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In this supplementary material, we provide details and results omitted in the
main text.

– Section A: implementation details.
– Section B: results on other metrics: AP fixed and boundary IoU.
– Section C: results on COCO-LT dataset.
– Section D: additional ablation studies.
– Section E: qualitative results.

A Implementation Details

A.1 Data Curation

As mentioned in Section 4.1 of the main paper, we followed [11] to collect Google
images. We use class names as the keywords and take top images from the respec-
tive search engine without extra user interventions. Thus, the curation process
is quite straightforward. The collected Google data are balanced (500/class).
ImageNet images are nearly balanced by design, with around 1K images/class,
including rare objects in LVIS. The imbalance situation in LVIS is largely re-
duced. For the rarest class (one image in LVIS), the increase factor is larger than
500 times.

A.2 Generating Object Segments

As mentioned in Section 3.1 and Section 4.1 of the main paper, we apply spatial
and semantic modulation (SSM) co-segmentation method [12] to the object-
centric images for each class, followed by segment refinement. We show more
examples of object segments by FreeSeg in Figure B, Figure C, and Figure D.
With the proper ranking algorithm, our approach can identify the most reliable
instance segments to improve long-tailed instance segmentation.

A.3 Post-Processing for Segment Refinement

To turn the raw, gray scale segmentation map into a binary one that can be
used to train a segmentation model, we threshold the map. As the suitable
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Fig. A. Procedure of gen-
erating object segments.
We generate the final seg-
ments (e.g., manatee) by post-
processing the raw segments
obtained from the image co-
segmentation methods.
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threshold value may vary across images and classes, we apply Gaussian filter
followed by dynamic thresholding, i.e., Li thresholding [6,5], which minimizes the
cross-entropy between the foreground and the background to find the optimal
threshold to distinguish them.

To further improve the resulting binary map, we apply erosion and dilation
to smooth the boundary. We then remove small, likely false positive segments by
only keeping the largest connected component in the binary map. Figure A shows
the entire post-processing procedure for refinement, which greatly improves the
quality of the segmentation masks, as illustrated in Figure 2 of the main paper.

A.4 Putting Segments in Context

As introduced in Section 3.3 and Section 4.1 of the main paper, we follow the
mechanism in [3] to paste our ranked segments. More specifically, we randomly
pick an example from LVIS training set as a background image, followed by
pasting segments from 1 to 6 object-centric images on it at different locations.
For LVIS images, we follow the standard data augmentation policy in [4] and
[9]. That is, we randomly resize the shortest edge of the image into [640, 672,
704, 736, 768, 800] with a limit of max size of width or height to 1333, followed
by a random horizontal flip with p = 0.5. For the selected object-centric images,
we apply random horizontal flip (p = 0.5) followed by random resize with a
scale of [0.1, 2.0]. We then randomly crop (or pad) the object-centric images to
match the size of the background image. Note that, this step ensures that the
object segments will be randomly pasted at different locations on each of the
LVIS images. For binary masks on LVIS images used for supervision, we remove
pixel annotations if the objects are occluded by the pasted ones in the front.

The examples of synthesized data via vanilla copy-paste (i.e.pasting ground
truths) can be found in Figure E. We also provide examples generated by
FreeSeg framework in Figure F. We can see that FreeSeg can increase the ap-
pearance diversity of foreground instances, especially for rare object categories.
We will leave a better way to leverage the object segments as our future work.

A.5 Model Training

We apply a two-stage strategy to fine-tune the pre-trained instance segmentation
model (cf. Section 4.1 of the main paper). Both stages follow the same training
and optimization setting, which is summarized in Table A.
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Table A. Optimization configuration for the two-stage fine-tuning.

