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Abstract. Combining simple architectures with large-scale pre-training
has led to massive improvements in image classification. For object de-
tection, pre-training and scaling approaches are less well established,
especially in the long-tailed and open-vocabulary setting, where train-
ing data is relatively scarce. In this paper, we propose a strong recipe
for transferring image-text models to open-vocabulary object detection.
We use a standard Vision Transformer architecture with minimal mod-
ifications, contrastive image-text pre-training, and end-to-end detection
fine-tuning. Our analysis of the scaling properties of this setup shows
that increasing image-level pre-training and model size yield consistent
improvements on the downstream detection task. We provide the adap-
tation strategies and regularizations needed to attain very strong per-
formance on zero-shot text-conditioned and one-shot image-conditioned
object detection. Code and models are available on GitHub1.

Keywords: open-vocabulary detection, transformer, vision transformer,
zero-shot detection, image-conditioned detection, one-shot object detec-
tion, contrastive learning, image-text models, foundation models, CLIP

1 Introduction

Object detection is a fundamental task in computer vision. Until recently, de-
tection models were typically limited to a small, fixed set of semantic categories,
because obtaining localized training data with large or open label spaces is costly
and time-consuming. This has changed with the development of powerful lan-
guage encoders and contrastive image-text training. These models learn a shared
representation of image and text from loosely aligned image-text pairs, which
are abundantly available on the web. By leveraging large amounts of image-text
data, contrastive training has yielded major improvements in zero-shot classifi-
cation performance and other language-based tasks [33,19,44].

⋆ Equal conceptual and technical contribution.
1 github.com/google-research/scenic/tree/main/scenic/projects/owl_vit

https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
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Many recent works aim to transfer the language capabilities of these models
to object detection [12,26,45,46,20]. These methods, for example, use distilla-
tion against embeddings of image crops [12], weak supervision with image-level
labels [46], or self-training [26,45]. Here, we provide a simple architecture and
end-to-end training recipe that achieves strong open-vocabulary detection with-
out these methods, even on categories not seen during training.

We start with the Vision Transformer architecture [22], which has been
shown to be highly scalable, and pre-train it contrastively on a large image-text
dataset [44,19]. To transfer the model to detection, we make a minimal set of
changes: We remove the final token pooling layer and instead attach a lightweight
classification and box head to each transformer output token. Open-vocabulary
classification is enabled by replacing the fixed classification layer weights with
the class-name embeddings obtained from the text model [2] (Figure 1). We
fine-tune the pre-trained model on standard detection datasets using a bipartite
matching loss [6]. Both the image and the text model are fine-tuned end-to-end.

We analyze the scaling properties of this approach and find that increasing
model size and pre-training duration continue to yield improvements in detection
performance beyond 20 billion image-text pairs. This is important since image-
text pairs, in contrast to detection data, are abundant and allow further scaling.

A key feature of our model is its simplicity and modularity. Since the im-
age and text components of our model are not fused, our model is agnostic to
the source of query representations. We can therefore use our model without
modification as a one-shot detection learner simply by querying it with image-
derived embeddings. One-shot object detection is the challenging problem of
detecting novel objects solely based on a query image patch showing the ob-
ject [16,4,31]. The image-conditioned one-shot ability is a powerful extension to
text-conditioned detection because it allows detecting objects that are difficult to
describe through text (yet easy to capture in an image), such as specialized tech-
nical parts. Despite using a generic architecture not specialized for this problem,
we improve the state of the art for one-shot detection on unseen COCO categories
(held out during training) from 26.0 to 41.8 AP50, an improvement of 72%.

For open-vocabulary text-conditioned detection, our model achieves 34.6% AP
overall and 31.2% APrare on unseen classes on the LVIS dataset.

In summary, we make the following contributions:

1. A simple and strong recipe for transferring image-level pre-training to open-
vocabulary object detection.

2. State-of-the-art one-shot (image conditional) detection by a large margin.

3. A detailed scaling and ablation study to justify our design.

We believe our model will serve as a strong baseline that can be easily im-
plemented in various frameworks, and as a flexible starting point for future
research on tasks requiring open-vocabulary localization. We call our method
Vision Transformer for Open-World Localization, or OWL-ViT for short.
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Fig. 1. Overview of our method. Left: We first pre-train an image and text encoder
contrastively using image-text pairs, similar to CLIP [33], ALIGN [19], and LiT [44].
Right: We then transfer the pre-trained encoders to open-vocabulary object detection
by removing token pooling and attaching light-weight object classification and local-
ization heads directly to the image encoder output tokens. To achieve open-vocabulary
detection, query strings are embedded with the text encoder and used for classification.
The model is fine-tuned on standard detection datasets. At inference time, we can use
text-derived embeddings for open-vocabulary detection, or image-derived embeddings
for few-shot image-conditioned detection.

