high entropy are identified as OOD objects, while for other
IND objects, the original detection results are output (detailed in Section 3.5).

3.3 Clustering-Oriented Feature Structuration

The clustering-oriented feature structuration is developed for more discrimina-
tive feature representation and more compact distribution. The feature struc-
turation requires centralization and compactification. For centralization, we in-
troduce a dynamic prototype branch to dynamically update class prototypes
to form prototype-centric feature clusters. For compactification, the Attractive-
Repulsive loss are proposed to attract features to corresponding prototypes and
encourage different class prototypes mutually repulsive.
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The dynamic prototype branch is introduced to dynamically store and update
class prototypes as cluster centers for feature centralization. Suppose there are a
total of C classes in the training set, and feature maps of S scales are extracted
through FPN, and M prototype features are stored for each class on each scale,
that is, a total of C × S × M prototypes are stored in the branch. During
training, the ground-truth bounding boxes in the training set are respectively
mapped to the S scale feature maps extracted by FPN, and then the ground-
truth object features are extracted by the RoIAlign layer and Average Pooling
layer. Inspired by the memory network [45, 41, 28, 35], we adopt a similar memory
update strategy for prototypes. WhenK object features qK of class c on the scale
j are extracted, they are used to update the corresponding M prototypes pM .

First, calculate the cosine similarity of K object features and M prototype
features as update weight wk,m, as follows:

wk,m = softmax((pm)
T
qk) (1)

Then for each prototype pm, select the most similar object features Um to
update pm using the following formula, where f(·) is the L2 normalization.

pm = f(pm +
∑

k∈Um

w
′k,mqk) (2)

w
′k,m =

wk,m

maxk′∈Um
wk′,m

(3)

Then, the Attractive-Repulsive loss is introduced to facilitate feature com-
pactification. The attractive loss encourages the object feature to be close to its
most similar prototype of the corresponding class, which is calculated as the L2

distance between the object feature qk and its closest positive class prototype
ppos.

Lattractive =
∑K

k

∥∥qk − ppos
∥∥
2

(4)

pos = argmax
m∈Mc

wk,m (5)

While the repulsive loss encourages prototypes of different classes to be more
dispersed and is calculated as formula (6). The first term is the L2 distance
between the object feature qk and its closest ppos prototype in class c. While
the second term is the distance between the object feature qk and its closest
negative prototype pneg in other classes, where α is a parameter used to control
the gap between the two distances, which is set to 1 in the experiment.

Lrepulsive =
∑K

k [
∥∥qk − ppos

∥∥
2
−
∥∥qk − pneg

∥∥
2
+ α]

+
(6)

neg = argmax
m∈Mc′ ,c

′ ̸=c
wk,m (7)

So the loss function of the detector includes the classification loss Lcls and
the localization loss Lloc of the original head, as well as the Attractive-Repulsive
loss LAR with the balance parameters η and λ, which are empirically set to 0.5.

LAR = ηLattractive + (1− η)Lrepulsive (8)
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Ldetector = Lcls + Lloc + λLAR (9)

Note that to ensure high-quality prototypes, the dynamic prototype branch
will start updating only when the model has sufficient detection capabilities (i.e.
after training for long enough epochs). After at least one epoch of storage of all
ground-truth object features in the training set, the AR loss is added.

3.4 Class-Conditional Distribution Estimation

Then we model the distribution of the structured feature space based on class-
conditional normalizing flow (CCNF). Normalizing flows are a class of generative
probabilistic models, first proposed by Dinh et al. [5]. These models can fit
arbitrary density distributions q(x) by a simple base density q(z) and a invertible
mapping g : X → Z. Then, the log-likelihood of any x ∈ X can be estimated as
follows:

log q(x, θ) = log q(z) + log |detJx| (10)

where the latent variable z is usually assumed to satisfy a standard multivariate
Gaussian prior (z ∼ N (0, I))[5] and Jx = ∇xg(x, θ) is the Jacobian matrix of a
invertible flow model (z = g(x, θ)) with trainable parameter θ.

