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Abstract. The Spiking Neural Network (SNN) has attracted more and
more attention recently. It adopts binary spike signals to transmit infor-
mation. Benefitting from the information passing paradigm of SNNs, the
multiplications of activations and weights can be replaced by additions,
which are more energy-efficient. However, its “Hard Reset” mechanism
for the firing activity would ignore the difference among membrane po-
tentials when the membrane potential is above the firing threshold, caus-
ing information loss. Meanwhile, quantifying the membrane potential to
0/1 spikes at the firing instants will inevitably introduce the quantization
error thus bringing about information loss too. To address these prob-
lems, we propose to use the “Soft Reset” mechanism for the supervised
training-based SNNs, which will drive the membrane potential to a dy-
namic reset potential according to its magnitude, and Membrane Poten-
tial Rectifier (MPR) to reduce the quantization error via redistributing
the membrane potential to a range close to the spikes. Results show that
the SNNs with the “Soft Reset” mechanism and MPR outperform their
vanilla counterparts on both static and dynamic datasets.

Keywords: Spiking Neural Network; Information Loss; Soft Reset; Quan-
tization Error; Membrane Potential rectificater.

1 Introduction

Deep Neural Networks (DNNs) have greatly improved many applications in com-
putational vision, e.g., object detection and recognition [16], object segmentation
[40], object tracking [2], etc. In pursuit of models with better performance, more
and more complex networks are proposed. However, the increasing complexity
poses a new challenge to model deployment on power-constrained devices, thus
becoming an impediment to the applications of these advanced complex models.
There have been several approaches to address this problem, such as quanti-
zation [12,27,28], pruning [17], knowledge distillation [37], spiking neural net-
works (SNNs) [11,43,26,29,13], and so on. Among these approaches, the biology-
inspired method, SNNs provide a unique way to reduce energy consumption by
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Fig. 1. The difference of our “Soft Reset”-based neuron and vanilla “Hard Reset”-based
neuron. The membrane potential will be redistributed to reduce the quantization error
in our neuron with MPR while not in the vanilla neuron.

mimicking the spiking nature of brain neurons. A spiking neuron integrates the
inputs over time and fires a spike output whenever the membrane potential ex-
ceeds the firing threshold. And using 0/1 spike to transmit information makes
SNNs enjoy the advantage of multiplication-free inference by converting multi-
plication to additions. Furthermore, SNNs are energy-efficient on neuromorphic
hardwares, such as SpiNNaker [18], TrueNorth [1], Darwin [32], Tianjic [36], and
Loihi [5].

Despite the attractive benefits, there is still a huge performance gap between
existing SNN models and their DNN counterparts. We argue that the reason for
the low accuracy is there exists information loss in SNNs. First, the information
processing of neurons in supervised training-based SNNs are generally following
the rules of the Integrate-and-Fire (IF) model or Leaky IF (LIF) model, where
once a membrane potential exceeds the firing threshold, a “Hard Reset” oper-
ation will force the “residual” potential to be set to 0, i.e., once fired, all the
information will be taken away. Obviously, this mechanism of “residual” mem-
brane potential-ignored reset mode would fail to preserve the diversity of various
membrane potentials. Hence the information encoding capacity of the network
is compromised, such that the risk of information loss increases accordingly. Sec-
ond, although the 0/1 spike information processing paradigm enables SNNs to
enjoy the advantage of high efficiency, quantifying the real-valued membrane po-
tential to 0/1 spikes will inevitably introduce the quantization error, which also
brings about information loss.

To address the information loss problem, we propose a “Soft Reset”-based
IF (SRIF) neuron model that retains the “residual” membrane potential from
subtracting its spike value at the firing instants. Hence the diversity of the mem-
brane potentials that exceed the firing threshold will be preserved. Though “Soft
Reset” is commonly used in converting methods from ANN to SNN (ANN2SNN)
[15,14,26,20] methods, rarely applied in supervised SNNs [23], and has not been
discussed in SNN enhancement from the perspective of information loss reducing.
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In addition, for alleviating quantization error, the Membrane Potential Rectifier
(MPR) is proposed, which is performed before the firing activity to adjust the
membrane potentials towards the spike values (i.e., 0/1). With MPR, the mem-
brane potential will be decoupled as an original one and a modulated one. The
original one can keep the mechanism of a neuron and the modulated one enjoys
less quantization error than the original one without suffering from any negative
effects. The difference between our neuron and the vanilla neuron is illustrated
in Fig. 1. Our main contributions are as follows:

– We propose using the SRIF model for supervised training-based SNNs. By
retaining the “residual” membrane potential, SRIF enables the networks to
distinguish the differences among those membrane potentials that exceed
the firing threshold via subtracting their spike values thus enhancing the
information encoding capacity of supervised training-based SNNs.

