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Abstract. Vision transformers have recently gained great success on
various computer vision tasks; nevertheless, their high model complexity
makes it challenging to deploy on resource-constrained devices. Quanti-
zation is an effective approach to reduce model complexity, and data-free
quantization, which can address data privacy and security concerns dur-
ing model deployment, has received widespread interest. Unfortunately,
all existing methods, such as BN regularization, were designed for con-
volutional neural networks and cannot be applied to vision transformers
with significantly different model architectures. In this paper, we propose
PSAQ-ViT, a Patch Similarity Aware data-free Quantization framework
for Vision Transformers, to enable the generation of “realistic” samples
based on the vision transformer’s unique properties for calibrating the
quantization parameters. Specifically, we analyze the self-attention mod-
ule’s properties and reveal a general difference (patch similarity) in its
processing of Gaussian noise and real images. The above insights guide
us to design a relative value metric to optimize the Gaussian noise to
approximate the real images, which are then utilized to calibrate the
quantization parameters. Extensive experiments and ablation studies are
conducted on various benchmarks to validate the effectiveness of PSAQ-
ViT, which can even outperform the real-data-driven methods. Code is
available at: https://github.com/zkkli/PSAQ-ViT.

Keywords: Model Compression; Data-Free Quantization; Quantized Vi-
sion Transformer

1 Introduction

With the great success on natural language processing applications, transformer-
based models have also demonstrated superior performance on a variety of com-
puter vision tasks [19, 14]. However, vision transformers typically employ compli-
cated model architectures with extremely high memory footprints and computa-
tional overheads to accomplish the powerful representational capabilities, posing
significant challenges for their deployment and real-time inference on resource-
constrained edge devices [32, 18, 28]. Thus, the compression technique for vision
transformers is highly desired for real-world applications.

⋆ Corresponding author.
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Model quantization, which converts 32-bit floating-point parameters (weights
and activations) to low-precision values, is regarded as a prevalent approach to
reduce the complexity of neural networks and accelerate their inference phase
[20, 13]. To mitigate the accuracy degradation, almost all quantization methods
require access to the original dataset for re-training/fine-tuning the model pa-
rameters [39, 11, 7, 16, 31]. Unfortunately, in scenarios involving sensitive data
(e.g., medical and bio-metric data), these methods are no longer applicable due
to the unavailability of the original dataset [36, 40]. Therefore, data-free quanti-
zation is regarded as a potential and practice scheme [3, 41].

The main idea of data-free quantization is to generate samples that can match
the real-data distribution based on the prior information of the pre-trained full-
precision (FP) model, and then utilize these samples to calibrate the quantization
parameters. The key issue is how to generate effective and meaningful samples
to ensure the calibration accuracy. A notable line of research proposes batch
normalization (BN) regularization [3, 40], which states that the statistics (i.e.,
the mean and standard deviation) encoded in the BN layers can represent the
distribution of original training data. These methods, however, are only appli-
cable to convolutional neural networks (CNNs) and not to vision transformers,
because the latter employs layer normalization (LN), which does not store any
previous information like BN. As a result, existing methods cannot be extended
and migrated well due to significant differences in model architecture, leaving
data-free quantization for vision transformers as a gap.

In this paper, we are motivated to address the above issues, focusing on
the following challenge: how to effectively generate “realistic” samples based on
the vision transformer’s unique properties? Since there is no elegant absolute
value metric like BN statistics, we intend to investigate the general difference in
model inference when the input is Gaussian noise and a real image, and then
accordingly design a relative value metric to optimize the noise. As stated in
[10], in the training phase, the self-attention module is designed to extract the
important information from the training data, i.e., to identify the foreground
from the background, so that the model can make a good decision. Accordingly,
in the inference phase of the pre-trained model, when the input is a real image,
the foreground patches and background patches can produce different responses,
thus the self-attention module has a diverse patch similarity (i.e. the similarity
between the responses in the patch dimension); in contrast, the responses to
Gaussian noise, whose foreground and background are hard to distinguish, are
homogeneous, as shown in Fig. 1.