Config Value

Optimizer SGD
Learning rate 2e-4
Weight decay 0.0001
Optimizer momentum 0.9
Batch size 8 (larger batch size, e.g., 16, does not lead to no-

table differences)
Warm up epoch 0
Training iteration 90,000
Aug. for background image ResizeShortestEdge [640, 672, 704, 736, 768, 800],

RandomFlip
Aug. for pasted image RandomFlip, ResizeScale [0.1, 2], FixedSizeCrop

B Results on AP Fixed with Boundary IoU

FreeSeg is effective in AP Fixed with Boundary IoU. Besides standard
Mask AP, we also report the results in AP Fixed [2] with Boundary IoU [1], fol-
lowing the official evaluation metrics in LVIS challenge 2021. AP Fixed replaces
the cap (i.e., 300) of number of detected objects per image by a cap (i.e., 10,000)
per class for the entire validation set. Table B reports the results. We see that
the improvement is consistent, demonstrating FreeSeg is metric-agnostic.

Table B. Results on AP Fixed [2] with Boundary IoU [1]. All models are based
on ResNet-50 FPN backbone architecture.

Method AP APr APc APf

Mask R-CNN [4] 19.88 14.76 19.32 22.76
w/ FreeSeg 21.25 18.33 20.85 23.00

MosaicOS [11] 21.20 18.79 20.63 22.90
w/ FreeSeg 21.86 20.12 21.50 23.03

C Results on COCO-LT dataset

To further validate the generalizability of our framework, we conduct experi-
ments on another popular long-tailed dataset, i.e., COCO-LT [8]. We match
class names to find object-centric images from ImageNet-22K and Google for
each class in COCO-LT. We follow the same evaluation protocol in [8,10] and
show results in Table C. FreeSeg (with Mask R-CNN as baseline) outperforms
SimCal [8] and FASA [10], justifying the generalizability.
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Table C. Results on COCO-LT dataset.

Method AP AP1 AP2 AP3 AP4

Mask R-CNN [11] 18.70 0.00 8.20 24.40 26.00

SimCal [8] 21.80 15.00 16.20 24.30 26.00
FASA [10] 23.40 13.50 19.00 25.20 27.50
FreeSeg 25.10 15.80 20.60 27.60 28.80

D Additional Ablation Studies

Effect of data sources We first study the effect of data sources. As Ima-
geNet only covers 997 classes of LVIS, we augment it with Google images for all
the 1,203 LVIS classes (Section 4.1 of the main paper). Table D shows results
with different data sources, we compare the performance of using different data
sources. We see that both Google images and ImageNet are useful. We achieve
the best result by combing them.

Table D. Results on different object-centric image sources. G: Google Images.
IN: ImageNet.

Method G IN AP APr APc APf

Mask R-CNN [4] 22.58 12.30 21.28 28.55

w/ FreeSeg
✓ 24.08 17.08 22.68 28.72

✓ 24.12 17.23 22.67 28.75
✓ ✓ 24.28 17.68 22.79 28.83

Importance of multi-stage training Table E reports results after the first
and second stage training (cf. Section 4.1 of the main paper). As introduced
in [11], the first stage learns better features with diverse and balanced data,
but noisy labels; the second stage trained with accurate labels helps correct the
prediction. We note that both stages use repeat factor sampling [4] to further
balance data.

Table E. Importance of multi-stage training.

Method Stage AP APr APc APf

Mask R-CNN [4] – 22.58 12.30 21.28 28.55

w/ FreeSeg
First 23.35 16.67 21.78 28.04
Second 24.28 17.68 22.79 28.83
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Comparison with self-training. We also study different ways to generate
pseudo-masks for training instance segmentation models. We replace FreeSeg
segments with those generated by Mask R-CNN (pre-trained on LVIS) — treat-
ing it as the teacher model to generate pseudo-labels for self-training [13]. We
only keep masks whose class labels matched the object-centric image labels to
filter out noises. Table F shows the results. All methods use the same training
pipeline. FreeSeg outperforms this baseline. We attribute this to the benefit of
co-segmentation which explores the similarity across images.

Table F. Comparison with self-training.