– We present MPR to mitigate the quantization error. By utilizing a non-linear
function to modulate the membrane potential close to 0/1 before firing ac-
tivity triggers, the gap between the potential and its corresponding 0/1 spike
value is minified while maintaining the sparse spike activation mechanism of
SNNs. To our best knowledge, few works have noticed the quantization error
in SNNs, and a simple but effective method for addressing this problem is
presented.

– Extensive experiments on both static and dynamic datasets were conducted
to verify our method. Results show that the SNN trained with the proposed
method is highly effective and efficient compared with other state-of-the-
art SNN models, e.g., 96.49% top-1 accuracy and 79.41% top-1 accuracy
are achieved on the CIFAR-10 and CIFAR-100. These results of our models
even outperform their DNN counterparts surprisingly, and it is very rare
that SNNs may have a chance to surpass their DNN counterparts.

2 Related Work

2.1 Learning Methods of Spiking Neural Networks

The training methods of SNNs can be divided into two categories. The first one
is ANN2SNN [15,14,26,20]. ANN2SNN yields the same input-output mapping
for the ANN-SNN pair via approximating the continuous activation values of an
ANN using ReLU by averaging the firing rate of an SNN under the rate-coding
scheme. Since the ANN has achieved great success in many fields, ANN2SNN
can maintain the smallest gap with ANNs in terms of performance and can be
generalized to large-scale structures. However, being restricted to rate-coding,
ANN2SNN usually requires dozens or even hundreds of timesteps to obtain well-
performed networks. Lots of efforts have been done to reduce the long inference
time, such as weight normalization [9], threshold rescaling [41], soft reset [15],
threshold shift [26], and the quantization clip-floor-shift activation function [3],
it is still hard to obtain high-performance SNNs with ultra-low latency.
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The second one is supervised learning-based SNNs. SNNs quantize the real-
valued membrane potentials into 0/1 spikes via the firing activity. Since the
gradient of the firing activity function is zero almost everywhere, the gradient
descent-based optimizer can not be directly used for the training of SNNs. To
alleviate the optimization difficulty, the approximate gradient-based strategy is
commonly used, and some related approaches had been proposed to achieve
trainable SNNs with high performance. For example, by regarding the SNN
as a special RNN, a training method of back-propagation through time with
different kinds of surrogate gradient was proposed [33]. The spatio-temporal
back-propagation (STBP) [42] method enables SNNs to be trained on the ANN
programming platform, which also significantly promotes the direct training re-
search of SNNs. Differentiable spike which can match the finite difference gra-
dient of SNNs well was proposed in [29]. The temporal efficient training (TET)
[7] method with a novel loss and a gradient descent regime that succeeds in
obtaining more generalized SNNs, has also attracted much attention. In RecDis-
SNN [13], a new perspective to understand the difficulty of training SNNs by
analyzing undesired membrane potential shifts is presented and the MPD-Loss
to penalize the undesired shifts is proposed. Numerous works verify that super-
vised learning can greatly reduce the number of timesteps and handle dynamic
datasets. It has increasingly aroused researchers’ interest in recent years. In this
work, we focus on improving the performance of the supervised learning-based
SNNs by repressing information loss, which is rarely mentioned in other works.

2.2 Threshold-dependent Batch Normalization

Batch Normalization (BN) is one of the most widely used normalization tech-
nologies, which is initially designed for very deep Convolutional Neural Networks
(CNNs). As it only focuses on normalizing the spatial feature maps, directly ap-
plying BN to SNNs would damage the temporal characteristic of SNNs, which
stand with spatio-temporal feature maps, leading to low accuracy. To address
this issue, some specially-designed normalization methods for SNNs were pro-
posed recently. Typically, to simultaneously balance neural selectivity and nor-
malize the neuron activity, NeuNorm [42] was proposed. Then, a more effective
normalization technique that can take good care of the firing threshold, named
threshold-dependent Batch Normalization (tdBN) was further proposed in [45].
It can normalize the feature maps of SNNs in both spatial and temporal do-
mains [45]. Specifically, let Xt ∈ RB×C×H×W represent the input maps at each
timestep, where t = 1, . . . , T (B: batch size; C: channel; (H,W ): spatial domain).

