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Abstract. Knowledge distillation transfers the knowledge from a cum-
bersome teacher to a small student. Recent results suggest that the
student-friendly teacher is more appropriate to distill since it provides
more transferrable knowledge. In this work, we propose the novel frame-
work, “prune, then distill,” that prunes the model first to make it more
transferrable and then distill it to the student. We provide several ex-
ploratory examples where the pruned teacher teaches better than the
original unpruned networks. We further show theoretically that the pruned
teacher plays the role of regularizer in distillation, which reduces the gen-
eralization error. Based on this result, we propose a novel neural network
compression scheme where the student network is formed based on the
pruned teacher and then apply the “prune, then distill” strategy. The
code is available at https://github.com/ososos888/prune-then-distill.

Keywords: Knowledge distillation, label smoothing regularization (LSR),
neural network compression, pruning

1 Introduction

Recent progress in neural networks (NN) in various tasks highly depends on
its over-parameterization, such as classification [21, 55], language understand-
ing [7, 8], and self-supervised learning [3, 15]. This leads to extensive computa-
tional cost and even causes environmental issues [38]. Therefore, neural network
compression techniques have received increasing attention, such as knowledge
distillation [20,40,51] and pruning [9, 13,26,31].

Knowledge distillation (KD) [20] is a model compression tool that transfers
the features from a cumbersome network to a smaller network. At first glance,
a powerful teacher with higher accuracy may show better distillation results;
however, Cho and Hariharan [4] showed that the less-trained teacher teaches
better when the student network does not have enough capability. Lately, a line
of works has proposed distillation schemes that focus on a “student-friendly”
teacher, which provides more transferrable knowledge to the student network
with limited capacity [36,37].

On the other hand, network pruning [26] is another network compression
technique that effectively removes networks’ weights or neurons while maintain-
ing accuracy. Since pruning simplifies the neural network, we naturally conjec-
ture that the pruned teacher provides student-friendly knowledge that is easier
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to transfer. This intuition leads us to our main question: can pruning boost the
performance of knowledge distillation?

To answer this question, we propose a new framework, “prune, then distill,”
consisting of three steps: 1) train the (teacher) network, 2) prune the (teacher)
network, and 3) distill the pruned network to the smaller (student) network. We
examine several simple experiments to verify the proposed idea that compares
the test accuracy of student networks with and without (unstructured) pruning
on the teachers’ side. More precisely, We conduct three experiments: 1) distill
VGG19 [43] to VGG11, 2) distill VGG19 and ResNet18 [16] to itself (self dis-
tillation), and 3) distill ResNet18 to VGG16 and MobileNetV2 [42]. In all three
cases, we observe that the student learned from the pruned teacher generally
outperforms the student learned from an unpruned teacher.

We then provide theoretical support to answer why the pruned teacher is
better in distillation. Knowledge distillation can be viewed as a label smoothing
regularization (LSR) [54,58], which regularizes training by providing a smoother
label. We find that a teacher trained with regularization provides a smoother
label than the original teacher. This implies that the distillation with a regu-
larized teacher is equivalent to LSR with smoother labels. Since pruning can
be viewed as a regularized model with a sparsity-inducing regularizer [28], we
conclude that the pruned teacher regularizes the distillation process.

Based on the observation that pruned teacher provides a better knowledge
in distillation, we then suggest a novel network compression scheme. When a
cumbersome network is provided, we want to compress the network by apply-
ing the “prune, then distill” strategy. However, since the distillation transfers
knowledge to a given student network, the student network architecture design is
required. The main idea of student network construction is matching the teacher
and the student layerwise. We propose a student network with the same depth
but fewer neurons so that the number of weights per layer matches the number of
nonzero weights of the pruned network in the corresponding layer. We evaluate
the proposed compression scheme with extensive experiments.

We summarize our contributions as:

– We propose a novel framework, “prune, then distill,” that prunes teacher
networks before distillation.

– We examine experiments that verify unstructured pruning on the teacher
can boost the performance of knowledge distillation.

– We also provide a theoretical analysis that the distillation from a pruned
teacher is effectively a label smoothing regularization with smoother labels.

