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A Additional Experimental Results

A.1 Calculation of Computation Cost

In what follows, we first shortly describe the metrics of computation cost in
UNIX [1] and then show that they are equivalent to the metrics of cost C used
in this paper (Sec. 3.5).

Computation Metrics in UNIX. Considering the sampling number and
the computation in different network passes, the cost of computation in UNIX
is calculated by:

E = Nt · Ft +Ns1 · Fs +Ns2 ·Bs, (17)

where Ft, Fs and Bs denote the float-point operation number in teacher forward
pass, student forward pass and student backward pass while Nt, Ns1, Ns2 denote
their total sampling number over the entire training procedure.

For a vanilla KD baseline, the sampling number in different passes keeps
fixed, i.e., Nt = Ns1 = Ns2. By denoting this value as N , the baseline cost can
be derived as: E = N · (Ft + Fs +Bs). As a comparison, for UNIX, Nt and Ns2

are reduced to Nk (where Nk < N) while Ns1 is increased to N + Nk, which
makes E = Nk · Ft + (N +Nk) · Fs +Nk ·Bs. Computation is calculated by the
ratio of them:

Computation =
Nk · Ft + (N +Nk) · Fs +Nk ·Bs

N · Ft +N · Fs +N ·Bs

=
Nk · 1 + (N +Nk) · Fs

Ft
+Nk · Bs

Ft

N · 1 +N · Fs

Ft
+N · Bs

Ft

.

(18)

In UNIX [1], the approximation of Bs ≈ Fs is introduced, so Eq. (18) can be
re-written as:

Computation ≈
Nk · 1 + (N + 2Nk) · Fs

Ft

N · 1 + 2N · Fs

Ft

. (19)
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where Fs

Ft
denotes the ratio of float-point operation number between student and

teacher forward passes, which varies in different teacher-student pairs.
Relation of Computation Metrics Between This Paper and UNIX.

In this paper, the absolute computation cost Ca counts the total sampling num-
ber over the training procedure. Formally, given I training epochs, T epochs in
a condensation stage, condensation thresholdτ t at the t-th stage Ca = |K| · I
provides the computation for the vanilla KD baseline. For our KCD, Ca =
|K| · (τ0 + · · ·+ τ t + · · ·+ τ I/T ) · T . By calculating the ratio, the relative com-
putation cost C can be obtained, as shown in Eq. (16).

In fact, if we analyze the computation of our KCD by Eq. (17), we have:

EKCD = |K| · (τ0 + · · ·+ τ t + · · ·+ τ I/T ) · T · (Ft + Fs +Bs). (20)

Further considering the vanilla KD baseline as E = |K| · I · (Ft + Fs + Bs),
the Computation for our KCD can be calculated as:

ComputationKCD =
|K| · (τ0 + · · ·+ τ t + · · ·+ τ I/T ) · T(((((((·(Ft + Fs +Bs)

|K| · I(((((((·(Ft + Fs +Bs)

= C.

(21)

Thus the metric of computation in UNIX is equivalent to C in Eq. (16) of
the main paper. This means that the computation results of our KCD are com-
parable with those in UNIX, as shown in Tab. 2 and Tab. 3 of our main paper.
It is noteworthy that the computation or C for our KCD is only dependent on
the compactness of knowledge encoding, thus keeps unchanged across different
teacher-student pairs.

Results in Tab. 2 of Our Main Paper. In Tab. 2 of our main paper,
C = 100% is set for the vanilla KD baseline while C = 81.6% is calculated via

the derivation of Eq. (16) in our main paper, as C = ρ
I
T (1−ρ)

1−ρ
T
T

· T
I (derived from

the exponential decaying of the condensation threshold τ). For the second row,
we directly cite the results in UNIX with the most similar computation or C
to ours. For the third row, we run the official code of UNIX with the adjusted
parameters of Nk in Eq. (19) to make Computation be equal to our KCD. We
can observe that the accuracy of the proposed KCD outperforms UNIX at the
same level of computation cost.

