
Autoregressive 3D Bounding Box 17

Object patch features
(N, D, 96, 96)

3x3 Conv(64) x3

3x3 Residual 
Conv(64) x6

3x3 Residual 
Conv(64) x2

2x2 Max pool

x3

Linear(64) on 
flattened spatial 

features

64-dim feature per object

64-dim feature per object

64-dim feature per object

Attend MLP

x4

(N, 64) feature

Tile across spatial dimConcat & Conv(64) 3x3

3x3 Residual 
Conv(64) x2

Bilinear 
Upsample x2

x3

5x5 Conv(64) stride 4 x2

3x3 Conv(32) stride 2

Flatten spatial dims

MLP(128, 128) MLP(128, 256, 512, 1024)

x9

Autoregressive Output Bins

Fig. 6: Overview of Autoregressive Bounding Box Estimation architecture

A Model Architecture and Training

A.1 Autoregressive 3D Bounding Box Estimation

For bounding box estimation, our model operates on 2D detection patch outputs
of size 96 x 96. We take the 2D bounding box from object-detection to crop and
resize the following features for each object: 3D point cloud, depth uncertainty
score, normals, instance mask, amodal instance mask (which includes the oc-
cluded regions of the object). We normalize each point p in the point cloud with
the 0.25 (Q1) and 0.75 (Q3) quantiles per dimension using p�c0

s for c0 = Q1+Q3

2 ,
s = Q3 � Q1. We omitted RGB since we found it wasn’t necessary for training
and improved generalization.

We stack each 2D feature along the channel dimension and embed the features
using a 2D Resnet U-Net. The features from the top of the U-Net are used in a



18 Y. Liu et al.

series of self-attention modules across embeddings from all objects in a scene so
that information can be shared across objects. The resulting features from self-
attention are tiled across the spatial dimension before the downward pass of the
U-Net. Finally, the features from the highest spatial resolution of the U-Net are
passed into several strided-convs, flattened, and projected to a 128-dimension
feature h per object. Figure 6 shows the overview of our model architecture.

For the autoregressive layers, we use 9 MLPs with hidden layers (128, 256,
512, 1024). For baselines, we keep the same architecture through h and use
di↵erent sized MLPs depending on the box parameterization. We train using
Adam with learning rate 1e-5 with a batch size of 24 scenes per step with varying
number of objects per scene. We train for 10000 steps or until convergence.

A.2 Autoregressive 3D Object Detection

For Autoregressive FCAF3D, we add 7 autoregressive MLPs with hidden di-
mensions (128, 256, 512). All other parameters of FCAF3D are the same and
we train the same hyperparameters as the released code for 30 epochs. For the
baseline FCAF3D, we trained the author-released model for 30 epochs on 8 gpus.
We found that the benchmarked numbers for AP0.25 and AP0.50 were slightly
lower than the reported ones in the original paper, so in our table, we use the
reported average AP across trials from the original paper. APall was calcu-
lated in a similar way as in MS-COCO by averaging AP for iou thresholds over
0.05, 0.10, 0.15, ..., 0.95.

B Quantile Box

B.1 Proof of Quantile-Confidence Box

Proof Sketch: Let P (b) be a distribution over an ordered set of boxes where
for any two distinct boxes b1, b2 in the sample space, one must be contained in
the other, b1 ⇢ b2 or b2 ⇢ b1. We’ll show that a quantile box bq is a confidence
box with p = 1 � q by 1) constructing a confidence box bp for any given q, 2)
showing that any x 2 bp must have O(x) > q, and 3) therefore bp ✓ Q(q) ✓ bq
so the quantile box is a confidence box.

1) Confidence Box: For any p = 1�q, we’ll show how to construct a confidence
box bp. Using the ordered object distribution property of P (b), we can define
ordering as containment b1 < b2 ⌘ b1 ⇢ b2. This ordering defines an inverse cdf:

F�1(p) = inf{x : P (b  x) � p} (8)

Let bp = F�1(1� q) be the inverse cdf of p; by definition bp is a confidence box
with confidence p since P (b  bp) = P (b ✓ bp) � p
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2) Occupancy of bp: We’ll show that any x 2 bp satisfies O(x) > 1� p. First
we’ll prove that that P (b � bp) > 1�p. Let b0 = inf{b : b < bp}, the smallest box
that is strictly contained in bp. (If no such b0 exists, then bp must be the smallest
box in the distribution order such that P (b � bp) = 1 and P (b � bp) > 1� p for
p 6= 0)

Since bp is the inverse cdf of p, we know that P (b  b0) < p, otherwise b0
would be the inverse cdf of p (i.e. b0 = bp a contradiction). It follows that

P (b � bp) = P (b > b0) (9)

= 1� P (b  b0) (10)

> 1� p (11)

Now consider any point x 2 bp:

O(x) = P (x 2 b) (12)

=

Z

b
{x 2 b}p(b)db (13)

�
Z

b�bp

{x 2 b}p(b)db (14)

=

Z

b�bp

p(b)db (15)

= P (b � bp) (16)

> 1� p (17)

Where (14) follows from the nonegativity of {x 2 b}p(b). (15) follows from
x 2 bp, bp ✓ b which implies x 2 b.

