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Appendix

The appendix provides additional examples, results and methodological details.
For remaining questions, please refer to the code at github.com/google-research/
scenic/tree/main/scenic/projects/owl_vit.

A1.1 Qualitative Examples

Fig.A1. Text conditioning examples. Prompts: "an image of a {}", where {}
is replaced with one of bookshelf, desk lamp, computer keyboard, binder,

pc computer, computer mouse, computer monitor, chair, drawers, drinking

glass, ipod, pink book, yellow book, curtains, red apple, banana, green

apple, orange, grapefruit, potato, for sale sign, car wheel, car door,

car mirror, gas tank, frog, head lights, license plate, door handle, tail

lights.
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Fig.A2. Image conditioning examples. The center column shows the query patches
and the outer columns show the detections along with the similarity score.

https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
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A1.2 Detection Datasets

Five datasets with object detection annotations were used for fine-tuning and
evaluation in this work. Table A1 shows relevant statistics for each of these
datasets:

MS-COCO (COCO) [27]: The Microsoft Common Objects in Context dataset
is a medium-scale object detection dataset. It has about 900k bounding box an-
notations for 80 object categories, with about 7.3 annotations per image. It is
one of the most used object detection datasets, and its images are often used
within other datasets (including VG and LVIS). This work uses the 2017 train,
validation and test splits.

Visual Genome (VG) [23] contains dense annotations for objects, regions,
object attributes, and their relationships within each image. VG is based on
COCO images, which are re-annotated with free-text annotations for an average
of 35 objects per image. All entities are canonicalized to WordNet synsets. We
only use object annotations from this dataset, and do not train models using the
attribute, relationship or region annotations.

Objects 365 (O365) [35] is a large-scale object detection dataset with 365
object categories. The version we use has over 10M bounding boxes with about
15.8 object annotations per image.

LVIS [13]: The Large Vocabulary Instance Segmentation dataset has over
a thousand object categories, following a long-tail distribution with some cate-
gories having only a few examples. Similarly to VG, LVIS uses the same images
as in COCO, re-annotated with a larger number of object categories. In contrast
to COCO and O365, LVIS is a federated dataset, which means that only a subset
of categories is annotated in each image. Annotations therefore include positive
and negative object labels for objects that are present and categories that are
not present, respectively. In addition, LVIS categories are not pairwise disjoint,
such that the same object can belong to several categories.

OpenImages V4 (OI) [24] is currently the largest public object detection
dataset with about 14.6 bounding box annotations (about 8 annotations per
image). Like LVIS, it is a federated dataset.

Table A1. Statistics of object detection datasets used in this work.

Name Train Val Test Categories

MS-COCO 2017 [27] 118k 5k 40.1k 80
Visual Genome [23] 84.5k 21.6k - -
Objects 365 [35] 608.5k 30k - 365

LVIS [13] 100k 19.8k 19.8k 1203
OpenImages V4 [24] 1.7M 41.6k 125k 601
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De-duplication Our detection models are typically fine-tuned on a combina-
tion of OpenImages V4 (OI) and Visual Genome (VG) datasets and evaluated
on MS-COCO 2017 (COCO) and LVIS. In several experiments our models are
additionally trained on Objects 365 (O365). We never train on COCO and LVIS
datasets, but the public versions of our training datasets contain some of the
same images as the COCO and LVIS validation sets. To ensure that our mod-
els see no validation images during training, we filter out images from OI, VG
and O365 train splits that also appear in LVIS and COCO validation and tests
splits following a procedure identical to [21]. De-duplication statistics are given
in Table A2.

Table A2. Train dataset de-duplication statistics. ‘Examples’ refers to images and
‘instances’ refers to bounding boxes.