In order to model the distribution of all categories in the structured feature
space in a unified manner, we introduce class information to achieve better fea-
ture distinction. Similar to [1], we assume the latent variable z satisfy a Gaussian
mixture model with class-dependent mean µy and a unit covariance matrix I as
follows, where y is the class label.

q(Z|Y ) = N(µy, I) and q(z) =
∑

yp(y)N (µy, I) (11)

We utilize the Information Bottleneck(IB)-based loss function [1] to train the
class-conditional normalizing flow, where the trade-off parameter β balances the
two terms.

LCCNF = LX − βLY (12)

The LX term represents the mutual information term I(X,Z), which is ap-
proximated by the empirical mean of the negative log-likelihood of the uncon-
ditional normalizing flow over a training dataset. Note that the input is a noisy
version X ′ = X + E , where E ∼ N (0, σ2I) = p(E) to artificially introduce a
minimal amount of information loss. The LX term encourages the normalizing
flow to ignore class information and become an accurate likelihood model.

LX = Ep(X),p(E)[− log q(x+ ε)] (13)

While the LY term represents the mutual information term I(X,Y ), which is

defined as the empirical mean of the log-posterior in a training set {xi, yi, εi}Ni=1

of size N as follows. This term encourages each pair gθ(x + ε) to be drawn to
the correct cluster center µy while the cluster centers (µY ̸=y) of the other classes
are repulsed, which ensures accurate classification.

LY =
1

N

N∑
i=1

log
N (gθ(xi + εi);µyi

, I)p(yi)∑
y′ N (gθ(xi + εi);µy′ , I)p(y′)

(14)
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We construct the CCNF based on invertible neural networks composed of
several affine coupling layers [5]. We first extract multi-scale features from all
ground-truth objects in the training set via the trained dynamic prototype
branch and concatenate them together. Then all object features and class la-
bels are input to the CCNF for training based on Formula (12). As a result, the
trained CCNF can perform effective density estimation and class distinction.

3.5 Likelihood-based Out-of-Distribution Identification

At test time, the classification branch and localization branch of the detector
firstly obtain preliminary detection results, and the detection boxes are mapped
to FPN and then object features are extracted through the dynamic prototype
branch. Then the log-likelihood of each object feature in the distribution of all
categories will be predicted by the trained CCNF as follows:

log p(x) = log
∑

y exp(
∥z−µy∥2

2

2 ) + log |detJx| (15)

Likewise, the entropy of the likelihoods is calculated as follows:

H(x) = −
∑

x p(x) log p(x) (16)

Compared with the original predicted class, objects with a different maximum
likelihood class will be regarded as OOD directly. Otherwise, we further adopt
entropy as the uncertainty score and identify objects with entropy greater than
a threshold. The former case means that the object features are more in line
with the distribution of another category rather than the detected category,
which corresponds to the misclassification of confusing-category objects. The
latter case means that the object feature achieve similar likelihood across all
categories, which correspond to unknown-category objects. While for other IND
objects, the original detection results are output.

4 Experiments

4.1 Experimental Setup

Datasets For a given dataset D containing a total of N categories, we first
divide it into the training set Dtrain and test set Dtest by stratified sampling. We
select the instances in Dtrain that only contain C(C < N) known classes objects
as the model’s training dataset DC , which is achieved by deleting all images in
Dtrain that contain unknown N −C classes objects. During testing, the original
test dataset Dtest with N categories is used. To evaluate the performance of
methods on both general object detection tasks and specific object detection
tasks, we tested the following datasets:

PASCAL VOC-IO[8]: The dataset PASCAL VOC contains a total of 20
categories. We select the first C = 15 categories as known categories, pick out
the data that only contain these C categories in the original training set as the
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training set DC , and use the original test set Dtest containing 20 categories as
the test to construct PASCAL VOC-IO.

Crack Defect: We build Crack Defect dataset to detect crack defects in
the junction of reed tubes, and it contains four main categories, namely, crack,
deformation, bubble, and stain. Only the categories of crack need to be detected
for product screening. Deformation, bubble, and stain are all qualified products
that are easily mistakenly detected as crack in practice. Crack Defect is con-
structed by selecting the instances that only contain the categories of crack as
the training set DC , and using the test set Dtest containing all categories.