– We propose a novel network compression that constructs the student network
based on the pruned teacher, then apply the “prune, then distill” strategy.

2 Related Works

This section is devoted to prior works on neural network (NN) compression that
are related to our work. In particular, we focus on knowledge distillation and
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network pruning. Note that there are other NN compression techniques such as
quantization [2, 29], coding [14,50], and matrix factorization [22,41].

2.1 Knowledge Distillation

Knowledge distillation (KD) [20] transfers the knowledge from the strong teacher
network to a smaller student network. The student network is trained with soft
targets provided by the teacher network and some intermediate features [40,52,
56]. There are variations of KD such as KD using GAN [51], Jacobian matching
KD [5,44], distillation of activation boundaries [19], contrastive distillation [48],
and distillation from graph neural networks [23,52].

Recently, many works have reported that the large gap between student and
teacher causes degradation in student network performance [36]. Cho and Hari-
haran showed that the less-trained network transfers better knowledge to a small
network [4]. Park et al. [37] proposed a student-aware teacher learning to trans-
fer the teacher’s knowledge effectively. In this paper, we provide an extremely
simple way to generate a student-friendly teacher using unstructured pruning.

2.2 Pruning

There are two main branches of pruning: 1) unstructured pruning, which prunes
individual weights, and 2) structured pruning, which prunes neurons (in most
cases, channels of convolutional neural networks). Although both approaches
share a similar idea, these two strategies have been developed independently.
Unstructured pruning: Unstructured pruning [26] removes NN components
in weight-level while maintaining the number of neurons in the network. A gen-
eral pruning pipeline consists of three steps: 1) train a large network, 2) prune
weights (or neurons) based on its own rule, then 3) fine-tune the pruned model.
The iterative magnitude pruning (IMP) technique, which iteratively applies
magnitude-based pruning and fine-tuning, shows remarkable performance [13].
Lottery ticket rewinding (LTR), an iterative magnitude pruning method with
weight rewinding, is highly successful [9, 10]. Recently, IMP with learning rate
(LR) rewinding, which repeats the learning rate schedule, shows better results
in bigger networks [39]. However, the network architecture after unstructured
pruning remains the same (i.e., number of channels per layer). It is hard to fully
enjoy the benefit of a pruned network without dedicated hardware [12].
Structured pruning: Structured pruning removes NN parameters at the level
of neurons (mostly channels) [1,31,32,35,46]. It provides a smaller network with
efficient network architecture, and we can save computational resources without
designing dedicated hardware or libraries. Like magnitude-based unstructured
pruning, the most naive method is to prune filters based on weights [17, 31].
Another approach is adding an extra regularizer that induces sparsity while
training [18, 49, 57]. Liu et al. [33] and Ye et al. [53] proposed the structured
pruning scheme based on batch normalization (BN) scale factor of filters. Zhuang
et al. [59] adds polarization regularizer to structured pruning with BN scale
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Fig. 1: Overview of the “prune, then distill” strategy. Instead of distilling directly
from the teacher to the student (blue dotted box), we prune the teacher first,
then distill from the pruned teacher to the student (red dotted box).

factor. However, due to the structural constraint, the pruned network has more
weights (parameters) than unstructured pruning [34].

3 Prune, then Distill

3.1 Exploratory Experiments

We conduct experiments to verify the effectiveness of pruned teachers in KD.
Instead of distilling the teacher network directly (dotted-blue block in Figure 1),
we first (unstructured) prune the teacher network and then distill to the student
network (dotted-red block in Figure 1).