Then for each channel c, the spatio-temporal sequence X(c) = {X(c)
1 , · · · ,X(c)

T }
is normalized by tdBN as follows,

X̃
(c)

= λ · αVth(X
(c) − x̄(c))√

mean((X(c) − x̄(c))2) + ϵ
+ β, (1)

where Vth is the firing threshold, α is a network-structure-dependent hyper-
parameter, ϵ is a tiny constant, λ and β are two learnable parameters, x̄(c) =
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mean(X(c)) is the mean value ofX(c), X̃
(c)

is the normalized maps. In this paper,
tdBN is also adopted considering its spatio-temporal normalization mechanism.

3 Preliminary and Methodology

To avoid the information loss in supervised training-based SNNs, we propose the
“Soft Reset” IF (SRIF) model and Membrance Potential Rectificater (MPR).

3.1 “Soft Reset” IF Model

An SNN adopts a biology-inspired spiking neuron that accumulates inputs along
the time dimension as its membrane potential and fires a spike when the potential
exceeds the firing threshold. This mechanism makes it much different from its
DNN counterpart. For better introducing the proposed SRIF neuron, a unified
form defined by a recent work [11], is given to describe the dynamics of all kinds
of spiking neurons as follows,

H[t] = f(U [t− 1], X[t]), (2)

O[t] = Θ(H[t]− Vth), (3)

U [t] = H[t](1−O[t]) + VresetO[t], (4)

where X[t], H[t], U [t], and O[t] are the input, membrane potentials before and
after the trigger of a spike, and output spike at the timestep t, respectively. Vth

is the firing threshold, and is usually set to 0.5. Θ(·) is the step function defined
by Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. Vreset denotes the reset potential,
which is set as 0. The function f(·) describes the neuronal dynamics of spiking
neuron models, for the commonly used IF neuron and LIF neuron, f(·) can be
respectively defined as follows,

H[t] = U [t− 1] +X[t], (5)

H[t] = τU [t− 1] +X[t], (6)

where τ denotes the membrane time constant.
Both LIF and IF neurons have some unique advantages, with decay charac-

teristics introduced by the membrane time constant, LIF neuron behaves more
biologically compared with IF neuron, while IF neuron is more efficient due to its
addition-only processing manner. In terms of accuracy performance, neither of
them show an overwhelming advantage, and more detailed experimental results
of these two neurons are provided in Section 4. Considering the subtle gap in
performance, we prefer to use LIF model due to its neurodynamic characteristic,
from the perspective of brain science research. Conversely, from the perspective
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of computer science research, we recommend using IF model, since it is more
friendly to hardwares.

However, both the IF model and LIF model might undertake a greater or
lesser risk of information loss by the “Hard Reset” mechanism, i.e., when the
input membrane potentials exceed the firing threshold, the neurons will force the
membrane potentials to a fixed value. Such mechanism ignores the “residual”
parts of those fired membrane potentials. These “residual” parts contain the
diversity of the input potentials, and we argue that a neuron model which can
preserve the diversity or differences of these membrane potentials that cause the
firing is more suitable.

To this end, along with the consideration of efficiency, we propose using a
“Soft Reset” mechanism-based IF neuron, SRIF, which can keep the diversity of
the membrane potentials by subtracting their firing spike values from themselves
at the time where the threshold is exceeded. Though this similar “Soft Reset”
mechanism has been widely used in ANN2SNN [15,14,26,20], there are few works
to use it in supervised learning-based SNNs [23]. We found its value in this field
from a new perspective to reduce information loss. In SRIF neuron, Eq. (4) is
updated as

U [t] = H[t](1−O[t]) + (H[t]−O[t])O[t]. (7)

It can be further simplified as

U [t] = H[t]−O[t]. (8)

It can be seen that, similar to IF neuron, SRIF is also an addition-only model,
thus enjoying computational efficiency when implementing on hardwares. Fig.
2 compares the difference between IF neuron and SRIF neuron in an intuitive
way. Suppose that both models receive weighted input sequence of 1.5Vth, 1.2Vth,
1.5Vth, 0.9Vth, and 1.4Vth across 5 consecutive timesteps. Our SRIF neuron will
produce three spikes by retaining the residual potentials at the firing instants as
depicted in Fig. 2. Whereas, the IF neuron will produce four spikes.