2 Related Work

Contrastive Vision-Language Pre-Training. The idea of embedding images
and text into a shared space has been used to achieve “zero-shot” generalization
for a long time [10,36,40]. Thanks to innovations in contrastive losses and better
architectures, recent models can learn consistent visual and language representa-
tions from web-derived image and text pairs without the need for explicit human
annotations. This vastly increases the available training data and has led to large
improvements on zero-shot classification benchmarks [33,19,44,32]. While any of
the recent image-text models are compatible with our approach, our model and
dataset are most similar to LiT [44] and ALIGN [19].

Closed-Vocabulary Object Detection. Object detection models have been
traditionally formulated for closed-vocabulary settings. Initially, “one-stage” and
“two-stage” detectors, such as SSD [28] and Faster-RCNN [34] respectively, pro-
liferated. More recently, DETR [6] showed that object detection can be framed as
a set prediction problem, trained with bipartite matching, and achieve competi-
tive results. Notably, such architectures do not require region proposal generation
or non-maximum suppression. Follow-up works have proposed more efficient vari-
ants of DETR [48,41,37], including architectures without a “decoder-stage” [9].
Our work also simplifies DETR, in that we do not use a decoder. Compared
to [9], which uses additional “detection” tokens, we further simplify the model
by predicting one object instance directly from each image token.

Long-Tailed and Open-Vocabulary Object Detection. To go beyond a
closed vocabulary, fixed classification layers can be replaced by language em-
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beddings to create open-vocabulary detectors [2]. Open-vocabulary object de-
tection has recently seen much progress from combining contrastively trained
image-text models and classic object detectors [12,20,26,45,46,42]. The main
challenge in this task is how to transfer the image-level representations of the
image-text backbone to detection despite the scarcity of localized annotations for
rare classes. Making efficient use of the image-text pre-training is crucial since
it allows for scaling without the need for expensive human annotations. Var-
ious approaches have been proposed. ViLD [12] distills embeddings obtained
by applying CLIP or ALIGN to cropped image regions from a class-agnostic
region proposal network (RPN). The RPN, however, limits generalization per-
formance on novel objects, which is exacerbated by ViLD’s two-step distillation-
training process. Multistage training is also used by RegionCLIP, which gen-
erates pseudo-labels on captioning data, followed by region-text contrastive pre-
training, and transfer to detection. In contrast, our method fine-tunes both image
and text models end-to-end on publicly available detection datasets, which sim-
plifies training and improves generalization to unseen classes. MDETR [20] and
GLIP [26] use a single text query for the whole image and formulate detection as
the phrase grounding problem. This limits the number of object categories that
can be processed per forward pass. Our architecture is simpler and more flexible
in that it performs no image-text fusion and can handle multiple independent
text or image-derived queries. OVR-CNN [42] is most similar to our approach
in that it fine-tunes an image-text model to detection on a limited vocabulary
and relies on image-text pre-training for generalization to an open vocabulary.
However, we differ in all modelling and loss function choices. We use ViT [22] in-
stead of their ResNet [15], a DETR-like model instead of their Faster-RCNN [34]
and image-text pre-training as in LiT [44] instead of their PixelBERT [18] and
visual grounding loss. Orthogonal to our approach, Detic [46] improves long-tail
detection performance with weak supervision by training only the classification
head on examples where only image-level annotations are available.

We note that in our definition of open-vocabulary detection, object categories
may overlap between detection training and testing. When we specifically refer
to detecting categories for which no localized instances were seen during training,
we use the term zero-shot.