With the above analysis, we propose PSAQ-ViT, a Patch Similarity Aware
data-free Quantization framework for Vision Transformers. Specifically, we uti-
lize the differential entropy of patch similarity to quantify the diversity of re-
sponses, which is calculated via kernel density estimation that can ensure gra-
dient back-propagation. Then, the differential entropy is used as the objective
function to optimize the Gaussian noise to approximate the real image. Finally,
the generated samples are utilized to calibrate the parameters of the quantized
vision transformers.
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Fig. 1. Illustration of the proposed sample generation approach. When the input is
Gaussian noise, patches are grouped into one category (foreground or background),
leading to homogeneous patch similarity and a unimodal kernel density curve. Our
generated image can potentially represent the real-image features, producing diverse
patch similarity and a bimodal kernel density curve, where the left and right peaks
describe inter- and intra-category similarity, respectively.

To be specific, our contributions are as follows:

– From an in-depth analysis of the self-attention module, we reveal a gen-
eral difference in its processing of Gaussian noise and real images, i.e., a
substantially distinct diversity of patch similarity. This general difference
demonstrates the intrinsic properties of vision transformers’ image percep-
tion and provides some insights for sample generation.

– With the above insights, we propose PSAQ-ViT, in which we design a relative
value metric to optimize the Gaussian image to reduce the general difference
and thus approximate the real images, and then utilize them to calibrate the
quantization parameters. To the best of our knowledge, this is the first work
to quantify vision transformers without any real-world data.

– Extensive experiments on various benchmark models are conducted to demon-
strate the effectiveness of PSAQ-ViT, which can generate “realistic” samples
and thus enable the outstanding performance of data-free quantization for
vision transformers, even outperforming real-data-driven methods.

2 Related Works

2.1 Vision transformers

Vision transformers, which utilize global information based on self-attention
modules, have recently achieved great success on various computer vision tasks
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[1, 42, 6, 35, 15]. ViT [10] is the first pure vision transformer model, which re-
shapes the image into a sequence of flattened 2D patches as the input, achieving
better performance than CNNs on image classification tasks. Following ViT,
DeiT [33] introduces a teacher-student procedure based on a distillation token,
which can achieve competitive results on ImageNet with no external data. Swin
Transformer [27] presents a hierarchical design with shifting windows for repre-
sentation, which allows for modeling at various scales and thus boosts the per-
formance of vision transformers. In addition to image classification, transformers
have been applied to other computer vision tasks, such as object detection [4,
43], semantic segmentation [5], and video recognition [30].

Although these vision transformer models have great potential on computer
vision tasks, their powerful representation capabilities are obtained based on the
complicated model architectures, which makes them supremely challenging to
deploy on resource-constrained devices and execute real-time inference [32, 28].
Thus, model compression is a necessary and promising solution to facilitate their
real-world applications.

2.2 Model Quantization

Model quantization, which reduces the memory footprint and computational
overhead of the models by decreasing the representation precision of the weights
and activations, is an effective approach to compressing models in a hardware-
friendly manner [20, 13]. The mainstream methods exploit quantization-aware
training to compensate the accuracy degradation caused by discretization [39,
23, 25, 8, 12], and they use the straight-through estimator [2] to approximate
the gradient back-propagation of the quantized model. However, these meth-
ods rely heavily on the original dataset for re-training/fine-tuning, rendering
them inapplicable in many scenarios where the original data is not available [3,
40]. In addition, several post-training quantization methods have been proposed
to reduce the fine-tuning cost [17, 22, 9, 34, 29, 24], including schemes for vision
transformers [28, 38, 26], but they still require a small amount of real data for
calibration and cannot achieve complete data-free.