Original Duplicates Remaining

Name Examples Instances Examples Instances Examples Instances

OpenImages V4 1.7M 14.6M 948 6.4k 1.7M 14.6M
Visual Genome 86.5k 2M 6.7k 156k 79.8K 1.9M
Objects 365 608.6k 9.2M 147 2.4k 608.5k 9.2M

A1.3 Hyper-parameters

Table A3 provides an exhaustive overview of the hyper-parameter settings used
for our main experiments. Beyond this, we

– used cosine learning rate decay;
– used focal loss with α = 0.3 and γ = 2.0;
– set equal weights for the bounding box, gIoU and classification losses [6];
– used the Adam optimizer with β1 = 0.9, β2 = 0.999;
– used per-example global norm gradient clipping (see Section A1.9);
– limited the text encoder input length to 16 tokens for both LIT and CLIP-

based models.

CLIP-based models. The visual encoder of the publicly available CLIP models
provides, in addition to the image embedding features, a class token. In order
to evaluate whether the information in the class token is useful for detection
fine-tuning, we explored to either drop this token, or to merge it into other
feature map tokens by multiplying it with them. We found that multiplying the
class token with the feature map tokens, followed by layer norm, worked best for
the majority of architectures, so we use this approach throughout. Other hyper-
parameters used in the fine-tuning of CLIP models are shown in Table A3.
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Table A3. List of hyperparameters used for all models shown in the paper. Asterisks
(∗) indicate parameters varied in sweeps. MAP and GAP indicate the use of multihead
attention pooling and global average pooling for image-level representation aggregation.
Where two numbers are given for the droplayer rate, the first is for the image encoder
and the second for the text encoder.
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Model Image-level pre-training Detection fine-tuning

CLIP-based OWL-ViT models from Table 1:
B/32 140k 256 5× 10−5 0 .2/.1 768 O365, VG .8/.2 .4/.3/.3 yes
B/16 140k 256 5× 10−5 0 .2/.1 768 O365, VG .8/.2 .4/.3/.3 yes
L/14 70k 256 2× 10−5 0 .2/.1 840 O365, VG .8/.2 .4/.3/.3 yes

LiT-based OWL-ViT models from Table 1:
B/32 16B 16k 3× 10−4 1× 10−5 224 MAP 140k 256 2× 10−4 0 0.0 768 O365, VG .8/.2 .4/.3/.3 yes
B/16 8B 16k 3× 10−4 1× 10−5 224 MAP 140k 256 2× 10−4 0 0.0 768 O365, VG .8/.2 .4/.3/.3 yes
R26+B/32 16B 16k 3× 10−4 1× 10−5 288 MAP 140k 256 2× 10−4 0 0.0 768 O365, VG .8/.2 .4/.3/.3 yes
L/16 16B 16k 3× 10−4 1× 10−5 224 MAP 70k 256 5× 10−5 0 0.0 768 O365, VG .8/.2 .4/.3/.3 yes
H/14 12B 16k 3× 10−4 1× 10−5 224 MAP 70k 256 5× 10−5 0 .1/.0 840 O365, VG .8/.2 .4/.3/.3 yes

Model used for one-shot detection (Table 2):
R50+H/32 24B 12k 7× 10−4 1× 10−5 224 GAP 28k 256 2× 10−4 0 0.1 960 OI, O365, VG .4/.4/.2 .5/.33/.17 yes

Baseline models for the ablation study (Tables 3 and A5):
B/32 2B 16k 3× 10−4 1× 10−5 224 MAP 70k 256 2× 10−4 0 0.0 768 OI, VG .7/.3 .5/.33/.17 yes
R26+B/32 8B 16k 3× 10−4 1× 10−5 288 MAP 70k 256 2× 10−4 0 0.0 768 OI, VG .7/.3 .5/.33/.17 yes

Models used in the scaling study (Figures 3 and 4):
∗ ∗ 16k ∗ ∗ ∗ MAP 140k 256 ∗ 0 0.0 768 OI, VG .7/.3 .5/.33/.17 no
R50+H/32 ∗ 12k 7× 10−4 1× 10−5 224 GAP 28k 256 2× 10−4 0 0.0 960 OI, VG .7/.3 .5/.33/.17 yes

A1.4 Pre-Training Image Resolution

We investigated the effect of the image size used during image-text pre-training,
on zero-shot classification and detection performance (Figure A3). To reduce
clutter the results are shown for the ViT-B/32 architecture only, but the ob-
served trends extend to other architectures, including Hybrid Transformers. The
use of larger images during pre-training consistently benefits zero-shot classifica-
tion, but makes no significant difference for the detection performance. We thus
default to the commonly used 224 × 224 resolution for pre-training. We used
288× 288 for some of our experiments with Hybrid Transformer models.