Setups: Wemainly considers VGG [43] and ResNet [16] for the teacher network,
where VGG is trained on the CIFAR100 dataset [24] and ResNet is trained on
the TinyImageNet dataset [25]. The TinyImageNet dataset is a subset of resized
(3×64×64) ImageNet dataset [6]. We reserve 10% of the data as a validation set
in all training. We apply unstructured pruning that removes more weights, more
precisely LR rewinding [39], to prune the teacher model. In LR rewinding, we
set the ratio of epochs by 0.65 for VGG-CIFAR100. In other words, we train the
VGG19 for 200 epochs initially, then rewind the learning rates and retrains (fine-
tuning) the network for 130 epochs (65%). Note that the different ratios from
0.6 to 0.9 do not make significant differences in pruning, and we use the ratio
of 0.5 for ResNet-TinyImageNet. For a fair comparison, we train (and distill)
networks with enough epochs and halt the training at their best performance
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Table 1: Knowledge distillation from VGG19 to VGG11 on CIFAR100 with
teacher pruning. VGG19DBL is the VGG19 with 2× more filters per layer.
Teacher “None” indicates the student is trained without a teacher, while the
pruning ratio “None” means the distillation from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - VGG11 69.51 ± 0.24

VGG19

None 73.13 VGG11 72.02 ± 0.27
36% 73.30 VGG11 72.76 ± 0.10
59% 72.25 VGG11 72.59 ± 0.32
79% 73.43 VGG11 72.67 ± 0.34

VGG19DBL

None 74.44 VGG11 71.81 ± 0.29
36% 73.46 VGG11 72.01 ± 0.11
59% 73.24 VGG11 72.40 ± 0.25
79% 73.50 VGG11 72.48 ± 0.19

on validation dataset. All test accuracies are the average of three independent
experiments, and we also provide the standard deviation.

For simplicity, we use the vanilla KD [20] with appropriate balancing param-
eter α and temperature τ . The balancing parameter α represents the ratio of two
objectives (distill loss and hard-target loss). The temperature τ is a softening
parameter, where higher τ produces a softer target. In the experiment, we fix
the parameters by α = 0.95 and τ = 10. More detailed training parameters are
provided in Appendix. Note that the purpose of experiments is not achieving the
best test accuracy but to compare between distilling from a pruned network and
distilling from an unpruned network. Thus, hyperparameters, as well as network
architectures, are not optimized for test accuracies. Instead, we use as-is settings
for a fair comparison between the pruned teacher and the unpruned teacher. For
example, we follow default settings for MobileNetV2 [42] and ResNet18 [16] op-
timized for ImageNet dataset [6], while we use TinyImageNet dataset [25].

Distill VGG19 to VGG11: We set VGG19 [43] as a teacher network and
VGG11 as a student network. The network architecture of VGG is unchanged
except for the number of fully connected (FC) layers, where our VGG has a single
FC layer (which is commonly used for CIFAR10 data). Then, we compare the KD
results on the CIFAR100 dataset [24] between the regular VGG19 teacher and the
pruned VGG19 teacher. We prune the teacher network with three sparsity levels:
36% sparsity (36% of weights are removed), 59% sparsity, and 79% sparsity.

Surprisingly, as shown in Table 1, VGG11 with pruned VGG19 consistently
outperforms the one with the unpruned teacher. Table 1 also provides results
when the teacher network is VGG19DBL, with 2× many channels in each layer.
In both cases, the pruned teacher shows better performance.

Self distillation: Motivated by [11, 54], we conduct the self distillation ex-
periment, where the teacher and the student share the same model. We con-
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Table 2: Self distillation of VGG19 and ResNet18 with teacher pruning. DBL
model has the same model structure with 2× more filters per layer. Teacher
“None” indicates the student is trained without a teacher, while the pruning
ratio “None” means the distillation from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - VGG19 72.76 ± 0.33

VGG19

None 73.13 VGG19 73.74 ± 0.20
36% 73.30 VGG19 74.10 ± 0.26
59% 72.25 VGG19 74.26 ± 0.37
79% 73.43 VGG19 74.35 ± 0.10

None - - VGG19DBL 74.62 ± 0.21

VGG19DBL

None 74.44 VGG19DBL 74.78 ± 0.37
36% 73.46 VGG19DBL 75.16 ± 0.44
59% 73.24 VGG19DBL 75.26 ± 0.77
79% 73.50 VGG19DBL 75.05 ± 0.92

None - - ResNet18 57.75 ± 0.24

ResNet18

None 57.75 ResNet18 57.97 ± 0.10
36% 57.66 ResNet18 59.39 ± 0.21
59% 57.58 ResNet18 58.99 ± 0.26
79% 57.32 ResNet18 59.33 ± 0.18