Data-free quantization, which compresses models without access to any
real data, can potentially address the above issues, and thus has received increas-
ing attention. ZeroQ [3] proposes BN regularization to generate samples based
on the real-data statistics encoded in the BN layers of the pre-trained FP model,
and then use them to fine-tune the model parameters. DSG [40] presents an im-
proved BN regularization scheme that utilizes slack distribution alignment and
layerwise sample enhancement to address the homogenization of the generated
samples. GDFQ [36] and IntraQ [41] introduce category label information to
generate class-conditional samples, further pushing the limit of data-free quan-
tization. However, these methods are only applicable to CNNs, because there is
no key structure BN in vision transformers and the LN they employ does not
contain any features of the original training data. As a result, there is now a gap
in the data-free quantization community of vision transformers.
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3 Methodology

In this section, we first introduce the computational process of vision transform-
ers and the uniform quantization strategy in the preliminaries. Our insights and
motivations of the proposed PSAQ-ViT are then presented, followed by a de-
tailed introduction to the designed patch similarity metric for sample generation.
Finally, the overall quantization pipeline for vision transformers is summarized
and presented.

3.1 Preliminaries

A standard transformer’s input is a one-dimensional sequence of token embed-
dings. For vision transformers, an image I is reshaped into a sequence of flatted
2D patches, and each patch is then mapped to the hidden size d by a linear
projection to obtain the input vectors X ∈ RN×d. Here, N is the number of
patches.

The vectors X are then input into transformer layers, which are a stack of
blocks composed of a multi-head self-attention (MSA) module and a multi-layer
perceptron (MLP) module apiece. First, MSA calculates the attention between
different patches to extract feature representations with global information as
follows:

MSA(X) = Concat(head1, · · · ,headH)W o

where headi = Attn(Qi,Ki, Vi) = softmax(
QiK

T
i√
d

)Vi

(1)

where H is the number of attention heads. Here, query Qi, key Ki, and value Vi

are computed by linear projections using matrix multiplication, i.e., Qi = XWQ
i ,

Ki = XWK
i , Vi = XWV

i . Then, the output of MSA is fed into MLP, which
contains two fully-connected layers for feature mapping and information fusion.

As we can see, in vision transformers, most computational costs are derived
from the large matrix multiplication in MSA and MLP modules. Thus, we intend
to quantize all the parameters in matrix multiplication, including both weights
and activations. In this paper, we perform the uniform quantization strategy,
which is the most popular and hardware-friendly method and is defined as fol-
lows:

θq = ⌊clip(θ
p, q0, q2k−1)− q0

∆
⌉, where∆ =

q2k−1 − q0
2k − 1

(2)

where θp and θq denote the parameters of the FP model and the quantized
model, respectively. Here, q0 and q2k−1 are clipping values that determine the
quantization scales, ⌊·⌉ is the round operator, and k is the quantization bit-
precision.

3.2 Our Insights

As mentioned before, the main challenge of data-free quantization for vision
transformers is that they do not have BN layers that store information about
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the original training data, resulting in no available absolute value prior infor-
mation for sample generation and thus no efficient calibration of quantization
parameters. Therefore, our interest is to mine deeper into the prior information
of the pre-trained vision transformer models and thus explore a reliable relative
value metric that can well describe the general difference between Gaussian noise
and the real image, so that we can reduce this difference to make the Gaussian
noise approximate the real image.

Since the self-attention module is the unique structure of vision transformers,
its powerful feature extraction capability is believed to contain a certain amount
of original data information. Hence, we provide an in-depth analysis of the train-
ing process of the self-attention module, and then we observe that the reason the
model can make good decisions is that the self-attention module can distinguish
the foreground from the background of the training data, thus allocating more
attention to the foreground that is more important for the decision. Since the
input of vision transformers are independent vectors mapped by 2D patches,
the responses of the self-attention module to different patches are significantly
different, i.e., the foreground patches receive more attention.

When the pre-trained model executes inference, real images consistently pro-
duce the above features, while Gaussian noise, whose foreground is not easily
extracted, does not have a similar capability and inevitably leads to homoge-
neous responses, as shown in Fig. 1. Note that the real images here are only
used to verify the general difference (e.g., a certain metric of the real images is
always larger than that of Gaussian noise), and they will not be involved in any
subsequent process. Therefore, this general difference can indirectly represent
the prior information of vision transformers and thus can be used to design the
relative value metric to guide the sample generation.