Results in Tab. 3 of Our Main Paper. C = 81.6% on ImageNet is calcu-
lated in the same way with CIFAR100 in Tab. 2 of our main paper. Ca of vanilla
KD baseline is calculated via 1.26M × 90 = 114M . Ca of the proposed KCD is
calculated by 114M × C = 81M . As can be seen, our KCD reveals an obvious
gain of distillation accuracy and efficiency on the large-scale benchmark.

A.2 More Ablation Studies

Influence of Cost-Aware Weighting Coefficient α. We evaluate the sensi-
tivity of the proposed KCD w.r.t. α (in Eq. (13) of our main paper) in three KD



Knowledge Condensation Distillation 3

Table 5: Ablation study of α on CIFAR100 (Acc%).

Teacher wrn-40-2 vgg13 resnet32x4
Student wrn-16-2 mobilenetv2 ShuffleNetV2

0.01 75.27 66.40 74.85
0.03 75.70 68.61 75.19
0.05 74.99 67.86 75.23
0.1 75.43 68.28 75.11

Table 6: Ablation study of ρ on CIFAR100 (Acc%).

Teacher wrn-40-2 vgg13 resnet32x4
Student wrn-16-2 mobilenetv2 ShuffleNetV2

0.9 75.01 68.23 75.36
0.7 75.70 68.61 75.19
0.5 74.89 66.81 75.08
0.3 74.07 65.50 74.03

Table 7: Ablation study on CIFAR100 (Acc%).

Teacher wrn-40-2 vgg13 resnet32x4
Student wrn-16-2 mobilenetv2 ShuffleNetV2

K1 w/o Aug. 75.45 68.23 75.16
Aug. K1 in random (ϵ = ϵm) 75.41 65.94 75.12

Aug. K1H 75.52 68.02 74.77
Aug. K1L 75.70 68.61 75.19

processes on CIFAR100. The results are reported in Tab. 5. We vary the param-
eter in {0.01, 0.03, 0.05, 0.1}, and choose α = 0.03 for its best performance.

Influence of Final Condensation Ratio ρ. We further evaluate the sensi-
tivity of the proposed KCD w.r.t. final condensation ratio of knowledge encoding,
ρ (in Alg. 1 of our main paper) on CIFAR100. The results are reported in Tab. 6.
We vary the parameter in {0.9, 0.7, 0.5, 0.3}, and choose ρ = 0.7 due to its best
performance.

Design of Knowledge Augmentation. Further, we evaluate the per-
formance of the proposed value-adaptive knowledge summary (VAKS) module
equipped with different knowledge augmentation strategies on CIFAR100. The
results are displayed in Tab. 7.K1 w/o Aug. denotes that we remove the knowl-
edge augmentation in our work, letting K̂ = K1 in our main paper. Aug. K1 in
random denotes that we utilize K0 to randomly augment |K0| knowledge points
in K1 with ϵ = ϵm (as in Eq. (14) of our main paper). Aug. K1H denotes that
we re-partition K1 to K1H and K1L so that |K1H | = |K0|, and augment K1H .
Aug. K1L corresponds to the final design in our main paper, which achieves
the best performance.



4 C. Li et al.

(a) Images of valuable or valueless knowledge

4.2

4.4

4.6

4.8

5

W40-2 V13 R32x4 R56

valuable knowledge valueless knowledge
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Fig. 5: Visualization of images and knowledge hints in knowledge points with
value label y = 1 or 0.

A.3 Visualization of Valuable Knowledge Points

Fig. 5 displays the visualization of the knowledge points with value label y = 1
or 0, which is conducted on CIFAR100. As shown in Fig. 5(a)(Left), the im-
ages from “valueless” knowledge show less complexity where objects are cen-
tered and easily distinguishable. In comparison, the “valuable” images shown in
Fig. 5(a)(Right) tend to contain multiple ambiguous elements that are lower-
quality with complicated backgrounds and more challenging to recognize. Fig. 5(b)
reveals the “valuable” patterns of knowledge hints from the average entropy of
soft labels via four teacher models. It appears that the soft labels of valuable
knowledge points tend to have a higher entropy, implying more informative se-
mantic structural information.
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