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Abstract. Although deep-learning based methods for monocular pedes-
trian detection have made great progress, they are still vulnerable to
heavy occlusions. Using multi-view information fusion is a potential so-
lution but has limited applications, due to the lack of annotated training
samples in existing multi-view datasets, which increases the risk of over-
fitting. To address this problem, a data augmentation method is proposed
to randomly generate 3D cylinder occlusions, on the ground plane, which
are of the average size of pedestrians and projected to multiple views,
to relieve the impact of overfitting in the training. Moreover, the feature
map of each view is projected to multiple parallel planes at different
heights, by using homographies, which allows the CNNs to fully utilize
the features across the height of each pedestrian to infer the locations
of pedestrians on the ground plane. The proposed 3DROM method has
a greatly improved performance in comparison with the state-of-the-art
deep-learning based methods for multi-view pedestrian detection. Code
is available at https://github.com/xjtlu-cvlab/3DROM.

Keywords: Multi-view detection, Deep learning, Data augmentation,
Perspective transformations

1 Introduction

Pedestrian detection plays an important role in the fields of tracking, person
re-identification and crowd counting. In recent years, deep-learning based object
detection methods have made significant progress in pedestrian detection. How-
ever, these deep monocular methods are not robust enough to detect heavily
occluded pedestrians or localise partially occluded pedestrians on the ground.
The solution to this problem lies in multi-view pedestrian detection. Compared
with single-view pedestrian detection, multi-view methods can detect heavily
occluded pedestrians more effectively and accurately [9].

Deep-learning based multi-camera detection methods need to be trained on
sufficient annotated samples to achieve the desired performance. However, the

https://github.com/xjtlu-cvlab/3DROM
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Fig. 1. The structure of 3DROM. h1, h2, . . . , hM represent the multi-layer projections
at different heights.

limited ground truth data available in existing multi-view video datasets makes
it difficult for the network to achieve the best performance in training, which
limits deep learning methods from being widely used in multi-view pedestrian
detection. The reason behind this is that the annotation of a multi-view pedes-
trian dataset is a tedious and time-consuming process. For example, with the
help of an annotation tool specifically designed for multi-view datasets, it took a
trained annotator an average of 10 minutes to annotate one frame with 7 views
for the WILDTRACK dataset [3][6]. On the other hand, although monocular
data augmentation methods, such as flipping, random cropping and Random
Erasing [28], can relieve overfitting and improve the robustness of the networks
to occlusion, these methods violate the homographic constraint among multiple
views and cannot be used for multi-view pedestrian detection methods.

In this paper, on the basis of the MVDet framework [12], a data augmen-
tation method is proposed to address this problem, in which occlusion boxes
are randomly but consistently added to multiple camera views in the training.
In this method, the ground-plane area of interest (AOI) is discretized into a
grid of locations; 3D cylinders, of the average size of pedestrians, are placed at
randomly selected locations on the ground plane and projected into each of the
multiple camera views as filled rectangles. It reduces the risk of overfitting in
the training and improves the robustness of pedestrian detection with heavy oc-
clusions. In addition, the feature maps are projected to multiple planes parallel
to the ground plane and at different heights. The multi-layer projection allows
the different features (feet, torso and head) of each pedestrian to be projected
to the same location in the top view but at different heights. This allows the
features across the height of that pedestrian to be fully utilised in comparison
with the ground-plane feature projection in MVDet. This proposed algorithm is
referred to as 3DROM. A schematic diagram of the system architecture is shown
in Fig. 1.

The contributions of this paper are twofold: (1) A data augmentation method
is proposed for deep multi-view pedestrian detection, in which 3D random oc-
clusions are generated and back-projected to multiple camera views. It can be
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used to prevent overfitting and improve the detection performance with a lim-
ited number of multi-view training samples. To the best of our knowledge, this
method is used for deep multi-view pedestrian detection for the first time. (2)
A multi-layer projection method for the single-view feature maps is used to
fully utilize the pedestrians’ features across a range of heights. The locations of
pedestrians can be inferred from the multi-height features, rather than only the
ground-plane features, of the pedestrians.