A1.5 Random Negatives

Our models are trained on federated datasets. In such datasets, not all categories
are exhaustively annotated in every image. Instead, each image comes with a
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Fig.A3. Effect of image size used during image-level pre-training on zero-shot classi-
fication and detection performance shown for the ViT-B/32 architecture.

number of labeled bounding boxes (making up the set of positive categories),
and a list of categories that are known to be absent from the image (i.e., negative
categories). For all other categories, their presence in the image unknown. Since
the number of negative labels can be small, prior work has found it beneficial
to randomly sample “pseudo-negative” labels for each image and add them to
the annotations [47]. We follow the same approach and add randomly sampled
pseudo-negatives to the real negatives of each image until there are at least 50
negative categories. In contrast to [47], we sample categories in proportion to
their frequency in the full dataset (i.e. a weighted combination of OI, VG, and
potentially O365). We exclude categories from the sample that are among the
positives for the given image.

A1.6 Image Scale Augmentation

To improve invariance of detection models to object size, prior work found it
beneficial to use strong random jittering of the image scale during training [11].
We use a similar approach, but follow a two-stage strategy that minimizes image
padding.

First, we randomly crop each training image. The sampling procedure is
constrained to produce crops with an aspect ratio between 0.75 and 1.33, and
an area between 33% and 100% of the original image. Bounding box annotations
are retained if at least 60% of the box area is within the post-crop image area.
After cropping, images are padded to a square aspect ratio by appending gray
pixels at the bottom or right edge.

Second, we assemble multiple images into grids (“mosaics”) of varying sizes,
to further increase the range of image scales seen by the model. We randomly
sample single images, 2× 2 mosaics, and a 3× 3 mosaics, with probabilities 0.5,
0.33, and 0.17, respectively, unless otherwise noted (Figure A4). This procedure
allows us to use widely varying images scales while avoiding excessive padding
and/or the need for variable model input size during training.
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Fig.A4. Example training images. Ground-truth boxes are indicated in red. From left
to right, a single image, a 2 × 2 mosaic, and a 3 × 3 mosaic are shown. Non-square
images are padded at the bottom and right (gray color).

A1.7 One-shot (Image-Conditioned) Detection Details

Extracting Image Embeddings to Use as Queries. We are given a query
image patch Q for which we would like to detect similar patches in a new target
image, I. We first run inference on the image from which patch Q was selected,
and extract an image embedding from our model’s class head in the region of
Q. In general, our model predicts many overlapping bounding boxes, some of
which will have high overlap with Q. Each predicted bounding box bi has a cor-
responding class head feature zi. Due to our DETR-style bipartite matching loss,
our model will generally predict a single foreground embedding for the object
in Q and many background embeddings adjacent to it which should be ignored.
Since all the background embeddings are similar to each other and different from
the single foreground embedding, to find the foreground embedding, we search
for the most dissimilar class embedding within the group of class embeddings
whose corresponding box has IoU > 0.65 with Q. We score a class embedding
zi’s similarity to other class embeddings as f(zi) =

∑N−1
j=0 zi · zTj . Therefore, we

use the most dissimilar class embedding argminzif(zi) as our query feature when
running inference on I. In about 10% of the cases, there are no predicted boxes
with IoU > 0.65 with Q. In these cases we fall back to using the embedding for
the text query "an image of an object".