3.2 Membrane Potential Rectificater

To further mitigate the information loss, we present a non-linear function, called
MPR by reducing the quantization error. MPR aims to redistribute the mem-
brane potential before it is operated by the step function. It only modulates the
membrane potential that is presented to the step function but does not modify
the value of membrane potential, which receives and accumulates spikes from
other neurons. Specifically, we further distinguish the membrane potentials as
the original one, H as in Eq. (2) and the modulated one, Ĥ, which is the mem-
brane potential that will be presented to the step function. In all previous works,
H and Ĥ are treated as the same. While in this paper, we would like to pro-
vide a new perspective that using a decoupling function to separate H and Ĥ
can be helpful. Specifically, H manages the original tasks as in other work, Ĥ
derives from H with a non-linear function, φ(·), and it will be fed into the step
function with a modulated form that can shrink the quantization error. With
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Fig. 2. The difference of “Hard Reset” IF neuron and “Soft Reset” IF (SRIF) neuron.

this decoupling mechanism, a neuron model can not only keep the membrane
potential updating rule but also enjoy less quantization error.

Before giving the full details of the MPR, we try to formulate the quantization
error first. It is clear that the quantization errors corresponding to different
membrane potentials should be different. Hence, a value closer to its quantization
spike, o, enjoys less quantization error. In specific, the firing threshold divides
the membrane potentials into two parts, the part with smaller values is assigned
to “0” spike, and the other with larger values is assigned to “1” spike. Then the
quantization error depends on the margin between the membrane potential and
its corresponding spike. Therefore, the quantization error can be defined as the
square of the difference between the membrane potential and its corresponding
quantization spike value as follows:

Lq = (u− o)2, (9)

where u is the membrane potential and o ∈ {0, 1}. when u is below the firing
threshold, o is 0, otherwise, 1.

Hence, the design of MPR should obey the following two principles:

– Spike-approaching: the modulated membrane potential, Ĥ should be closer
to the 0/1 spikes than the original membrane potential, H. This principle
ensures quantization error reduction.

– Firing-invariance: for the H less than Vth, the MPR should not produce
the Ĥ greater than Vth and vice versa. This principle ensures the neuron
output be consistent with or without using MPR.
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Fig. 4. The effect of the MPR. The original membrane potential distribution (left).
The redistributed membrane potential distribution by MPR (right).

Based on the above two principles, we define the MPR as the following sym-
metrical function:

φ(u) =


−(1− u)1/3 + 1, u<0,

1
2tanh(3/2) tanh(3(u− 1/2)) + 1/2, 0 ≤ u ≤ 1,

(u)1/3, u>1.

(10)

Fig. 3 shows the response curve of the designed MPR function following the
principles of spike-approaching and firing-invariance.

According to [45], the membrane potential follows a Gaussian distribution,
N (µ;σ). Hence, to visualize the effect of the MPR, we sample 1000,00 values from
a Gaussian distribution with N (1/2; 1), and present them to the MPR. Then
the distribution of these 1000,00 MPR outputs is drawn in Fig. 4. It can be seen
that the unimodal distribution, N (1/2; 1) is adjusted to a bimodal distribution
which is with less quantization error since it can naturally gather the membrane
potentials near “0” and “1”.

Moreover, it is worth noting that, the redistributed membrane potential,
Ĥ by MPR is only used for narrowing the gap between the true membrane
potential, H and its quantization spike. It will not replace the original H in our
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Algorithm 1 Feed-Forward procedures for the “soft reset” IF neuron with MPR.

Input: the input current, X.
Output: the output spike train, O.
Feed-Forward:

1: for for all t = 1, 2, . . . , T -th timesteps do
2: Update the membrane potential, H(t) by Eq. (11), which represents the mem-

brane potential accumulating the input current.
3: Redistribute the membrane potential, H(t) by Eq. (12) and denote the redis-

tributed membrane potential as Ĥ[t].
4: Calculate the output spike, O(t) by Eq. (13) using the new membrane potential,

Ĥ[t].
5: Update the membrane potential, U(t) by Eq. (14), which represents the mem-

brane potential after the trigger of a spike.
6: end for

SRIF neuron model. Then the complete new dynamics of the SRIF model can
be described as follows,

H[t] = U [t− 1] +X[t], (11)

Ĥ[t] = φ(H[t]), (12)

O[t] = Θ(Ĥ[t]− Vth), (13)

U [t] = H[t]−O[t]. (14)

The detailed Feed-Forward procedure for the SRIF neuron with MPR is given
in Algo.1.