2 Related Work

2.1 Multi-view Pedestrian Detection

A recent survey on multi-view pedestrian detection can be found in [18]. The
state-of-the-art methods in this field can be categorised into top-down approach
and bottom-up approach. The top-down approach divides the ground plane into
a grid. Each location in this grid is thought of as the location of a potential pedes-
trian and is back-projected to individual views for finding the optimal match
between foregrounds and a generative model. The bottom-up approach projects
the foregrounds from the individual views to a reference view and analyses the
overlaid foreground projections to determine the locations of pedestrians.

Top-Down Approach Fleuret et al. [9] estimated a probabilistic occupancy
map through a generative model that represents each pedestrian as a filled rect-
angle of the average size of pedestrians. The occupancy probability was up-
dated iteratively for finding the locations of the rectangles which cover more
foreground pixels in all the views. On the basis of this point of view, Alahi et
al. [4] formulated multi-view pedestrian detection as a linear inverse problem;
Peng et al. [17] modelled pedestrians and their occlusion relationships by using
a multi-view Bayesian network; Yan et al. [25] used a non-iterative logic min-
imization method to reduce false-positive detections. Chavdarova and Fleuret
[7] proposed an end-to-end multi-view pedestrian detection network. They back-
projected each ground-plane location to individual views and created a rectangle
box at the corresponding positions. A CNN was used to extract features within
these rectangles and infer the locations of pedestrians by using Multi-Layer Per-
ception. Baqué et al. [5] proposed a method which combines CNNs and a Condi-
tional Random Field. The CNN in the discriminative model extracts pedestrian
features from individual views and uses Gaussian Mixture networks to classify
the body parts as pedestrian features. Meanwhile, a generative model is used
to model the occlusion relationships among pedestrians. The locations where
the discriminative model fits the generative model well are thought of as the
locations of pedestrians.

Bottom-Up Approach Khan and Shah [15][14] projected the foreground
likelihood maps of individual views to a reference view using multi-plane homo-
graphies. Areas with heavily overlaid foregrounds are thought of as the locations
of pedestrians. However, the foreground projections of different pedestrians may
overlap, which leads to false positive detections. Eshel and Moses [8] projected
the individual views to the head plane and detected pedestrians at the locations
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where the intensities projected from different views are pixelwise correlated. Ge
and Collins [10] modelled each pedestrian as a cylinder and used Gibbs sampling
to find the locations of pedestrians. Utasi and Benedek [22] also used cylinders
in the 3D space to model the foreground silhouettes, which was enhanced by
pixel-level leg and head features, and determined the pedestrians’ locations by
using a 3D Bayesian Marked Point Process model. Xu et al. [24] detected pedes-
trians in individual views using Faster RCNN [19] and projected the foot points
of the bounding boxes of the pedestrians to the ground plane. They clustered
the projected foot points to determine the locations of pedestrians in the top
view. Hou et al. proposed MVDet [12], an anchor-free end-to-end pedestrian
detection network. This system uses ResNet18 [11] as the backbone to extract
feature maps from individual views. The feature maps from multiple views are
projected to the ground plane and concatenated there. Then a ground-plane
classifier predicts the locations of pedestrians. This feature projection method
is similar to that proposed by Zhang and Chan [26][27] for multi-camera crowd
counting. On the basis of the MVDet framework, Song et al. [21] proposed the
SHOT algorithm which projects the feature map of each individual view to mul-
tiple parallel planes. The multi-plane feature maps projected from the same view
were weighted and summed into one feature map. Such feature maps from the
multiple views are concatenated to predict a pedestrian occupancy map on the
ground. When the multi-height feature maps were summed into a single feature
map, it causes an information loss; whilst such multi-height feature maps are
concatenated with no information loss in the 3DROM algorithm, which leads to
an improved performance.

2.2 Data Augmentation

In deep-learning based methods, data augmentation methods are widely used to
increase the number of training samples and improve the robustness by applying
various transformations to existing samples [11][20][16]. One of these methods
is to directly apply an image processing operation, such as flipping, folding, ro-
tating, adding noise and Random Erasing, to existing samples. Random Erasing
[28] overwrites each pixel in a randomly selected region of an image with a ran-
dom colour. This method can be applied to the training of deep-learning based
algorithms for image classification, person re-identification and object detection
tasks. It improves the robustness of an algorithm to occlusion and reduces the
risk of overfitting the samples in the training. In addition, Wang et al. [23] pro-
posed a method for generating samples with occlusion and deformation using
adversarial networks. These generated samples can improve the accuracy and
robustness of Faster R-CNN in the detection of deformed or occluded objects.
However, both methods are currently used in monocular detection only and
cannot work well for deep end-to-end multi-view pedestrian detection without
considering the geometrical relationship among multiple views.
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Fig. 2. A schematic diagram of the 3D Random Occlusion method.