Image-Conditioned Detection. Related to open-vocabulary detection is the
task of image-conditioned detection, which refers to the ability to detect objects
matching a single query image which shows an object of the category in question
[4,16,7,31]. This task is also called one-shot object detection because the query
image is essentially a single training example. Image-based querying allows open-
world detection when even the name of the object is unknown, e.g. for unique
objects or specialized technical parts. Our model can perform this task without
modifications by simply using image-derived instead of text-derived embeddings
as queries. Recent prior works on this problem have focused mainly on archi-
tectural innovations, for example using sophisticated forms of cross-attention
between the query and target image [16,7]. Our approach instead relies on a
simple but large model and extensive image-text pre-training.
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3 Method

Our goal is to create a simple and scalable open-vocabulary object detector. We
focus on standard Transformer-based models because of their scalability [22] and
success in closed-vocabulary detection [6]. We present a two-stage recipe:

1. Contrastively pre-train image and text encoders on large-scale image-text data.
2. Add detection heads and fine-tune on medium-sized detection data.

The model can then be queried in different ways to perform open-vocabulary or
few-shot detection.

3.1 Model

Architecture. Our model uses a standard Vision Transformer as the image
encoder and a similar Transformer architecture as the text encoder (Figure 1).
To adapt the image encoder for detection, we remove the token pooling and final
projection layer, and instead linearly project each output token representation
to obtain per-object image embeddings for classification (Figure 1, right). The
maximum number of predicted objects is therefore equal to the number of tokens
(sequence length) of the image encoder. This is not a bottleneck in practice since
the sequence length of our models is at least 576 (ViT-B/32 at input size 768×
768), which is larger than the maximum number of instances in today’s datasets
(e.g., 294 instances for LVIS [13]). Box coordinates are obtained by passing
token representations through a small MLP. Our setup resembles DETR [6], but
is simplified by removing the decoder.

Open-vocabulary object detection. For open-vocabulary classification of
detected objects, we follow prior work and use text embeddings, rather than
learned class embeddings, in the output layer of the classification head [2]. The
text embeddings, which we call queries, are obtained by passing category names
or other textual object descriptions through the text encoder. The task of the
model then becomes to predict, for each object, a bounding box and a probability
with which each query applies to the object. Queries can be different for each
image. In effect, each image therefore has its own discriminative label space,
which is defined by a set of text strings. This approach subsumes classical closed-
vocabulary object detection as the special case in which the complete set of
object category names is used as query set for each image.

In contrast to several other methods [26,20], we do not combine all queries
for an image into a single token sequence. Instead, each query consists of a sep-
arate token sequence which represents an individual object description, and is
individually processed by the text encoder. In addition, our architecture includes
no fusion between image and text encoders. Although early fusion seems intu-
itively beneficial, it dramatically reduces inference efficiency because encoding
a query requires a forward pass through the entire image model and needs to
be repeated for each image/query combination. In our setup, we can compute
query embeddings independently of the image, allowing us to use thousands of
queries per image, many more than is possible with early fusion [26].
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One- or Few-Shot Transfer. Our setup does not require query embeddings to
be of textual origin. Since there is no fusion between image and text encoders, we
can supply image- instead of text-derived embeddings as queries to the classifi-
cation head without modifying the model. By using embeddings of prototypical
object images as queries, our model can thus perform image-conditioned one-
shot object detection. Using image embeddings as queries allows detection of
objects which would be hard to describe in text.

3.2 Training

Image-Level Contrastive Pre-Training. We pre-train the image and text
encoder contrastively using the same image-text dataset and loss as in [44] (Fig-
ure 1, left). We train both encoders from scratch with random initialization
with a contrastive loss on the image and text representations. For the image
representation, we use multihead attention pooling (MAP) [25,43] to aggregate
token representation. The text representation is obtained from the final end-of-
sequence (EOS) token of the text encoder. Alternatively, we use publicly avail-
able pre-trained CLIP models [33] (details in Appendix A1.3).

An advantage of our encoder-only architecture is that nearly all of the model’s
parameters (image and text encoder) can benefit from image-level pre-training.
The detection-specific heads contain at most 1.1% (depending on the model size)
of the parameters of the model.

Training the Detector. Fine-tuning of pre-trained models for classification is
a well-studied problem. Classifiers, especially large Transformers, require care-
fully tuned regularization and data augmentation to perform well. Recipes for
classifier training are now well established in the literature [39,38,3]. Here, we
aim to provide a similar fine-tuning recipe for open-vocabulary detection.