None - - ResNet18DBL 60.21 ± 0.24

ResNet18DBL

None 60.46 ResNet18DBL 61.35 ± 0.02
36% 61.97 ResNet18DBL 63.03 ± 0.38
59% 61.80 ResNet18DBL 63.19 ± 0.21
79% 61.66 ResNet18DBL 63.16 ± 0.02

sider VGG19 and VGG19DBL with CIFAR100 dataset, where ResNet18 and
ResNet18DBL are trained on the TinyImageNet dataset. Table 2 shows the test
accuracies of 1) the model without KD, 2) the model learned from the unpruned
teacher, and 3) the model learned from the pruned teacher. Similar to other ex-
periments, we also observe the consistent result where the pruned model teaches
better than the unpruned teacher. Note that learning from unpruned network
also increases the test accuracy (compared to the one without a teacher); how-
ever, the gain with the pruned teacher is more significant.

Distill ResNet18 to VGG and MobileNet: We also investigate the KD from
the pruned teacher when the student and the teacher have different network
architectures. Specifically, we consider the TinyImageNet dataset, where the
teacher is ResNet18 and students are VGG16 and MobileNetV2 [42]. Table 3
compares the test accuracies of 1) student without a teacher, 2) student learned
from the unpruned teacher, and 3) student learned from the pruned teacher.
Consistently, we observe the better KD performance when the teacher is pruned.
This implies that the better distillation is not limited to the case of the similar
architecture between teacher and student networks.
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Table 3: Distillation from ResNet18 to MobileNetV2 and VGG16 with teacher
pruning. Teacher “None” indicates the student is trained without a teacher, while
the pruning ratio “None” means the distillation from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - VGG16 53.31 ± 0.45

ResNet18

None 57.75 VGG16 54.75 ± 0.29
36% 57.66 VGG16 56.35 ± 0.35
59% 57.58 VGG16 55.86 ± 0.04
79% 57.32 VGG16 56.49 ± 0.15

None - - MobileNetV2 50.79 ± 0.44

ResNet18

None 57.75 MobileNetV2 56.10 ± 0.23
36% 57.66 MobileNetV2 56.73 ± 0.24
59% 57.58 MobileNetV2 56.73 ± 0.43
79% 57.32 MobileNetV2 57.20 ± 0.25

Remark: One might suspect that better distillation result is due to higher ac-
curacy of the teacher, where the pruned model often achieves better accuracy [9].
However, the higher accuracy of the teacher network does not guarantee better
results in distillation [45]. Also, the pruned teacher works better even when test
accuracy is lower than the unpruned teacher. For example, pruning decreases the
test accuracy of the teacher network in ResNet18-TinyImageNet, where we ob-
serve that the pruned teacher transfers the knowledge better. This implies that
the pruned teacher is better not because it has higher accuracy, but it provides
better transferable knowledge.

We also investigate the agreement between the teacher and the student’s
prediction (details provided in Appendix). As shown by Stanton et al. [45], we
observe that the agreement and the accuracy behave independently. For exam-
ple, in VGG19 self distillation experiments, the pruned teacher provides a higher
agreement, and the corresponding student has a higher accuracy; however, in
ResNet18 self distillation, the pruned teacher shows lower agreement although
the student’s accuracy is higher. It implies that some students mimic the teacher
better but perform worse. This result supports our theory that distillation indi-
rectly helps the training student models with additional regularization.

3.2 Pruned Teacher as a Regularizer

In this section, we provide a theoretical analysis on the pruned teacher in KD. We
first point out that the teacher trained with a regularizer provides an additional
regularization during distillation.