3.3 Patch Similarity Metric

Based on the above insights, we aim to design a reliable metric that can measure
the diversity of the self-attention module’s responses. For the l-th layer in vision
transformers, the output of the MSA module is defined as Ol ∈ RB×H×N×d

(l ∈ {1, · · · , L}), where each dimension denotes the batch size, number of heads,
number of patches, and hidden size, respectively. To simplify the expression, we
ignore the batch dimension, i.e., Ol ∈ RH×N×d.

Due to the relative value metric, it is necessary to first normalize Ol to ensure
the fairness of the comparison. We accomplish this by calculating the cosine
similarity between each subspace vector in the patch dimension, specifying the
data range at [-1, 1], as follows:

Γl(ui, uj) =
ui · uj

||ui|| ||uj ||
(3)

where the numerator represents the inner product of the vectors, and ||·|| denotes
the l2 norm. Here, ui, uj ∈ RH×d (i, j ∈ {1, · · · , N}) is the i-th/j-th vector in the
patch dimension of Ol, and Γl(ui, uj) represents the cosine similarity between ui
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and uj . After pairwise calculations, we obtain the l-th layer’s cosine similarity
matrix Γl = [Γl(ui, uj)]N×N , which is a symmetric matrix and is termed as patch
similarity. The diversity of patch similarity can potentially represent the diversity
of the original data, which not only elegantly achieves data normalization, but
also has the additional advantage of achieving reasonable Hd

N -fold dimensionality
reduction (RH×N×d → RN×N ). For instance, for the ViT-B model, the amount
of data is reduced by a factor of 3.92, which can greatly improve the subsequent
computational efficiency.

Then, the diversity of patch similarity is measured by the information en-
tropy, which can represent the amount of information expressed by the data. To
ensure gradient back-propagation, we calculate the differential entropy that has
a continuous nature as follows:

Hl = −
∫

f̂h(x) · log
[
f̂h(x)

]
dx (4)

where f̂h(x) is the continuous probability density function of Γl, which is ob-
tained using kernel density estimation as follows:

f̂h(x) =
1

M

M∑
m=1

Kh(x− xm) =
1

Mh

M∑
m=1

K(
x− xm

h
) (5)

where K(·) is the kernel (e.g. normal kernel), h is the bandwidth, xm (m ∈
{1, · · · ,M}) is a training point drawn from Γl and is the center of a kernel, and
x is the given test point.

Finally, we sum the differential entropy of each layer to account for the di-
versity of patch similarity across all layers, and since it is to be maximized, the
Patch Similarity Entropy loss is defined as follows:

LPSE = −
L∑

l=1

Hl (6)

3.4 The Overall Pipeline

The whole process of PSAQ-ViT is performed in two stages: first, the Gaus-
sian noise is optimized according to the loss function, which is designed based
on the prior information of the pre-trained model, to generate “realistic” sam-
ples; second, the generated samples are utilized to calibrate the quantization
parameters, thus realizing the vision transformer quantization with no real data
participation. These two stages are described in detail below.

Sample generation: In the sample generation stage, in addition to our pro-
posed patch similarity entropy loss LPSE , which has the greatest contribution to
the performance, the optimization objective for sample generation also contains
two auxiliary image priors: one-hot loss LOH and total variance loss LTV , which
can ensure more stable convergence to effective images.
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Algorithm 1: The PSAQ-ViT Pipeline

Input: A pre-trained FP vision transformer P with parameters θp.
Output: A quantized vision transformer Q with parameters θq.
Initialize the quantized model Q by Eq. (2);
Randomly produce Gaussian noise IG ∼ N (0, 1);
# Stage 1: Sample generation
for t = 1, 2, . . . do

Input IG into the pre-trained FP model P ;
Calculate LPSE by Eq. (6);
Calculate LOH and LTV by Eq. (7) and Eq. (8);
Combine three losses to obtain LG by Eq. (9);
Update IG by back-propagation of LG;

end
# Stage 2: Quantization parameter calibration
Get the generated samples I = IG;
Input I into the quantized model Q;
Determine the clipping values of the activations in Q;

One-hot loss is a popular class prior that describes the class boundary in-
formation and motivates the generated images to be predicted to a pre-defined
category c [36, 41]. Specifically, it encourages to minimize the cross entropy loss
as follows:

LOH = CE(P (I), c) (7)

where P (I) is the predicted result of the pre-trained model for image I.