Image-Conditioned Evaluation Protocol. We follow the evaluation proto-
col of [16]. During evaluation, we present the model with a target image con-
taining at least one instance of a held-out MS-COCO category and a query
image patch containing the same held-out category. Both the target image and
the query patch are drawn from the validation set. We report the AP50 of the
detections in the target image. Note that unlike typical object detection, it is
assumed that there is at least one instance of the query image category within
the target image. Like prior work, we use Mask-RCNN [14] to filter out query
patches which are too small or do not show the query object clearly. During de-
tection training, we took care to hold out all categories related to any category
in the held-out split. We removed annotations for any label which matched a
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Table A4. Open-vocabulary detection performance on COCO and O365 datasets. The
results show the open-vocabulary generalization ability of our models to datasets that
were not used for training. Results for models trained on the target dataset are shown
in gray. Most of our models shown here were not trained directly on COCO or O365
(they are different from the models in Table 1). However, we did not remove COCO or
O365 object categories from the training data, so these numbers are not “zero-shot”.
For our models, we report the mean performance over three fine-tuning runs.

Method Backbone Image-level Object-level Res. APCOCO AP50COCO APO365 AP50O365

ViLD [12] ResNet50 CLIP LVIS base 1024 36.6 55.6 11.8 18.2
Reg. CLIP [45] R50-C4 CC3M COCO base ? - 50.4 - -
Reg. CLIP [45] R50x4-C4 CC3M COCO base ? - 55.7 - -
GLIP [26] Swin-T Cap4M O365, GoldG, ... ? 46.7 - - -
GLIP [26] Swin-L CC12M, SBU OI, O365, VG, ... ? 49.8 - - -
Detic [46] R50-C4 CLIP, COCO-Cap COCO base 1333 - 45.0 - -
Detic [46] Swin-B CLIP, I21K LVIS base 869 - - 21.5 -

OWL-ViT (ours) ViT-B/32 CLIP OI, VG 768 28.1 44.7 - -
OWL-ViT (ours) ViT-B/16 CLIP OI, VG 768 31.7 49.2 - -
OWL-ViT (ours) ViT-L/14 CLIP O365, VG 840 43.5 64.7 - -

OWL-ViT (ours) ViT-B/32 LiT OI, VG 768 28.0 44.4 9.4 15.2
OWL-ViT (ours) ViT-B/16 LiT OI, VG 768 30.3 47.4 10.7 17.0
OWL-ViT (ours) R26+B/32 LiT OI, VG 768 30.7 47.2 11.1 17.4
OWL-ViT (ours) ViT-L/16 LiT OI, VG 672 34.7 53.9 13.7 21.6
OWL-ViT (ours) ViT-H/14 LiT OI, VG 840 36.0 55.3 15.5 24.0
OWL-ViT (ours) ViT-H/14 LiT O365, VG 840 42.2 64.5 - -

held-out label or was a descendant of a held-out label (for example, the label
“girl” is a descendant label of “person”). Beyond this we also manually removed
any label which was similar to a held-out category. We will publish all held-out
labels with the release of our code.

A1.8 Detection results on COCO and O365

We present additional evaluation results on the COCO and O365 datasets in
Table A4. These results show the open-vocabulary generalization ability of our
approach. Although we do not train these models directly on COCO or O365
(unless otherwise noted), our training datasets contain object categories over-
lapping with COCO and O365, so these results are not “zero-shot” according
to our definition. The breadth of evaluation setups in the literature makes di-
rect comparison to existing methods difficult. We strove to note the differences
relevant for a fair comparison in Table A4.

A1.9 Extended Ablation Study

Table A5 extends the ablation results provided in Table 3 of the main text. It
uses the same training and evaluation protocol as outlined in Table 3, but goes
further in the range of settings and architectures (ViT-B/32 and ViT-R26+B/32)
considered in the study. We discuss the additional ablations below.
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Dataset ratios. In the majority of our experiments we use OI and VG datasets
for training. In the ablation study presented in the main text (Table 3), we
showed that having more training data (i.e. training on both VG and OI) im-
proves zero-shot performance. Here, we further explored the optimal ratio in
which these datasets should be mixed and found that a 7:3 = OI:VG ratio
worked best. Note that this overweighs VG significantly compared to the rela-
tive size of these datasets. Overweighing VG might be beneficial because VG has
a larger label space than OI, such that each VG example provides more valuable
semantic supervision than each OI example.