Let {(xi, yi)}Ni=1 be the dataset where the label yi takes value from the set
{1, 2, . . . ,K}. We are interested in a classification model which outputs a K-
dimensional probability distributions. Let ftrue(xi) ∈ RK be the one-hot encoded
vector where ftrue(xi)[yi] = 1 for the ground-truth label yi and ftrue(xi)[y

′] = 0
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for all y′ ̸= yi. We further let ft(x;w) be the output of the teacher network
when the input is x and the weight is w. Then, we train the teacher ft(·;w) and
achieve wt that minimizes the cross entropy loss

LCE(w) =
1

N

N∑
i=1

H(ftrue(xi), ft(xi;w)), (1)

where the cross-entropy loss is defined by H(p1, p2) = −
∑K

k=1 p1[k] log p2[k].
Similarly, fs(x; w̃) is the output of the student network when the input is x

and the weight is w̃. For the temperature τ = 1, the knowledge distillation loss
is given by

LKD(w̃) =
1

N

N∑
i=1

(1− α)H(ftrue(xi), fs(xi; w̃)) + αH(ft(x;wt), fs(x; w̃)). (2)

Yuan et al. [54] showed that the KD is equivalent to label smoothing regulariza-
tion (LSR). More precisely, the author showed that

LKD(w̃) =
1

N

N∑
i=1

H(f (α)
m (xi;wt), fs(xi; w̃)), (3)

where f
(α)
m (x;wt) = (1−α)ftrue(x)+αft(x;wt), and therefore KD is equivalent

to label smoothing regularization with smoothed label distribution f
(α)
m (x;wt).

We then consider the case where the teacher is trained with a regularizer
R(w). The regularized teacher ft(·;wp) is obtained by minimizing

LREG(w) =
1

N

N∑
i=1

H(ftrue(xi), ft(xi;w)) +R(w), (4)

i.e., LREG(wp) = minw LREG(w). Since LCE(wt) = minw LCE(w), we have

1

N

N∑
i=1

H(ftrue(xi), ft(xi;wt)) ≤
1

N

N∑
i=1

H(ftrue(xi), ft(xi;wp)) (5)

1

N

N∑
i=1

H(ftrue(xi), ft(xi;wp)) +R(wp) ≤
1

N

N∑
i=1

H(ftrue(xi), ft(xi;wt)) +R(wt)

(6)

which implies

0 ≤ 1

N

N∑
i=1

log
ft(xi;wt)[yi]

ft(xi;wp)[yi]
≤ R(wt)−R(wp) (7)

Thus, ft(xi;wt)[yi] is larger than ft(xi;wp)[yi] on average.
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Fig. 2: Student network design. The number of channels of the student network
is adjusted so that each layer’s parameters match the number of nonzero param-
eters in each layer of the pruned teacher.

Recall that the distillation from ft(xi;wt) is equivalent to label smoothing

regularization with smoothed label distribution f
(α)
m (x;wt) = (1− α)ftrue(x) +

αft(x,wt). If we distill from ft(xi;wp) to the student, then it is essentially label

smoothing regularization with a new smoothed label distribution f
(α)
m (x;wp) =

(1−α)ftrue(x)+αft(x,wp). Since Eq. (7) implies that the new smoothed distri-

bution f
(α)
m (xi;wp) has a smaller weight at the true label yi on average, we can

conclude that f
(α)
m (xi;wp) is smoother1 than f

(α)
m (xi;wt). In other words, the

regularization in teacher training also regularizes student distillation further.
Note that Eq. (7) provides an upper bound of the ratio between the teacher’s
output and the regularized teacher’s output at the true label. This effectively
measures the smoothness of a smoothed label in label smoothing regularization.

The pruning can be viewed as a solution of the empirical risk minimization
problem with sparsity-inducing regularization [28]. Thus, the distillation from
the pruned teacher is a label smoothing regularization with smoother label dis-
tribution, which reduces a generalization error.

4 Transferring Knowledge of Sparsity

Based on the observation that the pruned teacher transfers the better knowl-
edge, we propose a novel network compression framework that learns from the
(unstructured) pruned network. The critical challenge is a student network ar-
chitecture design to learn effectively from the pruned teacher.

More formally, let ft(·;wt) be a cumbersome network to compress, and the
goal is to compress it to a smaller network fs(·;ws). In the previous section, we
considered the distillation to a given student network. On the other hand, in
this section, we provide a detailed architecture design for a student network fs
based on the pruned teacher ft(·;wp).