Metrics We categorize the raw detections outputs of the object detector into
correct detections DC , OOD false detections DOF , and remaining false detec-
tions. A detection box is considered as DC if it is located and classified correctly
(has an IoU greater than 0.5 with a ground-truth box of the predicted class).
A detection box is considered as DOF if it is correctly located but misclassified
(has an IoU greater than 0.5 with a ground-truth box of a class different from
the predicted class). The remaining false detections are usually background de-
tections or duplicate detections. We tested the following metrics to evaluate the
distinction between DC and DOF :

ROC: Receiver Operating Characteristic (ROC) curve represents the trade-
off between true positive rate (TPR) and false positive rate (FPR) when changing
the uncertainty threshold θ in OOD identification. TPR represents the propor-
tion of DOF that are correctly identified and FPR represents the proportion of
DC that are misidentified as OOD. And the area under the ROC curve (AUC)
is also calculated to represent the overall performance.

TPR(θ) =
|DOF > θ|
|DOF |

FPR(θ) =
|DC > θ|
|DC |

(17)

TPR@FPR: We report TPR at 5%, 10% and 20% FPR respectively. These
operating points evaluate the identification rate of DOF under a low misidentifi-
cation of DC , which corresponds to the ability to identify OOD with the lowest
possible miss-rate in the application.

Precision: We calculated the precision before and after OOD identification
respectively. The precision before OOD identification is calculated as the propor-
tion of DC in all raw detection results. After taking 10% of all detected results as
OOD, all detection results are divided into IND set and OOD set. The precision
of the former is the proportion of Dc in the IND set, and the precision of the
latter is the proportion of DOF in the OOD set.

4.2 Main Results

We test on three representative object detectors separately: FCOS [42], an
anchor-free one-stage detector; RetinaNet [25], an anchor-based one-stage de-
tector; and Faster RCNN [39], an anchor-based two-stage detector. For each
object detector, we train the model and test it under a certain model detection
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Table 1. The OOD identification performance measured by AUC and TPR@FPR
metrics across both datasets and three detectors.

PASCAL VOC-IO Crack Defect
Method AUC TPR@ AUC TPR@

5%FPR 10%FPR 20%FPR 5%FPR 10%FPR 20%FPR

FCOS

Baseline-Score 0.830 43.5 59.0 73.6 0.865 51.8 68.1 80.3
Baseline-Entropy 0.861 53.0 64.7 77.4 0.882 56.9 70.2 81.4
FOOD-ID-Proto 0.899 64.3 72.8 82.7 0.906 68.3 76.0 84.5
FOOD-ID-CCNF 0.913 70.1 80.1 88.0 0.921 73.4 82.7 90.3

RetinaNet

Baseline-Score 0.900 53.5 72.7 84.9 0.923 62.7 79.9 90.2
Baseline-Entropy 0.903 60.4 72.3 83.2 0.900 59.4 71.1 82.4
FOOD-ID-Proto 0.919 69.5 79.0 87.7 0.936 75.2 83.4 90.8
FOOD-ID-CCNF 0.928 76.5 85.3 91.2 0.942 80.5 88.5 93.6

Faster RCNN

Baseline-Score 0.840 35.5 54.7 71.6 0.872 49.1 64.3 78.4
Baseline-Entropy 0.843 45.4 61.4 74.7 0.881 50.2 65.9 81.0
FOOD-ID-Proto 0.861 50.2 67.8 78.1 0.887 56.7 72.2 82.7
FOOD-ID-CCNF 0.866 57.7 68.1 79.7 0.908 63.4 75.6 85.2

threshold. After obtaining the detection results, we compare the performance of
OOD identification based on the following methods:

Baseline-Score: The confidence score of the detector is used as the criterion
for uncertainty estimation, low score means high uncertainty [15, 29, 4].

Baseline-Entropy: The entropy of the confidence scores for all classes of the
detector is used for uncertainty estimation, high entropy means high uncertainty
[40, 18, 14].

FOOD-ID-Proto: Based on the dynamic prototype branch, the distance
from the detected object feature to the nearest prototype of the predicted cate-
gory is used as the uncertainty score, large distance means high uncertainty.

FOOD-ID-CCNF: Based on the trained CCNF, we leverage both likelihood
and entropy to measure the uncertainty. As described in Section 3.5, compared
to the original predicted class, objects with a different maximum likelihood class
will be regarded as OOD directly. Otherwise, we further adopt entropy as the
uncertainty score to identify OOD objects.