The general detection training procedure of our model is almost identical to
that for closed-vocabulary detectors, except that we provide the set of object
category names as queries for each image. The classification head therefore out-
puts logits over the per-image label space defined by the queries, rather than a
fixed global label space.

We use the bipartite matching loss introduced by DETR [6], but adapt it
to long-tailed/open-vocabulary detection as follows. Due to the effort required
for annotating detection datasets exhaustively, datasets with large numbers of
classes are annotated in a federated manner [13,24]. Such datasets have non-
disjoint label spaces, which means that each object can have multiple labels. We
therefore use focal sigmoid cross-entropy [48] instead of softmax cross-entropy
as the classification loss. Further, since not all object categories are annotated
in every image, federated datasets provide both positive (present) and negative
(known to be absent) annotations for each image. During training, for a given
image, we use all its positive and negative annotations as queries. Additionally,
we randomly sample categories in proportion to their frequency in the data and
add them as “pseudo-negatives” to have at least 50 negatives per image [47].

Even the largest federated detection datasets contain only ≈ 106 images,
which is small in contrast to the billions of image-level weak labels which exist
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for pre-training [29,43,33,19]. It is known that large Transformers trained on
datasets of this size (such as ImageNet-1k) require carefully-tuned regulariza-
tion and data augmentation to perform well [39,38,3]. We found the same to be
true for detection training and provide a detailed breakdown of the augmenta-
tions and regularizations required to achieve very high performance with large
Transformers in Section 4.6.

4 Experiments

4.1 Model Details

For the image model, we use standard Vision Transformers [22]. We follow the
nomenclature from [22] for model size, patch size, and Transformer vs. hybrid
architectures. For example, B/32 refers to ViT-Base with patch size 32, while
R50+H/32 refers to a hybrid ResNet50 + ViT-Huge with stride 32.

For the text model, we use a Transformer architecture similar to the image
model. Unless otherwise noted, we use a text model with 12 layers, 512 hidden
size (D), 2048 MLP size and 8 heads (this is smaller than B).

Image and text models are first pre-trained on the image level and then fine-
tuned on object-level annotations. Pre-training is performed from scratch as in
LiT [44] (uu in their notation) on their dataset of 3.6 billion image-text pairs.

After pre-training, token pooling is removed and detection heads are added
(see Section 3.1 and Figure 1). The model predicts one box for each output token.
We add a bias to the predicted box coordinates such that each box is by default
centered on the image patch that corresponds to the token from which this box is
predicted when arranging the token sequence as a 2D grid. The model therefore
predicts the difference from that default location, similar to how Region Proposal
Networks [34] predict offsets with respect to pre-defined anchors. Although there
is no strict correspondence between image patches and tokens representations
later in the Transformer network, biasing box predictions in this way speeds up
training and improves final performance (Section 4.6).

We use an image size of 224× 224 in most models for pre-training (see Ap-
pendix A1.3) and larger sizes for detection fine-tuning and evaluation (specified
in Table 1). To change model input size after pre-training, we resize the image
position embeddings with linear interpolation. Models are fine-tuned at a batch
size of 256 for at most 140’000 steps (fewer for larger models). We implement
our model using JAX [5] and the Scenic library [8].

4.2 Detection Data

Due to the open-vocabulary design of our model, we can easily combine datasets
with different label spaces by replacing integer labels with class name strings.
For object-level training, we use publicly available detection datasets with a total
of around 2 million images (OpenImages V4 (OI) [24], Objects 365 (O365) [35],
and/or Visual Genome (VG) [23], as indicated). Evaluation is performed on the
COCO [27], LVIS [13], and O365. For dataset details, see Appendix A1.2.
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Table 1. Open-vocabulary and zero-shot performance on LVIS v1.0 val. For our mod-
els, we remove annotations matching LVIS rare category names from all detection
training datasets, such that APLVIS

rare measures zero-shot performance. Gray numbers
indicate models trained on the LVIS frequent and common (“base”) annotations. For
reference, ViT-B/32 is comparable to ResNet50 in inference compute (139.6 vs 141.5
GFLOPs). For our models, we report the mean performance over three fine-tuning
runs. Results for COCO and O365 are provided in Appendix A1.8.