Method AP APr APc APf

MosaicOS [11] 24.45 18.17 23.00 28.83

w/ LVIS Network 24.70 18.96 23.42 28.64
w/ FreeSeg 25.19 20.23 23.80 28.92

Extended training of FreeSeg. Finally, to further compare to Seesaw [7],
which applies 2× training scheduling (cf. Section 4.2 of the main paper), we dou-
ble the training epochs of FreeSeg. Table G summarizes the results. FreeSeg
(2×) achieves further gains and outperforms Seesaw (2×) on all metrics except
APf for frequent classes. The improvement on APr/APc (i.e., rare/common) is
significant, justifying the effectiveness of our approach.

Table G. FreeSeg with a stronger training schedule.

Method Schedule AP APr APc APf

Seesaw [7] 2× 26.40 19.60 26.10 29.80

MosaicOS [11] 1× 24.45 18.17 23.00 28.83

w/ FreeSeg
1× 25.19 20.23 23.80 28.92
2× 26.80 21.70 26.90 28.60

E Qualitative Results

One common problem for long-tailed instance segmentation is the trained detec-
tor will be overconfident on the frequent objects and suppress the rare objects.
Figure G shows qualitative results. The baseline model tends to predict many
false positives which their classes appear more frequently in the training data.
FreeSeg uses augmented training data with high-quality segments to improve
the features, especially for rare objects.
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0.56 0.41 0.36 0.23 0.22 0.12 0.06 0.05

Fig. B. Randomly sampled examples of object segments on ImageNet im-
ages by FreeSeg. We show a rare class puffin in LVIS v1. For each triplet, we show
the original image, the object segment, and the binary mask. FreeSeg scores are on
the upper right corner of the images. We keep the segments with FreeSeg scores larger
than 0.5 (cf. Section 3.2 of the main paper).



Learning with Free Object Segments for Long-Tailed Instance Segmentation 7
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0.51 0.41 0.40 0.37 0.21 0.17 0.01

Fig. C. Randomly sampled examples of object segments on ImageNet im-
ages by FreeSeg. We show a rare class bulldoze in LVIS v1. For each triplet, we
show the original image, the object segment, and the binary mask. FreeSeg scores are
on the upper right corner of the images. We keep the segments with FreeSeg scores
larger than 0.5 (cf. Section 3.2 of the main paper).
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0.86 0.85 0.82 0.81 0.78 0.76

0.73 0.72 0.71 0.68 0.66 0.56

0.48 0.42 0.38 0.24 0.14 0.08

Fig.D. Randomly sampled examples of object segments on ImageNet im-
ages by FreeSeg. We show a rare class seehorse in LVIS v1. For each triplet, we
show the original image, the object segment, and the binary mask. FreeSeg scores are
on the upper right corner of the images. We keep the segments with FreeSeg scores
larger than 0.5 (cf. Section 3.2 of the main paper).
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Background Image
w/ GT

Pasted Image
w/ GT

Synthesized Image Synthesized Image
w/ GT

Fig. E. Four examples of vanilla copy-paste augmentation using original
training images. For each example, we show the background image with ground-
truths, the pasted image with ground-truths, the synthesized image, and the synthe-
sized image with ground-truths. We first randomly pick the background and pasted
images from LVIS training set, followed by random shortest edge resize and horizontal
flip (cf. Section 4.1 of the main paper). We then select a random number of objects
from the pasted image and paste them onto the background image. In the last column,
red masks indicate pasted segments; green masks indicate the objects in background
images.
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Fig. F. Examples of copy-paste augmentation with FreeSeg segments. We
generate object segments from object-centric images and randomly paste them onto
scene-centric images. Red masks indicate pasted segments by FreeSeg; green masks
indicate original objects in scene-centric images.
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Fig.G. Qualitative results. Green arrows are used to indicate the improvement.
FreeSeg successfully detects school bus, martini, parasail, ram, rhinoceros, bullet train,
postbox, lion, and goat.
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