On top of the “prune, then distill” as described in Figure 1, we add student
network architecture design. The key idea of student network design is that the

1 Instead of label’s self-entropy, we measure the smoothness with true label’s weight.
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pruned teacher can also provide sparsity knowledge. We construct the narrower
student where each layer matches the corresponding layer of the pruned teacher.
More precisely, the student network has the same depth, but the number of
channels per layer is reduced so that the number of weights is (approximately)
equal to the number of remaining parameters in the pruned teacher (as described
in Figure 2). The intuition is to build a student network where each layer has
enough capacity to learn from the pruned teacher. The rigorous construction of
the student network is described in Appendix. Thus, the proposed compression
algorithm has four steps:

1. Train the original network and obtain ft(·;wt).
2. Apply the unstructured pruning and obtain pruned network ft(·;wp).
3. Construct fs based on each layer’s sparsity of the pruned network ft(·;wp).
4. Distill the pruned network ft(·;wp) to the student fs(·;ws).

Note that the above framework does not depend on the specific choice of
distillation or pruning method. In Section 5, we apply LR rewinding [39] to
prune the model, and apply the vanilla KD [20] to distill the pruned teacher.

The proposed scheme transfers knowledge from the sparse network (from
unstructured pruning) to a network with fewer channels to reduce the number
of channels further. This is similar to residual distillation [30] which removes
unwanted parts (residual connections) of residual networks. In our setting, we
remove unwanted parts (more channels) of unstructured pruning by merging
sparse filters into fewer filters via KD.

Note that our compression framework can be viewed as structured prun-
ing since it effectively removes neurons (channels) of a given network. Since
structured pruning is nearly an architecture search algorithm [34], the proposed
framework suggests a novel network architecture search algorithm that learns
from unstructured pruning. Recall that recent global unstructured pruning algo-
rithms [27] (where the pruning scheme actively determines the pruning ratio for
each layer) outperform precisely designed layerwise sparsity selection schemes.

5 Experiments

In this section, we present our experimental results verifying the proposed al-
gorithm. Similar to Section 3, we compare test accuracies of three scenarios: 1)
train student network without a teacher, 2) distill the pruned teacher to the
student network, and 3) distill the original (unpruned) teacher to the student
network. To maintain the consistency of experiments, we use the same training,
pruning, and distillation procedure and the same network hyperparameters for
all three scenarios (mostly from Section 3). All test accuracies are the average
of three independent experiments, and we also provide the standard deviation.

5.1 Results

For the VGG-CIFAR100 experiment, we use VGG19 with batch normalization
as a teacher. In the proposed framework, we apply LR rewinding to obtain
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Table 4: Performance of the proposed compression algorithm on VGG19 with
CIFAR100. VGG19-ST(X) is the constructed student network based on the pro-
posed algorithm from X% pruned teacher. Teacher “None” indicates the student
is trained without a teacher, while the pruning ratio “None” means the distilla-
tion from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - VGG19-ST36 72.32 ± 0.12