Total variance loss is a pixel-level smoothing regularization term for images
and can further improve the image quality [37], which is defined as follows:

LTV =

∫∫
|∇I(τ1, τ2)|dτ1dτ2 (8)

where ∇I(τ1, τ2) denotes the gradient of the image I at (τ1, τ2).

We combine the above three loss functions to obtain the final objective func-
tion for sample generation as follows:

LG = LPSE + αLprior

= LPSE + α1LOH + α2LTV

(9)

where α1 and α1 are the balance coefficients.

Quantization parameter calibration: In the parameter calibration stage,
the weight parameters are fixed and can be calibrated directly, thus the generated
samples are only utilized to determine the clipping values (q0 and q2k−1) for the
activations of each layer to get rid of outliers and to better represent the majority
of the given parameters. Note that the calibration process is performed in the
form of post-training quantization and does not require resource-consuming fine-
tuning. The overall pipeline is summarized in Algorithm 1.
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4 Experiments

In this section, PSAQ-ViT is evaluated on various benchmark models for the
large-scale image classification task. To the best of our knowledge, there is no
published work on data-free quantization of vision transformers, thus the ef-
fectiveness of our method is demonstrated by comparing the quantized model
calibrated with real images and Gaussian noise at the same settings. Further-
more, ablation studies are conducted to verify the validity of the proposed patch
similarity entropy loss.

4.1 Implementation Details

Models and Datasets: We evaluate PSAQ-ViT on various popular vision
transformer models, including ViT [10], DeiT [33], and Swin [27]. The dataset
we adopt is ImageNet (ILSVRC-2012) [21] for the large-scale image classification
task which contains 1000 categories of images (224×224 pixels). The pre-trained
models are all obtained from timm1.

Experimental settings: All implementations of PSAQ-ViT are done on
PyTorch. To demonstrate the validity of our generated images, we employ the
most basic quantization parameter calibration method. For weights, symmetric
uniform quantization is applied, and the calibration strategy is fixed to Vanilla
MinMax; for activations, asymmetric uniform quantization is applied, and the
default calibration strategy is Vanilla MinMax if not specifically declared. In all
our experiments, the number of images used for calibration is 32. α1 and α2 are
set to 1.0 and 0.05 after a simple grid search, respectively, and their selection
had little effect on the final performance.

4.2 Analysis of generated samples

Fig. 2 shows the visualization results of the generated images (224×224 pixels),
which are obtained based on the ViT-B model pre-trained on ImageNet dataset.
Since we use the class prior LOH in the image generation process, we present
them by category, and different images in a category are produced by using differ-
ent random seeds when initializing the Gaussian noise. It should be highlighted
that these images require only a pre-trained model, and not any additional in-
formation, especially the original data or any absolute value metrics. Thanks to
the proposed optimization objective LPSE , the generated “realistic” images can
clearly distinguish the foreground from the background, and the foreground is
rich in semantic information. Moreover, according to the subsequent quantiza-
tion experiments, this excellent property of easily extracting the foreground will
have a positive feedback effect on the calibration of the quantization parameters,
making the generated images achieve better performance than the real images.

In addition, since we consider the patch similarity entropy of all layers in
Eq. (6), the comparison experiments of the kernel density curves of the patch

1 https://github.com/rwightman/pytorch-image-models
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Fig. 2. Class-conditional samples (224×224 pixels) generated by PSAQ-ViT, given only
a pre-trained ViT-B model on ImageNet and no additional information.