Method Backbone Image-level Object-level Res. APLVIS APLVIS
rare

LVIS base training:
1 ViLD-ens [12] ResNet50 CLIP LVIS base 1024 25.5 16.6
2 ViLD-ens [12] EffNet-b7 ALIGN LVIS base 1024 29.3 26.3
3 Reg. CLIP [45] R50-C4 CC3M LVIS base ? 28.2 17.1
4 Reg. CLIP [45] R50x4-C4 CC3M LVIS base ? 32.3 22.0

5 OWL-ViT (ours) ViT-H/14 LiT LVIS base 840 35.3 23.3
6 OWL-ViT (ours) ViT-L/14 CLIP LVIS base 840 34.7 25.6

Unrestricted open-vocabulary training:
7 GLIP [26] Swin-T Cap4M O365, GoldG, ... ? 17.2 10.1
8 GLIP [26] Swin-L CC12M, SBU OI, O365, VG, ... ? 26.9 17.1

9 OWL-ViT (ours) ViT-B/32 LiT O365, VG 768 23.3 19.7
11 OWL-ViT (ours) R26+B/32 LiT O365, VG 768 25.7 21.6
10 OWL-ViT (ours) ViT-B/16 LiT O365, VG 768 26.7 23.6
12 OWL-ViT (ours) ViT-L/16 LiT O365, VG 768 30.9 28.8
13 OWL-ViT (ours) ViT-H/14 LiT O365, VG 840 33.6 30.6

14 OWL-ViT (ours) ViT-B/32 CLIP O365, VG 768 22.1 18.9
15 OWL-ViT (ours) ViT-B/16 CLIP O365, VG 768 27.2 20.6
16 OWL-ViT (ours) ViT-L/14 CLIP O365, VG 840 34.6 31.2

Since OI, VG, O365 and the image-level pre-training data contain images that
are also in COCO / LVIS, we use a strict deduplication procedure to remove any
COCO or LVIS test and validation images from all datasets we use for training
(see Appendix A1.2 for details). Unless otherwise noted, we mix OI and VG
randomly at a ratio of 70% to 30% for detection training in our experiments.
In Table 1, as indicated, we use either LVIS base training (for comparability to
prior work), or O365 and VG at a ratio of 80% to 20%. We use a range of image
and label augmentations, which we discuss in Section 4.6.

4.3 Open-Vocabulary Detection Performance

We use LVIS v1.0 val [13] as our main benchmark since this dataset has a long
tail of rare categories and is therefore well-suited to measure open-vocabulary
performance. For evaluation, we use all category names as query for each image,
i.e. 1203 queries per image for LVIS. Class predictions are ensembled over seven
prompt templates as described in Section 4.6. Some LVIS categories appear in
the datasets we use for training. To measure performance on unseen categories,
we therefore remove from our training data all box annotations with labels that
match any of the LVIS “rare” categories. The APLVIS

rare metric therefore measures
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Fig. 2. Example of one-shot image-conditioned detection. Images in the middle are
used as queries; the respective detections on the target image are shown on the left and
right. In both cases, the highest score is given to instances of the species matching the
query. In contrast, text-based querying (not shown) detects the correct species only for
the top example (“swallowtail butterfly”) but not for the bottom (“luna moth”).

the “zero-shot” performance of our model in the sense that the model has not
seen localized annotations for these categories.

Table 1 shows LVIS results for our models and a range of prior work. We
compare to open-vocabulary models that do not train on the full LVIS dataset.
Results obtained by training on parts of LVIS (e.g. “base” categories [12]) are
shown in gray. Our method is highly competitive across architecture sizes in both
open-vocabulary (APLVIS) and zero-shot (APLVIS

rare ) scenarios. Our best model
achieves 31.2% APLVIS

rare and uses a publicly available CLIP backbone.
For comparison to prior work, we also provide results on MS-COCO 2017

and Objects 365. For these evaluations, we train models on OI+VG instead of
O365+VG, to measure generalization. However, most COCO and O365 cate-
gories are present in the training data and we do not remove them, since they
constitute a large fraction of the available annotations. Our COCO and O365 re-
sults are therefore not “zero-shot”, but test the open-vocabulary transfer ability
of our model. Our best model (CLIP L/14; see Table 1) achieves 43.5% APCOCO;
a version of the model trained without O365 achieves 15.8% APO365 (further re-
sults in Appendix A1.8).