VGG19
None 73.13 VGG19-ST36 73.52 ± 0.20
36% 73.30 VGG19-ST36 73.77 ± 0.16

None - - VGG19-ST59 71.80 ± 0.18

VGG19
None 73.13 VGG19-ST59 73.18 ± 0.10
59% 72.25 VGG19-ST59 73.81 ± 0.10

None - - VGG19-ST79 70.89 ± 0.14

VGG19
None 73.13 VGG19-ST79 72.42 ± 0.16
79% 73.43 VGG19-ST79 73.39 ± 0.11

None - - VGG19DBL-ST36 74.39 ± 0.02

VGG19DBL
None 74.44 VGG19DBL-ST36 74.62 ± 0.34
36% 73.46 VGG19DBL-ST36 75.40 ± 0.18

None - - VGG19DBL-ST59 74.06 ± 0.22

VGG19DBL
None 74.44 VGG19DBL-ST59 74.67 ± 0.24
59% 73.24 VGG19DBL-ST59 75.09 ± 0.23

None - - VGG19DBL-ST79 73.81 ± 0.45

VGG19DBL
None 74.44 VGG19DBL-ST79 74.16 ± 0.04
79% 73.50 VGG19DBL-ST79 75.19 ± 0.31

the pruned VGG19s with target sparsity 36%, 59%, and 79%. The test accu-
racy of the pruned teacher is similar to the baseline model (VGG19) or slightly
higher. We construct the student network as described in the previous section.
Let VGG19-ST36, VGG19-ST59, and VGG19-ST79 denote the student networks
with fewer channels that correspond to pruned teachers with pruning ratios 36%,
59%, and 79%, respectively. We also run the same experiment with VGG19DBL
(with 2× more channels per layer). Similar to VGG19, let VGG19DBL-ST36,
VGG19DBL-ST59, and VGG19DBL-ST79 denote student networks that corre-
spond to pruned teachers with pruning ratios 36%, 59%, and 79%, respectively.

For the ResNet-TinyImageNet experiment, we use ResNet18 as a teacher. The
base ResNet18 is an unpruned teacher model where the test accuracy is 57.75%.
The pruned ResNet18 is a teacher in the proposed framework where we apply
LR rewinding with target sparsity 36%, 59%, and 79%. Notably, the pruned
teacher’s test accuracy is lower than the unpruned network, unlike the VGG-
CIFAR100 setup. Similar to VGG-CIFAR100, let ResNet18-ST36, ResNet18-
ST59, and ResNet18-ST79 denote the student networks that correspond to the
pruned teacher with pruning ratios 36%, 59%, and 79%, respectively.
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Table 5: Performance of the proposed compression algorithm on ResNet18 with
TinyImageNet. ResNet18-ST(X) is the constructed student network based on
the proposed algorithm from X% pruned teacher. Teacher “None” indicates the
student is trained without a teacher, while the pruning ratio “None” means the
distillation from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - ResNet18-ST36 56.44 ± 0.26

ResNet18
None 57.75 ResNet18-ST36 57.74 ± 0.22
36% 57.66 ResNet18-ST36 58.75 ± 0.19

None - - ResNet18-ST59 55.93 ± 0.32

ResNet18
None 57.75 ResNet18-ST59 56.70 ± 0.35
59% 57.58 ResNet18-ST59 57.76 ± 0.31

None - - ResNet18-ST79 54.48 ± 0.53

ResNet18
None 57.75 ResNet18-ST79 55.65 ± 0.24
79% 57.32 ResNet18-ST79 56.23 ± 0.16

None - - ResNet18DBL-ST36 59.88 ± 0.30

ResNet18DBL
None 60.46 ResNet18DBL-ST36 61.02 ± 0.15
36% 61.97 ResNet18DBL-ST36 62.33 ± 0.21

None - - ResNet18DBL-ST59 58.81 ± 0.28

ResNet18DBL
None 60.46 ResNet18DBL-ST59 60.99 ± 0.27
59% 61.80 ResNet18DBL-ST59 62.41 ± 0.52

None - - ResNet18DBL-ST79 57.79 ± 0.14

ResNet18DBL
None 60.46 ResNet18DBL-ST79 60.60 ± 0.26
79% 61.66 ResNet18DBL-ST79 61.87 ± 0.27

Table 4 and Table 5 show the test accuracies of the student network. For
comparison, we also provide test accuracies when the same student network is
trained without a teacher. In all settings, the proposed scheme outperforms the
student network trained from scratch by huge margin.

5.2 Ablation Study

Learning from the unpruned teacher: Table 4 and Table 5 also provide the
KD result from the unpruned teacher with the same student networks. Similar
to Section 3, it is consistent that the pruned teacher (with matching sparsity)
provide better KD.
Alternative student network design: For VGG19(DBL) teacher, we manu-
ally designed students VGG19-CL1 and VGG19-CL2. These networks have the
same depth, but the number of channels is adjusted, where the number of net-
work parameters is (approximately) half of the original network. VGG19-CL1
removes channels uniformly across the layer, and VGG19-CL2 removes channels
unevenly. The detailed network architecture is provided in Appendix.
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Table 6: Knowledge distillation to manually designed student networks.
VGG19DBL is the VGG19 with 2× more filters per layer. Teacher “None” indi-
cates the student is trained without a teacher, while the pruning ratio “None”
means the distillation from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - VGG19-CL1 69.51 ± 0.24

