
Streaming Multiscale Deep Equilibrium Models

Can Ufuk Ertenli[0000−0001−7795−3617], Emre Akbas∗[0000−0002−3760−6722], and
Ramazan Gokberk Cinbis∗[0000−0003−0962−7101]

Middle East Technical University (METU), Department of Computer Engineering
{ufuk.ertenli,eakbas,gcinbis}@metu.edu.tr

Abstract. We present StreamDEQ, a method that infers frame-wise
representations on videos with minimal per-frame computation. In con-
trast to conventional methods where compute time grows at least linearly
with the network depth, we aim to update the representations in a con-
tinuous manner. For this purpose, we leverage the recently emerging im-
plicit layer models, which infer the representation of an image by solving
a fixed-point problem. Our main insight is to leverage the slowly changing
nature of videos and use the previous frame representation as an initial
condition on each frame. This scheme effectively recycles the recent in-
ference computations and greatly reduces the needed processing time.
Through extensive experimental analysis, we show that StreamDEQ is
able to recover near-optimal representations in a few frames time, and
maintain an up-to-date representation throughout the video duration.
Our experiments on video semantic segmentation and video object de-
tection show that StreamDEQ achieves on par accuracy with the baseline
(standard MDEQ) while being more than 3× faster. Code and additional
results are available at https://ufukertenli.github.io/streamdeq/.

Keywords: Implicit layer models, video analysis and understanding,
video object detection, video semantic segmentation

1 Introduction

Modern convolutional deep networks excel at numerous recognition tasks. It is
commonly observed that deeper models tend to outperform their shallower coun-
terparts [21,25,48], e.g. the prediction quality tends to increase with network
depth using the architectures with residual connections [21]. Due to the sequen-
tial nature of the layer-wise calculations, however, increasing the network depth
results in longer inference times. While the increase in inference duration can
be acceptable for various offline recognition problems, it is typically of concern
for many streaming video analysis tasks. For example, in perception modules of
autonomous systems, it is not only necessary to keep up with the frame rate but
also desirable to minimize the computational burden of each recognition compo-
nent to reduce the hardware requirements and/or save resources for additional

* Equal contribution for senior authorship.

https://ufukertenli.github.io/streamdeq/


2 U. Ertenli et al.

tasks. Similar concerns arise in large-scale video analysis tasks, e.g. on video
sharing platforms, a small increase in per-frame calculations can add up to great
increments in total consumption.

Various techniques have been proposed to speed up the inference in deep net-
works. A widely studied idea is to apply a large model to selected key-frames and
then either interpolate its features to the intermediate frames [53,51] or apply
a smaller model to them [47,35]. However, such approaches come with several
potential complications: (i) each time the larger model is applied, the model
lags behind, the handling of which demands a complicated system design. (ii)
Most methods require optical flow or motion estimates [53,51], which brings in
an additional estimation problem and an additional point of failure. In addition,
the time cost of the flow estimation naturally reduces the time budget for all
dependent steps. (iii) Special techniques need to be developed to maintain the
compatibility of the representations and/or confidence scores obtained across
the key and intermediate frames. (iv) The training schemes tend to be compli-
cated due to the need for training over video mini-batches. It is also noteworthy
that several models, e.g. [29,45], rely on forward and backward flow estimates,
making them less suitable for streaming recognition problems due to non-causal
processing.

A related approach is to select a subset of each frame to process. These meth-
ods typically aim to identify the most informative regions in the input [38,1,14].
For static images, the region selection process can continue until the model be-
comes confident about its predictions. However, when applied to videos, such
subset selection strategies share shortcomings similar to approaches relying on
flow-based intra-frame prediction approximations. The inputs change over time,
therefore, the models have to choose between relying on optical flow to warp
the rest of the features or to omit them entirely, which may result in obsolete
representations over time [51].

In this context, the recently introduced implicit layer models, pioneered by
the work on Deep EquilibriumModel (DEQ) [2] and Multiscale Deep Equilibrium
Model (MDEQ) [4], offer a fundamentally different alternative to deep neural
networks. DEQ (and MDEQ) shows that by using the fixed-points of a network
as the representation, one can gain the representation power of deep models,
using a network with only a few layers. The potential of DEQ to eliminate long
chains of computations over network layers, therefore, renders it an attractive
candidate towards building efficient streaming recognition models.

However, while DEQ provides a way to learn deep representations using
shallow networks, the test-time inference process involves iterative fixed-point
estimation algorithms, such as root finding or fixed-point iterations. Since each
iteration can be interpreted as an increment in the network depth, DEQ effec-
tively constructs deep networks for inference, and therefore, can still suffer from
the run-time costs as in explicit deep networks.