As shown in Table 1, the two methods we proposed achieve advanced perfor-
mance on OOD identification, which is maintained across three object detectors
and two datasets. Especially under a very low misidentify rate of DC , FOOD-ID
can achieve significantly better DOF identification performance than baseline
methods. It can be noted that FOOD-ID-CCNF outperforms FOOD-ID-Proto,
because the former can accurately model the training feature distribution and
estimate exact likelihood, while the latter only measures the distance to the class
closest prototype. The complete ROC curve on PASCAL VOC-IO is shown in
Fig. 3. Meanwhile, as shown in the Table 2, the raw detection results are di-
vided into IND set and OOD set through ood identification. For the IND set,
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Fig. 3. The OOD identification performance measured by ROC metric on PASCAL
VOC-IO dataset.

Table 2. The precision of detection results before and after excluding 10% of the
detection results as OOD with OOD identification on PASCAL VOC-IO dataset.

Method
FCOS RetinaNet Faster RCNN

Before After Before After Before After
IND Set IND Set OOD Set IND Set IND Set OOD Set IND Set IND Set OOD Set

Baseline-Score

0.797

0.827 0.234

0.738

0.772 0.268

0.759

0.785 0.167
Baseline-Entropy 0.830 0.358 0.773 0.369 0.782 0.273
FOOD-ID-Proto 0.831 0.367 0.789 0.437 0.789 0.260
FOOD-ID-CCNF 0.836 0.414 0.791 0.540 0.792 0.335

the precision of detection results is significantly improved, which means that
OOD identification improves the certainty of detection. For the OOD set, it
is a more challenging task with the interference of background false positives.
FOOD-ID-CCNF can achieve advanced precision in both IND set and OOD set.

4.3 Ablation Study

FOOD-ID is mainly composed of clustering-oriented feature structuration and
class-conditional distributed estimation. We investigate the impact of each com-
ponent on the overall performance of the model.

The benefit of feature structuration To explore the need for feature struc-
turation, we conduct extra experiments on detectors trained without feature
structuration. We still use the dynamic prototype branch to extract ground-
truth object features but do not train with Attractive-Repulsive loss. The same
conditional normalizing flow model is then used to model the feature distribution
and perform OOD identification at test time. The OOD identification results are
shown in Table 3. It can be seen that in the absence of AR loss, the ability to
identify OOD is severely degraded after passing the same distribution modeling
model. Thus, feature structuration facilitates subsequent accurate distribution
modeling and class distinction.

We visualize the ground-truth features of the PASCAL VOC-IO training set
extracted by the dynamic prototype branch applied to FCOS with or without
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Table 3. The OOD identification performance with or without Attractive-
Repulsive(AR) loss on PASCAL VOC-IO dataset.

Method
FCOS RetinaNet Faster RCNN

AUC TPR@ AUC TPR@ AUC TPR@
5%FPR 10%FPR 20%FPR 5%FPR 10%FPR 20%FPR 5%FPR 10%FPR 20%FPR

FOOD-ID-Proto w/o ARloss 0.705 16.1 26.9 43.1 0.704 18.8 32.3 47.2 0.687 16.1 25.7 41.1
FOOD-ID-Proto w ARloss 0.899 64.3 72.8 82.7 0.919 69.5 79.0 87.7 0.861 50.2 67.8 78.1

FOOD-ID-CCNF w/o ARloss 0.888 69.1 75.1 83.6 0.921 73.9 82.6 89.9 0.857 54.5 65.3 76.3
FOOD-ID-CCNF w ARloss 0.913 70.1 80.1 88.0 0.928 76.5 85.3 91.2 0.866 57.7 68.1 79.7

Fig. 4. Visualization of the detector feature distribution and the corresponding nor-
malizing flow latent variable distribution with or without AR loss on PASCAL VOC-IO
dataset. (a) Detector feature distribution without AR loss. (b) Detector feature dis-
tribution with AR loss. (c) Latent variable distribution without AR loss. (d) Latent
variable distribution with AR loss.

AR loss by t-SNE in Fig. 4, where the same color dots represent the features of
the same class. It can be seen intuitively that the feature distribution with AR
loss is more structural and discriminative. It is achieved by utilizing dynamic
prototypes as cluster centers for centralization and AR loss for compactification.