3 Methodology

The motivation of our work is to address the performance improvement on deep
multi-view pedestrian detection networks with a limited number of training sam-
ples. Robust pedestrian detection requires efficient network training with limited
samples and an effective fusion method for multi-view features. We focus on re-
ducing the risk of overfitting during the training and improving the utilization
of the feature maps across multiple views to improve the detection performance
in the MVDet framework.

3.1 Notations and Homography Estimation

Let C be the number of the cameras in a multi-view pedestrian dataset. The size
of input image Ic, from camera view c (c ∈ [1, C]), is Hc×W c. (uc, vc) represents
an image coordinate in view c. The size of the feature map Fc, extracted from
camera view c, is H̃c × W̃ c. Ht ×W t is the size of the top view image. Assume
the area of interest (AOI) on the ground plane is discretized into a grid of G
locations. Let Xi be the coordinate of the i-th location (i ∈ [1, G]). Let S denote
the set of the index numbers for the grid locations that have been selected to
place the 3D occlusions.

Planar homography is the relationship between a pair of captured images of
the same plane. Let u and X be the homogeneous image coordinates of the same
point on a plane in camera view c and the top view. They are associated by the
homography matrix Hc,t for that plane as follow:

X ∼= Hc,tu. (1)

A 3×4 projection matrix can be calculated by using the intrinsic and extrinsic
parameters of camera c: M = [m1,m2,m3,m4]. The homography matrix, from
the top view t to camera view c, for the ground plane is:

Ht,c
0 = (Hc,t

0 )−1 = [m1,m2,m4]. (2)

The homography matrix, from the top view t to camera view c, for the plane
parallel to the ground plane and at a height of h can be written as:

Ht,c
h = [m1,m2, hm3 +m4] = Ht,c

0 + [0 | hm3], (3)

where [0] is a 3× 2 zero matrix.
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3.2 3D Random Occlusion

Compared with single-view detection, multi-view pedestrian detection requires
the use of geometric constraints to establish the correspondence among multi-
ple views. Monocular data augmentation methods, such as flipping, cropping,
rotation and Random Erasing, may affect the performance of multi-view detec-
tion algorithms, since they violate the homography constraint. Therefore, Algo-
rithm 1 was developed as a 3D data augmentation method for the training of
multi-view pedestrian detection algorithms.

The 3D Random Occlusion algorithm is based on the input camera views in
the training, as shown in Algorithm 1. The process of 3D Random Occlusion
is illustrated in Fig. 2. The ground plane is discretized into a grid of locations.
The i-th location (i ∈ [1, G]) in the top view is associated with its corresponding
location (uc

i , v
c
i ) in camera view c (c ∈ [1, C]) through the ground-plane homog-

raphy Ht,c
0 . A 3D cylinder placed at the ith location on the ground plane is

back-projected to a filled rectangle rci sitting at location (uc
i , v

c
i ) in camera view

c. The rectangle is designed to have the average height Hc
i and width W c

i of
the pedestrians standing at the ith location. Hc

i is calculated as follows: the i-th
location in the top view is projected back to camera view c using the homo-
graphies, Ht,c

0 and Ht,c
ha
, for the planes at the heights of 0 cm and 180 cm; The

vertical distance between the two projected points in view c is Hc
i ; the average

width W c
i = αHc

i , where α is a constant ratio.
The inputs of Algorithm 1 are the images I = {I1, I2, · · · , Ic} from multiple

camera views, the number of occlusions n per frame and the occlusion probability
p of each frame to be selected to add 3D random occlusions. The n locations
in the top view are selected to generate filled rectangles at the corresponding
locations in all the views. To ensure that the occlusions are not too close to each
other, the ground distance between each selected location and other cylinder
occlusions must be greater than a threshold d = 1 meter. The selected locations
are projected to all the views, by using homographies Ht,c

0 and Ht,c
ha
, to generate

the filled rectangles with a constant pixel value Ω.