We also tested the relative value of VG “object” and “region” annotations. In
VG, “region” annotations provide free-text descriptions of whole image regions,
as opposed to the standard single-object annotations. Interestingly, we found
that training on the region annotations hurts the generalization ability of our
models, so we do not use them for training.

Loss normalization and gradient clipping. In its official implementation,
DETR [6] uses local (i.e. per-device) loss normalization and is thus sensitive
to the (local) batch size. We found this to be an important detail in practice,
which can significantly affect performance. We explored whether normalizing the
box, gIoU and classification losses by the number of instances in the image or
the number of instances in the entire batch performed better. Our experiments
show that per-example normalization performs best, but only when combined
with per-example gradient clipping, i.e. when clipping the gradient norm to 1.0
for each example individually, before accumulating gradients across the batch.
We found that per-example clipping improves training stability, leads to overall
lower losses and allows for training models with larger batch sizes.

Instance merging. Federated datasets such as OI have non-disjoint label
spaces, which means that several labels can apply to the same object, either
due to (near-)synonymous labels (e.g. “Jug” and “Mug”), or due to non-disjoint
concepts (e.g. “Toy” and “Elephant” labels both apply to a toy elephant). Due
to the annotation procedure, in which a single label is considered at a time, one
object can therefore be annotated with several similar (but not identical) bound-
ing boxes. We found it helpful to merge such instances into a single multi-label
instance. Multi-label annotations are consistent with the non-disjoint nature of
federated annotations and we speculate that this provides more efficient super-
vision to the models, since it trains each token to predict a single box for all
appropriate labels. Without this instance merging, the model would be required
to predict individual boxes for each label applying to an object, which clearly
cannot generalize to the countless possible object labels.

To merge overlapping instances we use a randomized iterative procedure with
the following steps for each image:

1. Pick the two instances with the largest bounding box overlap.
2. If their intersection over union (IoU) is above a given threshold:
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2.1. Merge their labels.
2.2. Randomly pick one of the original bounding boxes as the merged instance

bounding box.

The picked instances are then removed and the procedure is repeated until no
instances with a high enough IoU are left. Having explored multiple IoU thresh-
olds, we note that not merging instances with highly similar bounding boxes
is clearly worse than merging them; and that a moderately high threshold of
0.7-0.9 works best in practice.

Learning rates. In Table 3 we show that using the same learning rate for
the image and text encoders is clearly sub-optimal, and that it is necessary to
training the text encoder with a lower learning rate. This may help to prevent
catastrophic forgetting of the wide knowledge the model acquired during the
contrastive pre-training stage. Here we explore a range of text encoder learning
rates and demonstrate that the learning rate for the text encoder needs to be
much lower (e.g. 100×) than that of the image encoder to get good zero-shot
transfer (APLVIS

rare ). However, freezing the text encoder completely (learning rate
0) does not work well either. APOI, which measure in-distribution performance,
behaves in the opposite way. While using the same learning rate for the im-
age and text encoders results in a big drop in APLVIS

rare , it increases APOI. This
demonstrates that the optimal recipe for zero-shot transfer (APLVIS

rare ) does not
necessarily maximize in-distribution performance (APOI).

Cropped bounding box filtering. We use random image crop augmenta-
tion when training our models. Upon manual inspection of the resulting images
and bounding boxes we noticed a frequent occurrence of instances with degener-
ate bounding boxes that no longer matched their original instance label (e.g. a
bounding box around a hand with label “Person” resulting from cropping most
of the person out of the image). To reduce the chance of our models overfit-
ting due to having to memorize such instances, we remove object annotations
if a large fraction of their box area falls outside of the random crop area. The
optimal area threshold lies between 40% and 60%, and that neither keeping all
boxes, nor keeping only uncropped boxes, performs as well (Tables 3 and A1.9).