Real image Gaussian noise Generated image

Fig. 3. Comparison of the kernel density curves of the patch similarity for each layer
in ViT-B model when the input is the real image, Gaussian noise, and the generated
image. The x-axis represents the values of patch similarity. As we can see, the density
of each layer corresponding to Gaussian noise shows a concentrated unimodal shape,
while the generated image and the real image have similar properties, producing the
density with a dispersed bimodal shape.

similarity for each layer in ViT-B model when the input is the real image, Gaus-
sian noise, and the generated image are conducted, as shown in Fig. 3. For the
responses to Gaussian noise, the kernel density curves all show a concentrated
unimodal shape and the central value of the curve is high, indicating a high
degree of similarity between each patch of Gaussian noise and thus a full classifi-
cation as background or foreground. Fortunately, the kernel density curves corre-
sponding to our generated images are very approximate to those corresponding
to the real images. They all show a dispersed bimodal shape, indicating a high
diversity of responses, and the left and right peaks of curves describe inter- and
intra-category similarity, respectively, which is in line with the expectation that
the images can easily be distinguished between foreground and background.
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4.3 Quantization results

Here, we employ the proposed PSAQ-ViT to quantify the ViT-S, ViT-B, DeiT-
T, DeiT-S, DeiT-B, Swin-T, and Swin-S models on large-scale ImageNet dataset,
and the results are reported in Table 1. Since, to the best of our knowledge, there
is no published work on data-free quantization of vision transformers, we set a
reasonable baseline for our experiments on our own. Standard and Gaussian
noise denote using real images and Gaussian noise to calibrate the quantization
parameters, respectively. Note that all experiments differ only in the images
used to calibrate the quantization parameters, and all other settings are the
same, such as the calibration strategy and the number of images. Moreover, to
demonstrate the robustness of the method, we evaluate different quantization
precisions, including W4/A8 and W8/A8.

First, it should be emphasized that PSAQ-ViT can achieve better perfor-
mance than Standard, which requires the real data, on all the aforementioned
models, indicating that the generated images are even more effective than the real
ones for parameter calibration. The main reason is that the sample generation
is based on the prior information in the self-attention module, i.e., facilitating
the distinction between foreground and background in images, and then when
these samples are utilized to calibrate the quantization parameters, they in turn
reinforce the functionality of the self-attention module, thus acting as positive
feedback that can reduce the activation outliers to some extent and therefore
improve the tolerance to parameter clipping.

The quantization results of each model are discussed in detail below. We
begin by discussing the quantization results of ViT-S and ViT-B models. Because
we use the vanilla quantization strategy and these models are very sensitive to
quantization, different methods can all lead to noticeable accuracy degradation.
Despite this, our method achieves the best performance at the same settings,
e.g. for quantization of ViT-S, our method improves by 0.93% and 1.17% over
Standard at W4/A8 and W8/A8 settings, respectively.

DeiT has the same model structure as ViT but with a different training strat-
egy; however, the quantization perturbation on the performance of DeiT is signif-
icantly smaller compared to ViT. When the calibration image is Gaussian noise,
the representation capability of the quantization model decreases sharply, and
its prediction accuracy decreases severely. In comparison, our proposed PSAQ-
ViT can achieve very excellent performance. For the W8/A8 quantization of
DeiT-T, our method achieves 4-fold compression with almost lossless accuracy
(only 0.65% accuracy degradation). PSAQ-ViT is 1.13% and 0.92% higher than
real-data-driven Standard in the quantization of W4/A8 and W8/A8 for DeiT-
S, respectively. The results of the quantization of DeiT-B, which are similar to
those of the previous models, show that our method also achieves the best per-
formance, with an improvement of 0.8% and 0.49% over Standard at W8/A8
and W4/A8 settings, respectively.

The proposed PSAQ-ViT still maintains a high level of robustness to the Swin
models. When the quantized Swin-T is calibrated with Gaussian noise, the model
performance becomes almost infeasible; nevertheless, our method can guarantee
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Table 1. Quantization results on ImageNet dataset. Standard, Gaussian noise, and
PSAQ-ViT calibrate the quantization parameters with real images, Gaussian noise,
and generated images, respectively, and all other settings are the same. As we can see,
PSAQ-ViT can even be more superior than real-data-driven Standard. Here, “No Data”
indicates that no real data participate in the quantization process, “Prec.” denotes the
quantization precision, “Wx/Ay” denotes quantifying the weights and activations to
x-bit and y-bit, respectively, and “Top-1” is the Top-1 test accuracy of the quantized
vision transformer.