VGG19

None 73.13 VGG19-CL1 70.47 ± 0.25
36% 73.30 VGG19-CL1 71.52 ± 0.50
59% 72.25 VGG19-CL1 71.43 ± 0.24
79% 73.43 VGG19-CL1 71.82 ± 0.16

None - - VGG19-CL1 69.51 ± 0.24

VGG19DBL

None 74.44 VGG19-CL1 70.38 ± 0.25
36% 73.46 VGG19-CL1 70.84 ± 0.23
59% 73.24 VGG19-CL1 70.52 ± 0.03
79% 73.50 VGG19-CL1 71.00 ± 0.34

None - - VGG19-CL2 71.36 ± 0.29

VGG19

None 73.13 VGG19-CL2 72.75 ± 0.60
36% 73.30 VGG19-CL2 73.52 ± 0.22
59% 72.25 VGG19-CL2 73.39 ± 0.21
79% 73.43 VGG19-CL2 73.67 ± 0.09

None - - VGG19-CL2 71.36 ± 0.29

VGG19DBL

None 74.44 VGG19-CL2 72.29 ± 0.12
36% 73.46 VGG19-CL2 72.73 ± 0.41
59% 73.24 VGG19-CL2 72.94 ± 0.37
79% 73.50 VGG19-CL2 72.88 ± 0.20

Table 6 compares the test accuracies of student networks with pruned and
unpruned teachers. The number of parameters of VGG19-CL1 and VGG19-CL2
are 11.0M and 9.9M, respectively, which are comparable to VGG19-ST59 that
has 8.2M parameters (see Appendix for details). However, the test accuracy of
VGG19-ST69 with the proposed framework is higher than accuracies of VGG19-
CL1 and VGG19-CL2. The result justifies the proposed student network con-
struction based on the pruned teacher.

Also, the student network with pruned teachers outperforms the student with
the unpruned teacher. This implies that the surprising performance of pruned
teachers does not rely on the architecture of the student. Note that VGG19DBL
has better test accuracy compared to VGG19, where the margin is about 1%.
There is no significant difference in test accuracy when unpruned VGG19 and
unpruned VGG19DBL are being used as teacher networks in KD. However, in
KD, pruned VGG19 teaches better than pruned VGG19DBL with the same
sparsity. It coincides with what we observed in the previous section, where the
teacher with better accuracy does not guarantee better KD.
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Fig. 3: Effect of pruning ratios and algorithms. The left plot shows the student’s
accuracies with various pruning ratios of pruned teachers. The right plot shows
the student’s accuracies when different pruning algorithms (LR rewinding [39]
and SynFlow [47]) are applied to the teacher. In both cases, baseline is the
student distilled from unpruned teacher.

5.3 Discussions

Effect of pruning ratio and pruning algorithm: Figure 3 shows the effect
of pruning ratio and pruning algorithm. For VGG19 on CIFAR100, we apply
the proposed scheme with additional pruning ratio 20%, 87%, and 91%. In the
current setting, the 79% point is the optimal pruning ratio, and the student’s
performance is degraded if the pruning ratio is too high. We also applied another
pruning algorithm, SynFlow [47]. Our result shows that the effectiveness of pro-
posed compression scheme does not depend on the choice of pruning algorithm.
Large Scale Experiments: We also applied the proposed idea to the larger
model (ResNet50) and the larger dataset (ImageNet). We consistently observe
that the “prune, then distill” strategy is effective in large scale setups as well. We
refer to the Appendix for a detailed setup and results of large-scale experiments.

6 Conclusion

Our experiments showed that the pruned teacher can be more effective than the
original teacher in KD. We further showed theoretically that the pruned teacher
provides an additional regularization in distillation. Based on this observation,
we proposed a novel network compression scheme that distills a pruned teacher
network to the student network whose architecture is based on an (unstructured)
pruned network. The proposed network compression is effectively a structured
pruning algorithm that utilizes the knowledge of sparsity from unstructured
pruning, and therefore our work bridges two main pruning approaches.
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