3.3 The Multi-Layer Projection of Feature Maps

Within the MVDet framework, the feature map Fc of view c is projected to the
ground plane by using a homography transformation. The feature map in the
output of the backbone network does not have the same size as the input image
Ic of view c. However, it is resized to the same size afterwards. Therefore, the
projected feature map F c,t

h from view c to the top view can be written as:

F c,t
h = Hc,t

h (Fc), (4)

for a plane parallel to the ground and at a height of h.
The feature map on the ground plane is compromised when pedestrians’ feet

are occluded or their feet are off the ground. This may affect the model to infer
the locations of the pedestrians. In [14], foreground likelihood maps are projected
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to multiple planes parallel to the ground plane and at different heights, which
can significantly reduce detection errors. The foreground likelihood map, which
indicates how likely a pixel in an image belongs to foregrounds, is similar to
the feature map in MVDet. We assume that each pedestrian occupies a specific
location in the top view. The multi-layer projection of the feature maps of multi-
ple views can provide the comprehensive feature information for any pedestrian
standing at that location. Compared with the ground-plane projection used in
MVDet, the top view CNN is able to infer the locations of pedestrians from a
wider range of features.

Algorithm 1: 3D Random Occlusion at one frame

Input : Input image I = {I1, I2, · · · , Ic};
The number of occlusions n per frame;
Occlusion probability p;
Output: Occluded image I∗ = {I∗1 , I∗2 , · · · , I∗c }.

1 S = ϕ;
2 I∗ = I;
3 p1 = Rand(0, 1);
4 if p1 > p then
5 return I∗.

6 else
7 i = 0;
8 while i < n do
9 k = Rand(1, G);

10 if ∀l ∈ S, ∥Xk −Xl∥2 < d then
11 goto 9;

12 else
13 for camera view c = 1 to C do

14 (Ht,c
0 Xk,H

t,c
ha
Xk) ⇒ (uc

k, v
c
k, H

c
k,W

c
k ) ;

15 for u = uc
k −W c

k/2 to uc
k +W c

k/2 do
16 for v = vck to vck +Hc

k do
17 I∗c (u, v) = Ω;

18 S = S ∪ {k};
19 i = i+ 1

20 return I∗;

The multi-layer feature projection is illustrated in Fig. 3(a) and (b). The
projected features (or silhouette) of a pedestrian is like the shadow of that pedes-
trian. When the features of a pedestrian are projected from multiple views to a
specific plane, they intersect at the body parts of that pedestrian at the height
of that plane. By using multi-plane feature projection, the features across the
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 3. The multi-layer projections: (a) from a single camera view, (b) from two camera
views, and an example of the WILDTRACK dataset, where (c) is the original image
of a camera view, (d) is its feature map, and (e)-(g) are the projected feature maps at
the heights of 0cm, 90cm and 180cm, respectively.

height of each pedestrian can be utilized. An example of the multi-layer feature
projection is shown in Fig. 3(c)-(g).

The projected feature maps and the ground-plane coordinate map are con-
catenated for the inference of pedestrian locations. The concatenated feature
maps are denoted as:

F = {F c,t
h , c ∈ [1, C], h ∈ {h1, h2, . . . , hM}}. (5)

where M is the number of the parallel planes used for feature map projection.
Since the feature maps are projected to the top view with geometric defor-

mation, a layer of DCNv2 [29] is added to the top view CNN to handle the
geometric deformation in the projected feature maps. The DCNv2 layer is a
complementary component used with the multi-layer projection in 3DROM.

3.4 Loss Function

The loss function is the same with that of the MVDet [12]. The network output
is an occupancy probability map g̃. A Gaussian kernel f(·) is used to blur the
ground-truth pedestrian occupancy map g. The loss of the top view Lt is the
Euclidean distance between them:

Lt = ∥g̃ − f(g)∥2. (6)
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The loss function of the single view detection in camera view c is:

Lc
single = ∥s̃chead − f(schead)∥2 + ∥s̃cfoot − f(scfoot)∥2, (7)

where s̃chead and s̃cfoot are the single-view likelihood maps for heads and feet,
respectively; schead and scfoot are the ground-truth location maps for heads and
feet, respectively.

The overall loss for training 3DROM combines the single view loss Lsingle

and the top view loss Lt. It can be written as:

Loverall = Lt +
1

C

C∑
c=1

Lc
single. (8)

4 Experimental Results

4.1 Experiment Setup

The proposed method has been evaluated on the EPFL WILDTRACK [3][6],
MultiviewX [1][12] and EPFL Terrace datasets [2]. These three public video
datasets have been widely used to evaluate multi-view pedestrian detection al-
gorithms. Tab. 1 shows the detailed information of these datasets.