Model Method No Data Prec. Top-1(%) Prec. Top-1(%)

ViT-S
(81.39)

Standard × W4/A8 19.91 W8/A8 30.28
Gaussian noise ✓ W4/A8 15.60 W8/A8 25.22

PSAQ-ViT(ours) ✓ W4/A8 20.84 W8/A8 31.45

ViT-B
(84.53)

Standard × W4/A8 24.76 W8/A8 36.65
Gaussian noise ✓ W4/A8 19.45 W8/A8 31.63

PSAQ-ViT(ours) ✓ W4/A8 25.34 W8/A8 37.36

DeiT-T
(72.21)

Standard × W4/A8 65.20 W8/A8 71.27
Gaussian noise ✓ W4/A8 7.80 W8/A8 10.55

PSAQ-ViT(ours) ✓ W4/A8 65.57 W8/A8 71.56

DeiT-S
(79.85)

Standard × W4/A8 72.10 W8/A8 76.00
Gaussian noise ✓ W4/A8 13.30 W8/A8 18.16

PSAQ-ViT(ours) ✓ W4/A8 73.23 W8/A8 76.92

DeiT-B
(81.85)

Standard × W4/A8 76.25 W8/A8 78.61
Gaussian noise ✓ W4/A8 11.09 W8/A8 14.72

PSAQ-ViT(ours) ✓ W4/A8 77.05 W8/A8 79.10

Swin-T
(81.35)

Standard × W4/A8 70.16 W8/A8 74.22
Gaussian noise ✓ W4/A8 0.52 W8/A8 0.62

PSAQ-ViT(ours) ✓ W4/A8 71.79 W8/A8 75.35

Swin-S
(83.20)

Standard × W4/A8 73.33 W8/A8 75.19
Gaussian noise ✓ W4/A8 5.43 W8/A8 5.66

PSAQ-ViT(ours) ✓ W4/A8 75.14 W8/A8 76.64

a small performance degradation. In addition, PSAQ-ViT is very quantization-
friendly for Swin-S, achieving substantial performance improvements over Stan-
dard, with gains of 1.81% at W4/A8 and 1.45% at W8/A8, respectively.

4.4 Results of combining with post-training quantization

To demonstrate the generality of the proposed method, we evaluate the results
of combining PSAQ-ViT with post-training quantization methods, which further
improves the performance of quantization. Specifically, instead of using vanilla
MinMax, we use EMA [17], Percentile [22], and OMSE [9] to determine the clip-
ping values for activations. Among them, EMA employs a moving average mech-
anism to smooth the maximum and minimum values of the tensors; Percentile
clips the tensors according to the percentile of the parameters (1e-5 percentile is
used in the experiments); OMSE minimizes the quantization error to determine
the tensors’ clipping values. In addition, the experimental results are compared
with PTQ-ViT [28], which is the state-of-the-art (SOTA) ranking-aware post-
training quantization method for vision transformers. Note that PTQ-ViT has
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Table 2. Quantization results of combining with post-training quantization methods
on ImageNet dataset. Our PSAQ-ViT combined with simple post-training quantization
methods, including EMA [17], Percentile [22], and OMSE [9], can achieve comparable
performance to the SOTA ranking-aware post-training method [28] that has high com-
putational complexity and requires the assistance of 1000 real images.

Model Method Strategy No Data Prec. Top-1(%)

DeiT-S
(79.85)

PTQ-ViT Ranking-Aware × W8/A8 77.47

PSAQ-ViT(ours)

Vanilla ✓ W8/A8 76.92

EMA ✓ W8/A8 77.12
Percentile ✓ W8/A8 77.31
OMSE ✓ W8/A8 76.94

DeiT-B
(81.85)

PTQ-ViT Ranking-Aware × W8/A8 80.48

PSAQ-ViT(ours)

Vanilla ✓ W8/A8 79.10

EMA ✓ W8/A8 79.99
Percentile ✓ W8/A8 79.42
OMSE ✓ W8/A8 80.26

higher computational complexity and requires the assistance of 1000 real images,
while our method requires only 32 generated images.