4 Experiment

The proposed methods were evaluated on various static datasets (CIFAR-10 [21],
CIFAR-100 [21], ImageNet [6]) and one neuromorphic dataset (CIFAR10-DVS [25])
with widely-used spiking archetectures including ResNet20 [38,41], VGG16 [38],
ResNet18 [10], ResNet19 [45], and ResNet34 [10].

4.1 Datasets and Settings

Datasets. The CIFAR-10(100) dataset consists of 60,000 images in 10(100)
classes with 32 × 32 pixels. The number of the training images is 50,000, and
that of the test images is 10,000. The CIFAR10-DVS dataset is the neuromorphic
version of the CIFAR-10 dataset. It is composed of 10,000 images in 10 classes,
with 1000 images per class. ImageNet dataset has more than 1,250,000 training
images and 50,000 test images.



10 Guo, Y. et al.

Preprocessing. Data normalization is applied on all static datasets to en-
sure that input images have 0 mean and 1 variance. Besides, the random horizon-
tal flipping and cropping on these datasets were conducted to avoid overfitting.
For CIFAR-10, the AutoAugment [4] and Cutout [8] were used for data aug-
mentation. For the neuromorphic dataset, since the CIFAR10-DVS dataset does
not separate data into training and testing sets, we split the dataset into 9000
training images and 1000 test images similar to [43]. For data preprocessing and
augmentation, we resized the training image frames to 48 × 48 as in [45] and
adopted random horizontal flip and random roll within 5 pixels. And the test
images are just resized to 48× 48 without any additional processing.

Training setup. For all the datasets, the firing threshold Vth was set as 0.5
and Vreset as 0. For static image datasets, the images were encoded to binary
spike using the first layer of the SNN, as in recent works [38,11,10]. This is similar
to rate-coding. For the neuromorphic image dataset, we used the 0/1 spike format
directly. The neuron models in the output layer accumulated the incoming inputs
without generating any spike as the output like in [38]. For CIFAR-10(100) and
CIFAR10-DVS datasets, the SGD optimizer with the momentum of 0.9 and
learning rate of 0.01 with cosine decayed [30] to 0. All models were trained
within 400 epochs with the same batch size of 128. For the ImageNet dataset,
the SGD optimizer with a momentum set as 0.9 and a learning rate of 0.1 with
cosine decayed [30] to 0. All models are trained within 320 epochs as in [10]. The
batch size is set to 64.

4.2 Ablation Study for Different Neuron Models

We first conducted a set of ablation experiments to verify the effectiveness of
the proposed SRIF model on CIFAR-10(100) using ResNet20 as the backbone
under various timesteps without MPR. The results are shown in Tab. 1.

It can be seen that whether on CIFAR-10 or CIFAR-100, the SRIF neuron
always obtains the best result ranging from 2 timesteps to 8 timesteps. This in-
dicates the superiority of the SRIF neuron. On the other hand, the LIF neuron
performs better than the “Hard Reset” IF neuron on CIFAR-10, while the IF
neuron performs better on CIFAR-100, even though the LIF neuron is more like a
biological neuron. This comparison also shows that, although SNNs are proposed
to imitate the biological neural networks, for the implementation of large-scale
networks, they still need to rely on computer hardwares. Hence, the character-
istics of computational science should also be considered. In this respect, the
SRIF neuron is more suitable for its advantage of low power consumption and
capacity of reducing information loss.

4.3 Addition of MPR

Then, a set of ablation experiments for the MPR were conducted on CIFAR-
10(100) using ResNet20 and ResNet19 as backbones within 4 timesteps. Results
in Tab. 2 show that the MPR can greatly improve performance. Especially on
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Table 1. Ablation study for different neuron models without MPR.