Table 1. Datasets used for performance evaluation.

Dataset
Input
Resolusion

Feature
Resolusion

Training
Frames

Testing
Frames

AOI
(m×m)

Top View
Grid Size

Number of 3D
Occlusions

WILDTRACK 1920× 1080 270× 480 360 40 12× 36 120× 360 25
MultiviewX 1920× 1080 270× 480 360 40 16× 25 160× 250 25
Terrace 360× 288 360× 288 300 200 5.3× 5 220× 150 20

The proposed 3DROMmethod is based on the MVDet framework. Therefore,
most of the network parameters were set to the same values as those in MVDet.
ResNet-18 was used as the backbone network without using a pre-trained model.
The kernel of DCNv2 used in location regression in the top view was set to a size
of 2 × 2. The setup of the input image size, the feature map size, the top view
grid size and the number of 3D random occlusions for each dataset are shown in
Tab. 1. The 3D random occlusions were added to each frame before the images
were input to the backbone in the training.

For the training and testing on all the three datasets, the number of pro-
jection layers was set to M = 5. The feature maps were projected to 5 parallel
planes at the heights of 0 cm, 15 cm, 30 cm, 60 cm and 90 cm, respectively.
The batch size was set to 1. The occlusion probability p was set to 100%. All
experiments were carried out using one RTX-3090 GPU.
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4.2 Qualitative Performance Evaluation

The performance of 3DROM on three datasets is demonstrated in the qualitative
evaluation. Fig. 4 shows the detection results at frame 3225 of the EPFL Terrace
dataset with four camera views. The red rectangle on the ground shows the
AOI region. The pedestrians outside the AOI were ignored in the detection and
evaluation. The camera positions labelled in the top view are approximate ones.
The colour points in the top view represent the detected pedestrians. Meanwhile,
the colour of each point in the top view is consistent with the colour of the
bounding boxes of the same pedestrian in all the camera views. As can be seen
in Fig. 4, the pedestrian in the pink bounding box is completely occluded in C0,
partially occluded in C1 and C2, and out of the field of view in C3. The 3DROM
method can still infer the location of this pedestrian using limited pedestrian
features, which demonstrates its strong detection capability in heavy occlusion.

Fig. 4. The detection results at frame 3225 of the EPFL Terrace dataset: from left to
right, camera views C0, C1, C2, C3 and the top view. Each detected pedestrian is rep-
resented by a distinguished colour consistent across different views. The red rectangle
on the ground is the AOI. The field of view of each camera is shown in the top view.

Fig. 5 shows the detection results at frame 1960 of the EPFL WILDTRACK
dataset with seven camera views. The pedestrians stand in a group at the centre
of the square and are occluded by each other. The 3DROM algorithm combines
the feature information in the multi-view and multi-layer feature projections.
These pedestrians are detected correctly by 3DROM.

Fig. 6 shows the detection results at frame 399 of the MultiviewX dataset
with six camera views. A large number of pedestrians are standing very close
to the border of the AOI in the top view with limited feature information. The
use of multi-layer feature projection and 3D Random Occlusion in the training
allows the 3DROM algorithm to detect such pedestrians accurately.

4.3 Quantitative Evaluation

The proposed method was evaluated using performance metrics Multiple Ob-
ject Detection Accuracy (MODA) [13], Multiple Object Detection Precision
(MODP) [13], Precision (Prec.) and Recall, which are widely used for multi-view
pedestrian detection. The Hungarian algorithm was used to match the detected
pedestrians and ground-truth pedestrians. A distance threshold r = 0.5m on the
ground plane was used in the matching.
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Fig. 5. The detection results at frame 1960 of the EPFL WILDTRACK dataset: (top
row) from left to right, camera views C1, C2, C3 and C4; (bottom row) camera views
C5, C6, C7 and the top view.

Fig. 6. The detection results at frame 399 on the MultiviewX dataset: (top row) from
left to right, camera views C1, C2 and C3; (bottom row) camera views C4, C5, C6 and
the top view.