4.4 Few-Shot Image-Conditioned Detection Performance

As described in Section 3.1, our model can perform one- or few-shot object
detection simply be replacing text-derived query embeddings with image-derived
query embeddings. In few-shot detection, we are given a query image with a box
around an example object. The goal is to detect objects of the same category
as the example in new target images. To get the query embedding, we first run
inference on the query image and select a predicted detection which has high box
overlap with the query box (after some filtering; see Appendix A1.7 for details).
We then use the image embedding of that prediction as query on the test images.
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Table 2. One- and few-shot image-conditioned detection performance on COCO AP50.
Our method (R50+H/32 architecture) strongly outperforms prior work and also shows
marked improvements as the number of conditioning queries is increased to k = 10.
COCO category splits as in [16]. Because the evaluation is stochastic, for our results,
we report the average across 3 runs.

Method Split 1 Split 2 Split 3 Split 4 Mean

S
ee
n

SiamMask [30] 38.9 37.1 37.8 36.6 37.6
CoAE [16] 42.2 40.2 39.9 41.3 40.9
AIT [7] 50.1 47.2 45.8 46.9 47.5
OWL-ViT (ours) 49.9 49.1 49.2 48.2 49.1

OWL-ViT (k = 10; ours) 54.1 55.3 56.2 54.9 55.1

U
n
se
en

SiamMask [30] 15.3 17.6 17.4 17.0 16.8
CoAE [16] 23.4 23.6 20.5 20.4 22.0
AIT [7] 26.0 26.4 22.3 22.6 24.3
OWL-ViT (ours) 43.6 41.3 40.2 41.9 41.8

OWL-ViT (k = 10; ours) 49.3 51.1 42.4 44.5 46.8

For evaluation on this task, we follow the procedure described in [16]: During
detection training, we hold out some COCO categories to evaluate on, and in
addition all synonymous and semantically descendant categories that appear in
our detection training data. We do not modify the image-text pre-training stage.

Despite not being designed specifically for this task, our model strongly out-
performs the best task-specific prior work by a margin of 72% across the four
COCO splits as shown in Table 2. Unlike prior work, our model does not entan-
gle query image and target image features during inference, which enables us to
run our models on thousands of different image embeddings simultaneously and
efficiently, enhancing its practicality.

To move beyond a single query example (one-shot) to few-shot predictions,
we can simply average image embeddings for multiple query examples for each
category. This leads to further significant improvements (Table 2, bottom row).

4.5 Scaling of Image-Level Pre-Training

After establishing that our method achieves strong open-vocabulary, zero-shot,
and image-conditioned detection performance, we next analyze its scaling prop-
erties and design choices. We focus on image-level pre-training in this section.
In Section 4.6, we will describe the fine-tuning methods that are necessary for
successful transfer of the pre-trained model to detection.

To understand how image-level pre-training relates to final detection per-
formance, we systematically explored the dimensions of pre-training duration,
model size, and model architecture. For every configuration, we pre-trained and
then fine-tuned several models across a range of learning rates and weight de-
cays, since the optimal settings of these parameters vary by configuration (see
Appendix A1.3 for a list of covered settings).
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Fig. 3. Image-level pre-training transfers to detection. Left: Overview of the rela-
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training) and object-level performance (APLVIS

rare after detection fine-tuning) of con-
trastively trained image-text models. Each dot represents one pre-training configura-
tion and its best detection performance across a range of learning rates and weight
decays. Configurations vary in encoder architecture (ViT/Hybrid/ResNet), model size
(in order of detection inference compute: R50, B/32, R26+B/32, R101, L/32, B/16,
H/32, R50+H/32, L/16), and pre-training duration (billions of examples seen including
repetitions; 3.6B unique examples). High image-level performance is necessary, but not
sufficient, for high object-level performance (Pearson’s r = 0.73; in contrast, image-level
transfer performance correlates better with pre-training-task performance: r = 0.98).
Right: Across model sizes, longer image-level pre-training translates to higher object-
level performance. Further gains on detection are possible by scaling up fine-tuning.

We first consider how well image-level pre-training transfers to detection in
general. Figure 3 shows the relationship between image-level performance (zero-
shot ImageNet accuracy) and object-level performance (zero-shot APLVIS

rare ) for
all architecture, size, and pre-training-duration configurations covered by our
study (the best result across learning rates and weight decays is shown). We
find that, while the best object-level models typically also have good image-level
performance, the reverse is not true: many models that do well to the image-level
task transfer poorly to detection. In other words, high image-level performance
is necessary, but not sufficient, for strong transfer to detection.