Dataset Neuron model Timestep Accuracy

CIFAR-10

“Hard Reset” LIF 2 90.36%
“Hard Reset” IF 2 90.07%
“Soft Reset” IF (SRIF) 2 90.38%
“Hard Reset” LIF 4 92.22%
“Hard Reset” IF 4 92.04%
“Soft Reset” IF (SRIF) 4 92.46%
“Hard Reset” LIF 6 92.66%
“Hard Reset” IF 6 92.26%
“Soft Reset” IF (SRIF) 6 93.40%
“Hard Reset” LIF 8 92.90%
“Hard Reset” IF 8 92.86%
“Soft Reset” IF (SRIF) 8 94.09%

CIFAR-100

“Hard Reset” LIF 2 62.67%
“Hard Reset” IF 2 63.43%
“Soft Reset” IF (SRIF) 2 63.85%
“Hard Reset” LIF 4 66.00%
“Hard Reset” IF 4 66.95%
“Soft Reset” IF (SRIF) 4 67.90%
“Hard Reset” LIF 6 67.44%
“Hard Reset” IF 6 68.31%
“Soft Reset” IF (SRIF) 6 69.59%
“Hard Reset” LIF 8 67.85%
“Hard Reset” IF 8 69.14%
“Soft Reset” IF (SRIF) 8 69.90%

CIFAR-100, where ResNet20 with MPR increases the accuracy by 2.73%. These
results verify the effectiveness of MPR in terms of performance improvement.

We also computed the average quantization error of the first layer of the sec-
ond block in the ResNet20/19 before and after MPR on the test set of CIFAR-
10(100), respectively. Results in Tab. 3 show that the quantization error is obvi-
ously reduced by the MPR. The overall original membrane potential distribution
and modulated membrane potential distribution by MPR of the first layer of the
second block in ResNet20 on CIFAR-10 and CIFAR-100 test sets are shown in
Fig. 5. It shows that the MPR adjusts the membrane potential distribution near
“0” and “1”, which is closer to its quantization spike. Put together, these results
quantitatively support the effectiveness of MPR in reducing quantization error.

4.4 Comparisons with Other Methods

Our method was further compared with other state-of-the-art SNNs on static
and neuromorphic datasets. Results are shown in Tab. 4, where for each run,
the mean accuracy and standard deviation of 3 trials are listed. For simplifica-
tion, InfLoR (i.e., short for Information Loss Reducing) is used to denote the
combination of SRIF and MPR.
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Table 2. Ablation study for MPR.

Dataset Architecture Method Timestep Accuracy

CIFAR-10
ResNet20

SRIF w/o MPR 4 92.46%
SRIF w/ MPR 4 92.94%

ResNet19
SRIF w/o MPR 4 95.44%
SRIF w/ MPR 4 96.27%

CIFAR-100
ResNet20

SRIF w/o MPR 4 67.90%
SRIF w/ MPR 4 70.63%

ResNet19
SRIF w/o MPR 4 77.85%
SRIF w/ MPR 4 78.42%

Table 3. Quantization error.

Dataset Architecture Method Timestep Avg. error

CIFAR-10
ResNet20

Before MPR 4 0.28
After MPR 4 0.04

ResNet19
Before MPR 4 0.20
After MPR 4 0.03

CIFAR-100
ResNet20

Before MPR 4 0.38
After MPR 4 0.05

ResNet19
Before MPR 4 0.32
After MPR 4 0.04

CIFAR-10(100). For CIFAR-10, our method improves network performance
across all commonly used backbones in SNNs. ResNet19-based InfLoR-SNN
achieved 96.49% top-1 accuracy with 6 timesteps, which outperforms its STBP-
tdBN counterpart with 3.33% higher accuracy and its ANN counterpart 0.20%
higher accuracy even. The ResNet20-based InfLoR-SNN can reach to 93.65%,
while only 92.54% in [38]. And our VGG16-based network also shows higher ac-
curacy than other methods with fewer timesteps. On CIFAR-100, InfLoR-SNN
also performs better and achieves a 1.89% increment on VGG16. Noteworthy,
InfLoR-SNN significantly surpasses Diet-SNN [38] with 7.12% higher accuracy,
which is not easy to achieve in the SNN field. Again, our ResNet19 also outper-
forms its ANN counterpart. To our best knowledge, it is the first time that the
SNN can outperform its ANN counterpart.

ImageNet. For the ImageNet dataset, ResNet18 and ResNet34 were used
as the backbones. Results show that our ResNet18 achieves a 1.60% increment
on SEW ResNet18 and a 2.46% increment on Spiking ResNet18. The accuracy
of our ResNet34 does not exceed SEW ResNet34. However, SEW ResNet34 [10]
transmits information with integers, which is not a typical SNN. For a fair com-
parison, we also report the result of Spiking ResNet34 in [10] which is worse
than our method. Moreover, our InfLoR-based ResNet34 with 4 timesteps still
obviously outperforms STBP-tdBN-based RersNet34 with 6 timesteps.
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Table 4. Comparison with SoTA methods.* denotes self-implementation results.