Mosaics. As described in Appendix A1.6, we perform image scale augmenta-
tion by tiling multiple small images into one large “mosaic”. We explored mosaic
sizes up to 4 × 4, and found that while using only 2 × 2 mosaics in addition to
single images is clearly worse than also including larger mosaics, for the consid-
ered resolutions and patch sizes the benefits of using larger mosaics (i.e. smaller
mosaic tiles) saturates with the inclusion of 3× 3 or 4× 4 mosaics. We have not
performed extensive sweeps of the mosaic ratios, and for mosaics with grid sizes
from 1× 1 (i.e. a single image) to M ×M we use a heuristic of sampling k × k

girds with probability 2·(M−k+1)
M ·(1+M) , such that smaller mosaics are sampled more

frequently than the larger mosaics proportionally to the mosaic size.
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Prompting. For generating text queries, similar to prior work, we augment ob-
ject category names with prompt templates such as "a photo of a {}" (where
{} is replaced by the category name) to reduce the distribution shift between
image-level pre-training and detection fine-tuning. We use the prompt templates
proposed by CLIP [33]. During training, we randomly sample from the list of 80
CLIP prompt templates such that, within an image, every instance of a cate-
gory has the same prompt, but prompt templates differ between categories and
across images. During testing, we evaluate the model for each of the “7 best”
CLIP prompts and ensemble the resulting predicted probabilities by averaging
them. The results in Table A5 show that not using any prompting does not per-
form well, especially on the in-distribution APOI metric. Perhaps unsurprisingly,
test-time prompt ensembling works better in cases when random prompting was
also used during training. In some cases, prompting can have different effects on
different model architectures. For example, applying random prompt augmen-
tation to the VG dataset tends to improve performance of the B/32 model, but
worsens that of the R26+B/32 model. We speculate that this variability is due
to the relatively small number of prompt templates; expanding the list of prompt
templates might provide more consistent benefits. We thus only use train-time
random prompting for the OI dataset, where it yields consistent benefits.

Location bias. As discussed in the main text, biasing box predictions to the
location of the corresponding image patch improves training speed and final
performance. The gain is especially large for the pure Transformer architecture
(ViT-B/32 in Table A1.9), where removing the bias reduces performance by
almost 3 points on APLVISand APLVIS

rare , whereas the hybrid R26+B/32 drops by
only slightly more than 1 point. We therefore speculate that the spatial inductive
bias of the convolutional component of the hybrid serves a similar function as
the location bias.
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Table A5. Additional ablations. VG(obj) and VG(reg) respectively refer to Vi-
sual Genome object and region annotations.

ViT-B/32 ViT-R26+B/32

Ablation APLVIS APLVIS
rare APCOCO APOI APLVIS APLVIS

rare APCOCO APOI

Baseline 15.7 14.1 24.1 48.5 21.0 18.9 30.9 54.1

Dataset ratio. Baseline uses OI:VG(obj) = 7:3
OI:VG(obj) = 2:8 −1.9 −2.7 −2.4 −4.8 −4.2 −4.1 −4.7 −4.8
OI:VG(obj) = 3:7 −1.0 −1.9 −1.2 −3.1 −3.0 −3.0 −3.3 −2.9
OI:VG(obj) = 4:6 −0.6 −1.8 −0.4 −1.7 −2.2 −3.6 −2.2 −1.5
OI:VG(obj) = 5:5 0.0 −0.5 0.1 −0.6 −1.0 −1.1 −1.0 −1.1
OI:VG(obj) = 6:4 0.1 −0.6 0.1 −0.3 −0.3 −1.4 −0.4 −0.2
OI:VG(obj) = 8:2 −0.7 −0.9 −0.6 −0.1 −0.4 −0.3 0.2 0.4
OI:VG(obj) = 9:1 −1.8 −1.1 −1.6 0.1 −1.8 −1.8 −1.1 0.3
OI:VG(obj, reg) = 7:3 −0.6 0.0 −0.9 −3.3 −1.2 −0.5 −0.8 −3.6
OI:VG(reg) = 7:3 −2.1 −1.4 −2.3 −2.5 −2.9 −2.3 −2.2 −2.2
Only OI −4.9 −3.2 −3.5 −0.5 −6.9 −5.7 −4.2 0.3
Only VG(obj) −8.0 −8.4 −14.2 −28.5 −14.5 −14.0 −23.6 −38.3

