
Supplementary Materials of
Efficient One Pass Self-distillation with Zipf’s

Label Smoothing

Jiajun Liang , Linze Li , Zhaodong Bing, Borui Zhao, Yao Tang, Bo Lin, and
Haoqiang Fan

MEGVII Technology
{liangjiajun,lilinze,bingzhaodong,zhaoborui,tangyao02,linbo,fhq}@megvii.com

1 Explanation to empirical observation

We find that the Zipf’s prior could help generate non-uniform supervision for
non-target classes in a one-pass way. In this section, we provide a simple in-
tuition to explain why Zipf’s law should occur for predictions from multi-class
classification.

We postulate that one main source of the non-zero network predictions is the
inevitable non-orthogonality of the inter-class feature vectors as more and more
classes are packed into the finite-dimensional feature space. In a simplified model,
we assume that the decision vectors corresponding to each class are uniformly
distributed on a high-dimensional unit sphere. Then for another random query
vector on the sphere, their inner-products with it distribute in the shape of a
Gaussian when the dimension is high enough.

We propose a toy experiment to verify that softmax Gaussian logits fit Zipf’s
law well. As shown in Algorithm 1, first, we sampled random vectors from multi-
variate normal distribution N (0, I1000) as logits of different samples. Then logits
for each sample are sorted and applied with softmax to get probabilities. At last,
we average the sorted probabilities across all samples and plot the probabilities-

Fig. 1: softmax Gaussian logits fit Zipf’s law well
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rank relation for the top 32 categories in log-log space. It could be seen that a
straight line pattern shows up in Figure 1.

Algorithm 1: simulation of ranking softmax Gaussian logits
# generate Gaussian logits,1000 samples, 1000 classes

logits = np.random.randn(1000, 1000)

# sort in class dimension

sorted logits = np.sort(logits, axis=1)

# probability predictions by applying soft-max on the logits

sorted preds = np.exp(sorted logits) /

np.sum(np.exp(sorted logits),axis=1)[:,None]

# averaged across samples

mean sorted preds = np.mean(sorted preds, axis=0)

# top 32 ranks considered

top32 sorted preds = mean sorted preds[::-1][:32]

We also compare several most frequently-used distributions of long-tail shapes
(Zipf’s law, exponential and log-normal) to fit the empirical softmax scores,
as shown in Table 1. All parameters of distributions are estimated by most-
likelihood estimation. Common statistical test metrics such as R square are
measured. Zipf’s law outperforms the other two in all kinds of metrics.

Table 1: Statistical test of how well different distributions fit on empirical aver-
aged predictions on INAT-21. The top 50 categories are considered. For tests such as
Chisquare and Kolmogorov–Smirnov which heavily rely on the amount of the samples,
we sample 105 instances from the empirical distribution. D is the Kolmogorov–Smirnov
statistic and p is the p-value. Zipf’s law outperforms the other two by all kinds of met-
rics.

Metric Zipf’s law Exponential Log-normal

R2 0.99992 0.6768 0.9672

Kullback–Leibler divergence 0.0000667 0.315 0.0219

Jensen–Shannon divergence 0.0000167 0.063 0.00544

Chisquare 13.3 451677 4499

Kolmogorov–Smirnov D=0.00278 D=0.265 D=0.0823
p=0.42 p=0.0 p=0.0

2 More Experiment Details and Discussion

2.1 Hyperparameters

Hyperparameters setting rules. Table 2 shows the detail of hyperparame-
ters settings for different tasks. α controls the decay shape of Zipf’s distribution,
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Table 2: The detail of hyper parameters for different datasets.

Dataset λ α dense layer β

CIFAR100 0.1 1.0 2 0.1
TinyImageNet 1.0 1.0 2 0.5
ImageNet 0.1 1.0 1 /
INAT21 1.0 1.0 1 /

and is set to 1.0 in all tasks. λ controls the regularization strength, which is
set to 0.1 for CIFAR100 and ImageNet, and 1.0 for TinyImageNet and NAT21.
For datasets with large-resolution inputs, such as ImageNet and INAT, using
the final dense feature maps would be sufficient, and no more dense layers are
required. For low-resolution tasks such as CIFAR100 and TinyImageNet, we use
one more dense layer to get enough votes for dense ranking. In this case, we need
β to weigh the cross-entropy loss for learning the extra classifier. β is set to 0.1
and 0.5 respectively on CIFAR100 and TinyImageNet.