Dataset Method Type Architecture Timestep Accuracy

CIFAR-10

SpikeNorm [41] ANN2SNN VGG16 2500 91.55%
Hybrid-Train [39] Hybrid VGG16 200 92.02%
Spike-basedBP [24] SNN training ResNet11 100 90.95%
STBP [43] SNN training CIFARNet 12 90.53%
TSSL-BP [44] SNN training CIFARNet 5 91.41%
PLIF [11] SNN training PLIFNet 8 93.50%

Diet-SNN [38] SNN training
VGG16

5 92.70%
10 93.44%

ResNet20
5 91.78%
10 92.54%

STBP-tdBN [45] SNN training ResNet19
2 92.34%
4 92.92%
6 93.16%

ANN* ANN ResNet19 1 96.29%

InfLoR-SNN SNN training

ResNet19
2 94.44%±0.08
4 96.27%±0.07
6 96.49%±0.08

ResNet20
5 93.01%±0.06
10 93.65%±0.04

VGG16
5 94.06%±0.08
10 94.67%±0.07

CIFAR-100

BinarySNN [31] ANN2SNN VGG15 62 63.20%
Hybrid-Train [39] Hybrid VGG11 125 67.90%
T2FSNN [35] ANN2SNN VGG16 680 68.80%
Burst-coding [34] ANN2SNN VGG16 3100 68.77%
Phase-coding [19] ANN2SNN VGG16 8950 68.60%

Diet-SNN [38] SNN training
ResNet20 5 64.07%
VGG16 5 69.67%

ANN* ANN ResNet19 1 78.61%

InfLoR-SNN SNN training

ResNet20 5 71.19%±0.09

VGG16
5 71.56%±0.10
10 73.17%±0.08

ResNet19
2 75.56%±0.11
4 78.42%±0.09
6 79.51%±0.06

ImageNet

Hybrid-Train [39] Hybrid ResNet34 250 61.48%
SpikeNorm [41] ANN2SNN ResNet34 2500 69.96%
STBP-tdBN [45] SNN training ResNet34 6 63.72%

SEW ResNet [10] SNN training
ResNet18 4 63.18%
ResNet34 4 67.04%

Spiking ResNet [10] SNN training
ResNet18 4 62.32%
ResNet34 4 61.86%

InfLoR-SNN SNN training
ResNet18 4 64.78%±0.07
ResNet34 4 65.54%±0.08
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MPR

MPR

On CIFAR-10

On CIFAR-100

Fig. 5. The effect of MPR. The overall original membrane potential distribution (left)
and the redistributed membrane potential distribution by MPR (right) of the first layer
of the second block in ResNet20 on CIFAR-10 and CIFAR-100 test sets.

Table 5. Training Spiking Neural Networks on CIFAR10-DVS.

Dataset Method Type Architecture Timestep Accuracy

CIFAR10-DVS

Rollout [22] Rollout DenseNet 10 66.80%
STBP-tdBN [45] SNN training ResNet19 10 67.80%

InfLoR SNN training
ResNet19 10 75.50%±0.12
ResNet20 10 75.10%±0.09

CIFAR10-DVS. For the neuromorphic dataset, CIFAR10-DVS, InfLoR-
SNN achieves the best performance with 75.50% and 75.10% top-1 accuracy
in 10 timesteps with ResNet19 and ResNet18 as backbones, and obtains 7.80%
improvement compared with STBP-tdBN for ResNet19. It’s worth noting that,
as a more complex model, ResNet19 only performs a little better than ResNet20
on CIFAR10-DVS. It might be that this neuromorphic dataset suffers much more
noise than static ones, thus a more complex model is easier to overfit.

5 Conclusions

This work aims at addressing the information loss problem caused by the “Hard
Reset” mechanism of neurons and the 0/1 spike quantification. Then, the SRIF
model, which will drive the membrane potential to a dynamic reset potential,
and the MPR that can adjust the membrane potential to a new value closer
to quantification spikes than itself are proposed. A detailed analysis of why
the SRIF and MPR can reduce the information loss is provided. Furthermore,
abundant ablation studies of the proposed methods are given. Combining these
two methods, our SNNs outperform other state-of-the-art methods.
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