Gradient clipping. Baseline uses per-example clipping and per-example normalization.
Global clip, global norm −1.0 −2.0 −1.4 −4.9 −2.3 −2.9 −2.8 −5.4
Global clip, per-ex. norm −4.0 −2.6 −5.3 −4.7 −5.0 −5.0 −5.7 −5.7

Instance merging. Baseline merges instance that overlap with IoU ≥ 0.9
No merging −0.8 −1.2 −0.3 −1.2 −0.8 −1.3 −0.6 −0.7
IoU ≥ 0.7 0.2 0.3 −0.2 0.1 0.2 0.2 0.0 0.6
IoU ≥ 0.8 0.0 0.4 0.0 0.4 0.0 −1.3 0.1 0.4
IoU ≥ 0.95 −0.1 −0.1 0.0 −0.7 −0.5 −1.3 −0.2 −0.5

Text encoder learning rate. Baseline uses image LR 2× 10−4 and text LR 2× 10−6.
LR 2× 10−3 −5.1 −10.3 −0.8 −0.6 −7.1 −14.1 −1.4 −0.5
LR 2× 10−4 −2.3 −6.7 −0.7 0.2 −3.0 −8.5 −0.5 0.4
LR 2× 10−5 −1.1 −3.8 −0.5 0.6 −1.2 −3.2 −0.4 0.9
Do not fine-tune text enc. −1.8 −1.2 −1.9 −0.7 −1.5 −2.3 −0.6 1.2

Cropped box filtering. Baseline retains boxes with ≥ 60% of their original area.
No box area filtering −0.1 −0.3 −0.2 −0.2 −0.1 0.0 0.1 −0.1
≥ 20% area −0.3 −1.7 0.0 −0.3 −0.2 −0.8 −0.2 −0.1
≥ 40% area 0.1 0.0 0.0 0.2 0.1 0.9 0.1 −0.2
Only full boxes −0.2 −0.9 −0.3 −0.2 −0.1 −0.6 0.1 0.2

Mosaics. Baseline uses 1-to-3-size mosaics at ratio 0.5 : 0.33 : 0.17
1–2 @ 2:1 −0.4 −1.1 −0.1 0.4 −0.5 0.3 −0.5 0.0
1–4 @ 4:3:2:1 0.1 0.3 0.0 −0.3 0.0 −0.8 0.1 −0.3
No mosaics −1.4 −1.6 −1.5 −0.4 −2.3 −1.5 −1.7 −0.7
No mosaics, 2x train sched. −1.0 −1.8 −0.3 1.2 −2.9 −2.8 −1.8 −0.7
No mosaics, 3x train sched. −1.2 −3.4 0.3 1.1 −3.4 −3.6 −1.8 −0.8

Prompting. Baseline uses train prompting for OI and test ensemble (ens.) prompting.
Train: none; test: none 0.0 −0.1 0.8 −10.2 −1.2 −1.3 −0.6 −6.3
Train: none; test: ens. −2.6 −2.2 −7.3 −11.1 −4.5 −5.0 −10.0 −6.6
Train: OI+VG; test: ens. 0.8 1.3 0.9 −0.1 −0.7 −0.7 −0.4 −0.2
Train: VG; test: ens. −0.8 −1.1 −2.9 −7.8 −3.1 −4.0 −7.8 −5.6

Other. Baseline uses location bias, samples 50 random negatives and removes LVIS rare labels.
No location bias −2.8 −2.9 −3.7 −2.6 −1.2 −1.1 −1.3 −1.0
No random negatives −1.2 −3.7 −0.8 −0.4 −1.0 −2.8 −0.4 1.0
Keep LVIS rare 0.1 0.9 0.0 0.7 0.1 0.2 −0.1 1.1
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