Which factors contribute to strong transfer? Prior work on classification
found that pre-training and model size must be scaled together to achieve optimal
transfer – over-training small models on large data can even lead to reduced per-
formance [21]. We find this effect to be even stronger for transfer to detection. As
the amount of pre-training is increased, detection performance increases at first
but then peaks, while image-level performance continues to increase (Figure 3,
right). However, the positive trend of detection performance with pre-training
can be extended by increasing model size and improving detection fine-tuning
(Figure 3, right, R50+H/32).

Given that increasing model size improves performance, an important ques-
tion is which architectures have the most favorable scaling properties. For clas-
sification, Transformer-based architectures have been found to be more efficient
in terms of pre-training compute than ResNets, and hybrid ResNet-Transformer
architectures to be the most efficient, at least at smaller computational bud-
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Fig. 4. Effect of model architecture on detection performance. Left: Hybrid architec-
tures are more efficient than pure transformers for small models. As the model size
increases (in terms of detection inference FLOPs), pure ViTs scale better than hybrids
both in overall and zero-shot performance. Pure ResNets perform poorly in our setup.
Colored markers indicate the best model of a given size across all explored hyperpa-
rameters; light gray markers indicate the suboptimal hyperparameters. Asterisks (∗)
indicate models trained with random negative labels. Right: Architecture also influences
which aspects of the task a model learns: Pure ViTs perform systematically better at
zero-shot detection (APLVIS

rare ) than hybrid architectures at a given overall object-level
performance (APLVIS). We speculate that ViTs are biased towards learning semantic
generalization, whereas ResNets/Hybrids are biased towards learning localization of
known classes. This difference diminishes as model size and performance increases.

gets [22]. In addition, ResNets were found to be better when little pre-training
data is available, but were overtaken by Transformers as available data in-
creases [22,38]. We performed a similar analysis for detection. Using detection
inference compute as the measure of model size, and choosing the best hy-
perparameters and pre-training duration for each size, we found that hybrid
models tend to be more efficient than pure ViTs at small model sizes, while
ResNets perform poorly in our setup (Figure 4). However, for large models, pure
ViTs overtake hybrids. To start explaining this difference, we compared over-
all and zero-shot detection performance and found a clear dissociation between
hybrids and pure Transformers (at least at small model sizes; Figure 4, right).
This perhaps indicates that Transformers are more biased than hybrid archi-
tectures towards learning semantic generalization (necessary for high zero-shot
performance), which might be beneficial when large-scale pre-training is pos-
sible. Overall, our findings go beyond those for classification and suggest that
further scaling efforts should focus on pure Transformer architectures.

4.6 How to Unlock Pre-Training Potential for Detection

In Section 4.5, we found that strong image-level performance is necessary, but
not sufficient, for strong detection performance. We will now describe our recipe
for obtaining strong open-vocabulary detection performance after image-level
pre-training. Ultimately, all components of our recipe aim at reducing overfit-
ting on the relatively small number of available detection annotations, and the
small semantic label space covered by the annotations. Our approach relies on
(i) measures to stabilize optimization, (ii) careful use of the available detection
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Table 3. Ablation study of the main methodological improvements necessary for suc-
cessful transfer of image-text models to detection. For simplicity, difference in AP to
the baseline is shown. Except for the experiment retraining LVIS rare labels (last row),
all differences are expected to be negative. To reduce variance, all results are averaged
across two replicates. All ablations were carried out for the ViT-R26+B/32 model, and
unless otherwise specified used a 70K step training schedule.

Ablation APLVIS APLVIS
rare APCOCO APOI

Baseline 21.0 18.9 30.9 54.1

(1) Only use VG for training −14.5 −14.0 −23.6 −38.3
(2) Only use OI for training −6.9 −5.7 −4.2 0.3

(3) Same LR for image and text encoders −3.0 −8.5 −0.5 0.4

(4) No prompt ensembling at inference −2.8 −5.5 −5.9 −0.1
(5) No prompts (train or inference) −1.2 −1.3 −0.6 −6.3

(6) No random negatives −1.0 −2.8 −0.4 1.0

(7) No mosaics −2.3 −1.5 −1.7 −0.7
(8) No mosaics, train 2x longer −2.9 −2.8 −1.8 −0.7
(9) No mosaics, train 3x longer −3.4 −3.6 −1.8 −0.8