The quantization results are reported in Table 2. PSAQ-ViT, when combined
with post-training quantization methods, can achieve comparable performance
to PTQ-ViT. Meanwhile, different models have different preferences for different
calibration strategies. For instance, PSAQ-ViT combined with Percentile shows
the best performance on DeiT-S, while DeiT-B achieves the highest accuracy
when using OMSE to calibrate the parameters.

4.5 Ablation Studies

We perform ablation studies on DeiT-S and DeiT-B models to demonstrate
the effectiveness of different loss functions used for sample generation, and the
results are shown in Table 3. We first analyze the experimental results of DeiT-
S. Not using any loss function, i.e., calibrating directly with Gaussian noise,
certainly leads to an unexpected decrease in accuracy; when only LOH and
LTV are used to optimize the noise, the accuracy of the quantized model is
still far from satisfactory. Using only the proposed patch similarity entropy loss
LPSE can guarantee good quantization performance, and since it is completely
decoupled from the other losses, it can be easily combined with them to achieve
better results where it has the largest contribution to the final performance. A
similar analysis also applies to DeiT-B. It is well demonstrated that our designed
LPSE has an essential driving effect on the quality improvement of the generated
images, thus ensuring an effective calibration of the quantization parameters.

We also perform efficiency analysis of the two stage of PSAQ-ViT divided in
Algorithm 1, as shown in table 4. The whole process takes less than 4 min on
an RTX 3090 GPU and most time is spent in the image generation, since the
parameter calibration without training produces small overhead.
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Table 3. Ablation study of different loss functions for sample generation. LPSE has
the largest contribution to the final results. In addition, it is fully decoupled from other
losses, thus it can further improve performance in combination with other losses.

Model LPSE LOH LTV Prec. Top-1(%)

DeiT-S
(79.85)

× × × W8/A8 18.16
× ✓ ✓ W8/A8 65.66

✓ × × W8/A8 74.07
✓ ✓ × W8/A8 75.39
✓ × ✓ W8/A8 75.28
✓ ✓ ✓ W8/A8 76.92

DeiT-B
(81.85)

× × × W8/A8 14.72
× ✓ ✓ W8/A8 67.95

✓ × × W8/A8 78.07
✓ ✓ × W8/A8 78.50
✓ × ✓ W8/A8 78.61
✓ ✓ ✓ W8/A8 79.10

Table 4. Efficiency analysis of PSAQ-ViT on DeiT-B, which spends less than 4 min
on an RTX 3090 GPU, with the majority spent on image generation.

Model Image Generation(s) Quantization Calibration(s)

DeiT-B 227 Vanilla 0.17 OMSE 0.41

5 Conclusions

In this paper, we propose PSAQ-ViT, a Patch Similarity Aware data-free Quan-
tization framework for Vision Transformers. First, we perform an in-depth anal-
ysis of the unique properties of the self-attention module, revealing a general
difference in its processing of Gaussian noise and real images. Based on this
insight, we design a relative value metric to optimize the Gaussian noise to ap-
proximate the real image. Specifically, we use the differential entropy of patch
similarity calculated via kernel density estimation to represent the diversity of
the self-attention module’s responses, then maximize the entropy to optimize
the Gaussian noise, and finally utilize the generated “realistic” samples to effi-
ciently calibrate the quantization parameters. Extensive experiments and abla-
tion studies are conducted to demonstrate the effectiveness of PSAQ-ViT and
the proposed patch similarity entropy loss. Thanks to the positive feedback ef-
fect of the generated images that are easily distinguished between foreground
and background as analyzed in our paper, PSAQ-ViT can even outperform the
real-data-driven methods at the same settings.
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