3) Quantile-Confidence Box: Since any x 2 bp satisfies O(x) > 1 � p, it
follows that bp ✓ Q(1 � p), where Q(q) = {x : O(x) > q} is the occupancy
quantile with quantile q. The quantile box by construction must contain the
occupancy quantile Q(q) ✓ bq, therefore we have bp ✓ Q(1� p) ✓ bq, and

P (b ✓ bq) � P (b ✓ bp) (18)

� p (19)

So bq is a confidence box with confidence requirement p.

B.2 Quantile Box Algorithm

We propose a fast quantile box Algorithm 1 that runs in polynomial time and is
easily batchable on GPU. We use a finite sample of k boxes to approximate the
occupancy and a sample of km points to approximate the occupancy quantile
Q(q). To find the minimum volume box, we assume that one of the sampled box
rotations will be close to the optimal quantile box rotation. We take the sampled
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Algorithm 1: Quantile Box Algorithm

Given: quantile q, box distribution P (b|h), numbers of box samples k,
number of point samples m

Sample b
(1)

, ..., b
(k) ⇠ P (b|h) boxes

For each b
(i), sample m random points within b

(i), adding all points to a set T
For all x 2 T , estimate O(x) = 1

k

Pk
i {x 2 b

(i)}
Construct the occupancy quantile Q(q) = {x 2 T : O(x) > q}
for b

(1)
, ..., b

(k) do
Let Ri be the rotation of b(i)

Compute the volume of the Q(q) bounding box under Ri,
vi =

Q
a2x,y,z(maxx2Q(q)(R

�1
i x)a �minx2Q(q)(R

�1
i x)a)

Find the minimum volume box i
⇤ = argmini vi

Let sa = maxx2Q(q)(R
�1
i⇤ x)a, ta = minx2Q(q)(R

�1
i⇤ x)a

Return box b = (d, c, Ri⇤) with dimensions d = (tx � sx, ty � sy, tz � sz) and
center c = Ri⇤(sx + dx/2, sy + dy/2, sz + dz/2)

rotations and calculate the rotation-axis-aligned bounding box volume for the
occupancy quantile. The minimum volume rotation is selected for the quantile
box and corresponding dimension/center calculated accordingly.

Empirically we find that k = 64, m = 43 provides a good trade-o↵ of variance
and inference time. We can e�ciently batch all operations on GPU, and find that
quantile box inference for 15 objects takes no more than 10ms on a NVIDIA
1080TI.

C Dataset

Fig. 7: Examples of scenes from our dataset
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Our dataset consists of almost 7000 simulated scenes of common objects in
bins. See Figure 7 for examples. Each scene consists of the following data:

– RGB image of shape (H, W, 3)
– Depth map of shape (H, W)
– Intrinsic Matrix of the camera (3, 3)
– Normals Map of shape (H, W, 3)
– Instance Masks of shape (N, H, W) where N is the number of objects
– Amodal Instance masks of shape (N, H, W) which includes the occluded

regions of the object
– 3D Bounding Box of each object (N, 9) as determined by dimensions,

center, and rotation.

D Visualizations

In this section, we show various qualitative comparisons and visualization of our
method.

Fig. 8: Visualization of our model predictions on objects with rotational sym-
metry. The blue boxes show various samples from our model. The orange point
cloud is the occupancy quantile. The white box is the quantile box.
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Fig. 9: Visualization of our dimension conditioning method. The model is able
to leverage the conditioning information to accurately predict the correct pose
& dimension for each object’s 3D bounding box. The prediction is shown in
red-blue-green and the ground truth in turquoise-yellow-pink. Left: image of the
scene. Middle: vanilla beam search. Right: beam search with dimension condi-
tioning.

Fig. 10: Visualization of bounding box samples from our autoregressive model
on a rotationally symmetric water bottle. Our model is able to sample di↵erent
modes for symmetric objects whereas a deterministic model would only be able
to predict a single mode.
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Fig. 11: Visualization of bounding box predictions with di↵erent quantiles. We
can see that lower quantiles lead to larger boxes in the direction of uncertainty.
Top: image of the scene. Left: quantile 0.1 Middle: quantile 0.3. Right: quantile
0.5.
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