(10) Do not merge overlapping instances −0.8 −1.3 −0.6 −0.7

(11) No location bias in box predictor −1.2 −1.1 −1.3 −1.0

(12) Do not filter out any cropped boxes −0.1 0.0 0.1 −0.1
(13) Filter out all cropped boxes −0.1 −0.6 0.1 0.2

(14) Do not remove OI crowd instances 0.0 0.7 −0.4 3.0

(15) Do not remove LVIS rare labels 0.1 0.2 −0.1 1.1

training data, and (iii) a range of data augmentations. We discuss these ablations
in detail below, where numbers in italic (e.g. (15)) refer to individual ablation ex-
periments in Table 3. Importantly, the optimal recipe for zero-shot performance
(APLVIS

rare ) does not necessarily maximize in-distribution performance (APOI). We
discuss this finding and further ablations in Appendix A1.9.

Stabilizing Optimization. The goal of fine-tuning is to learn from the avail-
able detection data without destroying the representations learned during pre-
training. To this end, we take the following measures. First, we reduce the
learning rate of the text encoder to 2 × 10−6 (i.e. 100× smaller than the
image encoder learning rate) during fine-tuning (3). This reduces overfitting,
possibly by preventing the text encoder from “forgetting” the semantics learned
during pre-training while fine-tuning on the small space of detection labels. In-
terestingly, freezing the text encoder completely yields poor results. Second, we
bias predicted box coordinates (11) to be centred at the position of the
corresponding token on the 2D grid, as described in Section 3.1. This speeds
up learning and improves final performance, presumably by breaking symmetry
during the bipartite matching used in the loss. Third, for larger models, we use
stochastic depth regularisation [17,1] with probability of 0.1 on both the
image and text encoders, and shorter training schedules (Section A1.3).

Careful Use of Available Detection Data. As our ablations show (Table 3),
the amount of detection training data is a limiting factor for the performance
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of our models. Therefore, we combine multiple datasets – OI+VG for most
models in our study (1-2), and O365+VG for the largest models as indicated in
Table 1. Further, we take care to keep the available annotations free of noise:
We remove “group” annotations and “not exhaustively annotated”
categories (14) from datasets indicating such annotations (e.g. OI). These an-
notations provide conflicting supervision to the model because it cannot learn
(except through memorization) which annotations are exhaustive and which are
not. Removing them improves performance of larger models. In addition, we re-
move partial boxes left by random crop augmentation, since these can
also provide conflicting supervision if most of an object was actually cropped
out. Retaining instances with at least 60% of their original area leads to better
results than retaining all (12) or only uncropped (13) instances.

Augmentations. Finally, we enrich the available detection labels through aug-
mentation of both images and queries. On the images, we use random cropping
(removing partially cropped boxes as described above). Additionally, we use im-
age scale augmentation similar to “large scale jitter” [11]. However, instead
of simply resizing and padding images, we tile several downscaled images into
one large “mosaic” image. We randomly sample single images, 2× 2 grids, and
3× 3 grids with probabilities 0.5, 0.33, and 0.17, respectively (7-9). To augment
the queries (category names), we use random prompts during training, and
ensemble predictions over several prompts for evaluation (4-5). We use
the 80 CLIP prompts for training and ensemble over the 7 “best” CLIP prompts
(as defined in [33]) during evaluation. Finally, we randomly sample pseudo-
negative labels for each image until there are at least 50 negative labels [47].
Further implementation details are provided in Appendices A1.5 and A1.6.

5 Conclusion

We presented a simple recipe for transferring contrastively trained image-text
models to detection. Our method achieves zero-shot detection results competi-
tive with much more complex approaches on the challenging LVIS benchmark
and outperforms existing methods on image-conditioned detection by a large
margin. Our results suggest that pre-training on billions of image-text examples
confers strong generalization ability that can be transferred to detection even if
only relatively limited object-level data are available (millions of examples). In
our analyses we disentangle the determinants of successful transfer of image-level
representations to detection, and show that pre-training simple, scalable archi-
tectures on more data leads to strong zero-shot detection performance, mirroring
previous observations for image classification tasks. We hope that our model will
serve as a strong starting point for further research on open-world detection.
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