The proposed method was compared with several state-of-the-art deep-learning
based methods such as RCNN-2D/3D [24], POM-CNN [9], DeepMCD [7], Deep
Occlusion [5], MVDet [12] and SHOT [21], as shown in Tab. 2 in which ”Eval.’
indicates who made the evaluation. The MODA of the 3DROM method is in-
creased to 93.5%, 95.0%, and 94.8% in the evaluation on the WILDTRACK,
MultiviewX, and Terrace datasets, respectively. Compared with the baseline al-
gorithm MVDet that uses single-layer projections, the 3DROM increases the
MODA by 5.3%, 11.1%, and 7.6%, respectively. Compared with the algorithm
SHOT that partly uses multi-layer projections, the 3DROM increases the MODA
by 3.3%, 6.7% and 7.7%, respectively. Meanwhile, the 3DROM achieves the best
performance in almost all the four performance metrics.

Ablation Study. In order to evaluate the contributions of each component
in our model, an ablation study was carried out. The results are shown in Tab. 3,
in which M denotes the multi-layer projection and R represents 3D Random
Occlusion. As seen from the result, whichever component is added on the baseline
MVDet, the performance can have a significant boost in all three datasets. When
both components are used in 3DROM, the models are driven to find more robust
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Table 2. Performance comparisons of deep multiview pedestrian detection.

MultiviewX Dataset

Methods Eval. MODA MODP Prec. Recall

RCNN-2D/3D [24] [12] 0.187 0.464 0.635 0.439
DeepMCD [7] [12] 0.700 0.730 0.857 0.833
Deep Occlusion [5] [12] 0.752 0.547 0.978 0.802
MVDet [12] [12] 0.839 0.796 0.968 0.867
SHOT [21] [21] 0.883 0.820 0.966 0.915
3DROM ours 0.950 0.849 0.990 0.961

EPFL WILDTRACK Dataset

RCNN-2D/3D [24] [5] 0.113 0.184 0.68 0.43
POM-CNN [5] [5] 0.232 0.305 0.75 0.55
DeepMCD [7] [5] 0.678 0.642 0.85 0.82
Deep Occlusion [5] [5] 0.741 0.538 0.95 0.80
MVDet [12] [12] 0.882 0.757 0.947 0.936
SHOT [21] [21] 0.902 0.765 0.961 0.940
3DROM ours 0.935 0.759 0.972 0.962

EPFL Terrace Dataset

RCNN-2D/3D [24] [5] -0.11 0.28 0.39 0.50
POM-CNN [5] [5] 0.58 0.46 0.80 0.78
Deep Occlusion [5] [5] 0.71 0.48 0.88 0.82
MVDet [12] ours 0.872 0.700 0.982 0.888
SHOT [21] ours 0.871 0.703 0.989 0.881
3DROM ours 0.948 0.705 0.997 0.951

Table 3. Ablation study of 3DROM.

MultiviewX Dataset WILDTRACK Dataset Terrace Dataset

Methods MODA MODP Prec. Recall MODA MODP Prec. Recall MODA MODP Prec. Recall

MVDet 0.839 0.796 0.968 0.867 0.882 0.757 0.947 0.936 0.872 0.700 0.982 0.888
MVDet+M 0.900 0.837 0.975 0.924 0.912 0.769 0.959 0.953 0.894 0.689 0.983 0.911
MVDet+R 0.898 0.830 0.986 0.912 0.923 0.768 0.964 0.959 0.915 0.709 0.994 0.920
3DROM 0.950 0.849 0.990 0.961 0.935 0.759 0.972 0.962 0.948 0.705 0.997 0.951

features across multiple views, and multi-layer projection can provide sufficient
features. These two components do not conflict but work better together.

Choice of Projection Layers. To illustrate the benefits of using five-layer
feature projections, a validation study was carried out on the Terrace dataset.
As reported in Tab. 4, when more than one layer is used in the feature map
projection, MODA increases with the number of the projection layers. The ex-
periments show that the feature projection, by using the planes below the waist
height (100 cm), leads to better results than that using the planes equidistantly
selected between 0 cm and the average pedestrian height 180 cm. This can be
interpreted as follows: as can be seen in Fig. 3(a) and (b), in comparison with the
ground-plane projection, the feature projection of a pedestrian on a higher plane
tends to move towards the underlying camera in the top view, which projects
the features, for the pedestrians who are outside of the AOI, into the AOI of the
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top view. Therefore, by using a projection plane at the pedestrians’ heights, the
features, extracted from the distant pedestrians, disturb the pedestrian detec-
tion within the AOI. The use of the projection planes below the waist is a good
trade-off between the benefits of using multiple planes and the side effects.