The benefit of class-conditional distribution estimation To explore the
benefit of class-conditional distribution estimation, we compare the impact of
distribution modeling using class-conditional normalizing flow and unconditional
normalizing flow (UNF) on OOD identification performance. The former adopts
the CCNF we describe in Subsection 3.4. The latter adopts a series of UNFs
to individually model the distribution of each class of features. The UNFs are
trained with the objective of minimizing the log-likelihood in formula (10), as-
suming that the distribution of the latent variables z satisfies a multivariate
Gaussian distribution [5].

The performance of OOD identification on the same detection model using
different flow models is shown in Table 4. It can be seen that class-conditional
distribution estimation has a clear advantage over unconditional distribution
estimation in terms of OOD identification. The latter case can only access the
features of a single category with ignorance of other category information, re-
sulting in a weak feature discrimination ability because the features of different
categories are not conditionally independent.
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Table 4. The performance of OOD identification under distribution modeling using
class-conditional normalizing flow (CCNF) and unconditional normalizing flow (UNF)
on PASCAL VOC-IO dataset.

Method
FCOS RetinaNet Faster RCNN

AUC TPR@ AUC TPR@ AUC TPR@
5%FPR 10%FPR 20%FPR 5%FPR 10%FPR 20%FPR 5%FPR 10%FPR 20%FPR

UNF 0.881 65.6 71.4 78.9 0.885 60.3 70.9 82.9 0.830 39.2 54.8 72.6
CCNF 0.913 70.1 80.1 88.0 0.928 76.5 85.3 91.2 0.866 57.7 68.1 79.7

The trade-off between density estimation and class distinction To ex-
plore the trade-off between density estimation and class distinction in the class-
conditional distribution estimation, we experiment with different values of the
balance parameter β in the loss function of the CCNF. The OOD identification
results of different β with FOOD-ID-CCNF applied to FCOS are shown in Table
5. We also visualize the distribution of latent variables for CCNF trained with
different β on PASCAL VOC-IO training set by t-SNE, as shown in Fig. 5.

Table 5. The OOD identification results under different β on PASCAL VOC-IO
dataset.

β AUC TPR@5%FPR TPR@10%FPR TPR@20%FPR

0.0 0.500 4.9 9.8 19.8
0.5 0.911 69.9 78.1 86.6
1.0 0.913 70.1 80.1 88.0
2.0 0.912 68.6 80.0 87.4
10.0 0.912 68.1 78.0 87.3

The β trades off density estimation and class distinction. Smaller β encour-
ages more accurate density estimation, at the cost of losing class distinction.
When β is equal to 0, it will degenerate into a density model that does not con-
sider class conditions, resulting in a lack of OOD identification ability. When β
increases, the flow can achieve more efficient classification, but it is more difficult
to accurately estimate the density within the class. We take β = 1 to achieve a
balance.

Fig. 5. Visualization of the distribution of latent variables with different β values on
PASCAL VOC-IO dataset.
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4.4 Visualization

Fig. 6 shows the comparison of the detection results of FOOD-ID and the original
detector on two datasets. FOOD-ID demonstrates advanced OOD identification
capabilities. It also can be noted that it is difficult to identify OOD by confidence
score of original detector, because OOD usually has a non-low confidence score.

Fig. 6. Visualization of detection results. (a) Original detections on PASCAL VOC-IO
dataset. (b) FOOD-ID detections on PASCAL VOC-IO dataset. (c) Original detections
on Crack Defect dataset. (d) FOOD-ID detections on Crack Defect dataset.

5 Conclusions

Out-of-distribution inputs limit the deployment of in-distribution object detec-
tors in safety-critical real-world applications. In this paper, we propose a uni-
fied model FOOD-ID capable of object detection and out-of-distribution iden-
tification. FOOD-ID develops the clustering-oriented feature structuration by
class-specific prototypes and Attractive-Repulsive loss. Furthermore, a class-
conditional normalizing flow is adopted to model the feature distribution and
estimate likelihood at test time. FOOD-ID achieves satisfactory OOD identifi-
cation performance and improves the certainty of detection results.
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