Hyperparameters ablation study. 1) α is not sensitive where α ∈ [0.5, 1.5].
2) λ is to control regularization strength and is positively correlated with the
train/val acc gap. For tasks that are prone to overfitting(TinyImageNet and
INAT whose train/val gap are 35% and 25%), λ is 1.0. For tasks that are less
overfitting(ImageNet train/val gap is 4%), λ is 0.1. 3) β is optional and only
recommended for small resolution tasks. It should be less than 0.5 to avoid
shadow learning of deeper layers. See Table 3 for details.

Table 3: Ablation study of hyperparameters α,λ and β

α 0.1 0.5 1.0 1.5 2.0

CIFAR100 77.21±0.29 77.26±0.13 77.38±0.32 77.12±0.24 76.45±0.12
TinyImageNet 58.85±0.16 59.06±0.21 59.25±0.20 58.64±0.18 53.35±0.41

λ 0.01 0.1 0.5 1.0 1.5

CIFAR100 76.59±0.15 77.38±0.32 76.62±0.24 76.79±0.04 76.92±0.17
TinyImageNet 56.86±0.36 57.65±0.01 58.41±0.17 59.25±0.20 58.03±0.27

β(optional) 0.05 0.1 0.3 0.5 0.7

CIFAR100 77.24±0.22 77.38±0.32 76.75±0.31 76.39±0.16 76.49±0.24
TinyImageNet 58.71±0.17 58.77±0.18 59.48±0.31 59.25±0.20 59.00±0.12

2.2 SNR of Ranking

Ranking the classes accurately is a key factor to generate proper Zipf’s law distri-
bution for the sample. In the method section, we propose a finer ranking method
named dense classification ranking which exploits spatial classification results
from the last few feature maps. A consequence of this voting-based method is



4 Jiajun Liang et al.

(a) SNR-Rank relation across all
classes

(b) SNR-Rank relation across top
40 classes

Fig. 2: SNR-Rank relation plot for trained ResNet-50 model in INAT21 dataset. It can
be seen that only the top 40 rankings have SNR larger than 1, which makes it hard to
give reliable ranks for tailing class on the fly.

that we have to clip the Zipf’s values to a uniform one after a certain rank,
as they would not receive sufficient votes to be distinguished individually. To
illustrate that ranking only a few top non-target classes is sufficient, we study
the signal-to-noise ratio of rankings. The signal and noise of specific rank r are
calculated as the average and standard deviation among r-th probabilities from
different sorted samples respectively. As shown in Figure.2, we plot the SNR-
rank curve on the INAT21 dataset, only the top 40 out of 10000 ranks whose
SNR is larger than one. It’s a good trade-off to just give power-law decayed
probabilities to the top-ranking class since the SNR of tailing ranks is too low
to give reliable ranks.

2.3 More Zipf’s Soft Label Examples

Figure 4 illustrates more results of the top-5 predictions of our proposed method
compared with the baseline method. The top three rows are sampled from Im-
ageNet while the bottom three rows are sampled from INAT21. It can be seen
that: (1) There are several categories similar to the target class shown up in
Zipf’s soft labels, which provide meaningful label representations for the net-
work to better grasp the concept of the target class. (2) Fine-grained categories
of the target class emerge in Zipf’s soft labels, which can provide similar “dark
knowledge” as knowledge distillation.
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Fig. 3: Comparison of loss landscape with efficient teacher-free methods

2.4 Generalization: Performance on downstream tasks

To measure the power of generalization of Zipf’s LS, we conducted the transfer
learning task by fine-tuning ImageNet pre-trained models on MS-COCO, as
shown in Table 4. Besides, we visualize loss landscapes [2] of several efficient
teacher-free methods(see Fig 3), Zipf’s LS achieves more flat convergence, which
is a possible hint for better generalization [1].

Table 4: ImageNet pretrained ResNet50 for object detection

Method Vanilla(CE) TF-KD PS-KD Zipf’s LS(Ours)

AP 36.4% 36.4% 36.5% 36.6%
AP@0.5 58.3% 56.7% 56.7% 58.8%
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GT: Thamnophilus_doliatus

GT: Polistes_humilis

images Zipf's soft labelOursBaseline prediction

GT: Hylephila_phyleus

GT: water buffalo

GT: standard poodle

GT: hoopskirt

Fig. 4: Top-5 predictions visualization of our proposed method (Zipf’s label smoothing)
compared with the baseline method (cross-entropy). The dark green, light green and
red denote ground-truth, similar and irrelevant categories respectively. “GT” denotes
the ground truth label and thus the hard label of the baseline method. The baseline
prediction is acquired under the supervision of the hard label and misclassified on the
samples. Our method exploits target-relevant categories to better represent the image,
and obtains better results.
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