Table 4. Validation of the number of projection layers (with 3D Random Occlusion
applied).

Layers Heights (cm) MODA MODP Prec. Recall

1 0 0.915 0.709 0.994 0.920

2
0, 180 0.867 0.688 0.972 0.893
0, 60 0.934 0.708 0.996 0.937

3
0, 90, 180 0.892 0.700 0.973 0.918
0, 60, 90 0.936 0.710 0.997 0.938

4
0, 60, 120, 180 0.902 0.697 0.988 0.912
0, 30, 60, 90 0.943 0.712 0.996 0.946

5
0, 45, 90, 135, 180 0.901 0.682 0.966 0.934
0, 15, 30, 60, 90 0.948 0.705 0.997 0.951

Validation of 3D Random Occlusion. To investigate the role of the fre-
quency to use 3D Random Occlusion, we tried different values of the occlusion
probability p for using 3D Random Occlusion. As reported in Tab. 5, MODA
increases with p and reaches the maximum value when p = 100% in all three
datasets. We further compared the 3D Random Occlusion with the related Ran-
dom Erasing method which was applied to each camera view independently. In
this experiment, the optimal settings of Random Erasing [28] proposed by the
authors were used. In Tab. 6, The MODA decreases after 3D Random Occlusion
is replaced by Random Erasing in all three datasets. This experiment shows the
3D Random Occlusion method can simulate the effect of Random Erasing in 3D
space and is specifically designed for multi-view detection.

Fig. 7 shows the validation of the number of 3D random occlusions. When
occlusions are too few, the risk of overfitting increases in the training. On the
other hand, too many occlusions will cover most pedestrians so that the network
cannot learn effective features well. The most appropriate number of occlusions

Table 5. Validation of the occlusion probability (with 5-layer projection applied).

MultiviewX Dataset WILDTRACK Dataset Terrace Dataset

p MODA MODP Prec. Recall MODA MODP Prec. Recall MODA MODP Prec. Recall

0% 0.900 0.837 0.975 0.924 0.882 0.757 0.947 0.936 0.894 0.689 0.983 0.911
30% 0.927 0.852 0.991 0.936 0.920 0.757 0.975 0.944 0.924 0.697 0.982 0.941
50% 0.934 0.851 0.978 0.956 0.923 0.748 0.961 0.962 0.941 0.694 0.983 0.957
70% 0.941 0.846 0.984 0.956 0.928 0.742 0.967 0.960 0.944 0.706 0.994 0.949
100% 0.950 0.849 0.990 0.961 0.935 0.759 0.972 0.962 0.948 0.705 0.997 0.951
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Table 6. A comparison of data augmentation schemes (with 5-layer projection ap-
plied).

MultiviewX Dataset WILDTRACK Dataset Terrace Dataset

Methods MODA MODP Prec. Recall MODA MODP Prec. Recall MODA MODP Prec. Recall

w/o Augmentation 0.900 0.837 0.975 0.924 0.882 0.757 0.947 0.936 0.894 0.689 0.983 0.911
Random Erasing 0.927 0.847 0.983 0.943 0.920 0.766 0.953 0.967 0.923 0.692 0.980 0.943
3DROM 0.950 0.849 0.990 0.961 0.935 0.759 0.972 0.962 0.948 0.705 0.997 0.951

used in training correlates with the average number of pedestrians per frame and
the density of pedestrians. Since the WILDTRACK and MultiviewX datasets
contain more pedestrians than the Terrace, this number is greater.

Fig. 7. Parameter validation on the number of occlusions.

5 Conclusions and Future Work

In this paper, we have proposed 3DROM for deep multiview pedestrian detec-
tion, which is based on the MVDet framework. 3D Random Occlusion provides
extra training samples to the multi-view pedestrian detection network to improve
the robustness in occlusion and prevent overfitting. In addition, by learning the
multi-layer feature information, 3DROM can fully utilize the limited feature in-
formation from each camera view and improve pedestrian detection performance.
The greatly improved performance of the 3DROM has been demonstrated in
comparison with state-of-the-art methods. Future work is to find a more efficient
way to fuse large-scale features and improve the across-dataset generalizability
in deep-learning based multi-view pedestrian detection.
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