Our main insight is the potential to speed up the inference process, i.e.
fixed-point estimation, by exploiting the temporal smoothness across neighbor-



StreamDEQ 3

DEQ StreamDEQ

Fig. 1.Our method, StreamDEQ, exploits the temporal smoothness between successive
frames and extracts features via a small number of solver iterations, starting from the
previous frame’s representation as initial solution. StreamDEQ accumulates and trans-
fers the extracted information continuously over successive frames; effectively sharing
computations across video frames in a causal manner

ing frames in videos.* More specifically, we observe that the fully estimated
MDEQ representation of a frame can be used for obtaining the approximate
representations of the following frames, using only a few inference iterations.
We further develop the idea, and show that even without fully estimating the
representation at any time step, the implicit layer representation can be kept
up-to-date by running the inference iterations over the iteration steps and video
time steps, in a continuous manner. The final scheme, starting from scratch, accu-
mulates and transfers the extracted information throughout the video duration.
We, therefore, refer to the proposed method as Streaming DEQ, or StreamDEQ
for short.

The main difference between standard DEQ and StreamDEQ is illustrated
in Figure 1. While DEQ typically requires a large number of inference iterations,
StreamDEQ enables inference with only a few iterations per frame by leverag-
ing the relevance of the most recent frame’s representation. On the start of a
new stream, or after a major content change (e.g. a shot change), StreamDEQ
quickly adapts to the video in a few frames, much like a person adapting her/his
focus and attention when watching a new video. In the following frames, it con-
tinuously updates the representation to adapt to minor changes (e.g. objects
moving, entering or exiting the scene).

Overall, StreamDEQ provides a simple and lean solution to the streaming
recognition with implicit layer models, where a single model naturally performs
cost-effective recognition, without relying on external inputs and heuristics,
such as optical flow [22], post-processing methods (Seq-NMS [20] or tubelet
re-scoring [30,29]). Our method also maintains the causality of the system, and
executes in a continuous manner. We also note that it allows dynamic time
budgeting; the duration of the inference process can be tuned on-the-fly by a
controller, depending on the instantaneous compute system load, which can be
a desirable feature in real-world scenarios.

* We do not refer to a mathematical definition of smoothness, but rather emphasize
that the changes between neighboring frames are small.



4 U. Ertenli et al.

We verify the effectiveness of the proposed method through extensive exper-
iments on video semantic segmentation and video object detection. Our exper-
imental results show that StreamDEQ recovers near-optimal representations at
much lower inference costs. More specifically, on the ImageNet-VID video object
detection task, StreamDEQ converges to the mAP scores of 50.4 and 54.8 using
only 4 and 8 inference iterations per frame, respectively. In comparison, the stan-
dard DEQ inference scheme yields only 8.2 and 32.6 mAP scores using 4 and 8
iterations, respectively. Similarly, on the Cityscapes semantic segmentation task,
using StreamDEQ instead of the standard DEQ inference scheme improves the
converged streaming mIoU score from 42.3 to 71.5 when 4 inference iterations
are used per frame, and from 73.2 to 78.2 when 8 iterations are used per frame.

2 Related Work

Here, we summarize efficient video processing methods, video object detection
and segmentation models. Furthermore, we discuss saliency based techniques for
video processing. Finally, we give an overview of implicit models (DEQs).

Efficient Video Processing and Inference. There have been many efforts to
improve video processing efficiency to reach real-time processing speeds. Most of
these works take a system-oriented approach [10,39,31]. For example, Carreira
et al. [10] develop an efficient parallelization scheme over multiple GPUs and
process different parts of a model in separate GPUs to improve efficiency while
sacrificing accuracy due to frame delays. Narayanan et al. [39] propose a novel
scheduling mechanism that efficiently schedules and divides forward and back-
ward passes over multiple GPUs. In another work, Li et al. [31] use a dynamic
scheduler in which the model chooses to skip a frame when the delays build up
to the point where it would be impossible to calculate the results of the next
frame in the allotted time.

We also note that works on low-cost network designs, such as MobileNets [23,43]
and low-resolution networks [34,49], are also relevant. Such efforts are valuable
especially for replacing network components with more compute-friendly coun-
terparts. However, the advantages of such techniques can also be limited due to
natural trade-offs between speed and performance [50] as the lower-cost network
components tend to have lower expressive power. Nevertheless, one can easily
incorporate low-cost model design principles into DEQ or StreamDEQ models,
thanks to the architecture-agnostic definition of implicit layer models. While
such efforts may bring reductions in inference wall-clock time, they are outside
the scope of our work.

Video Semantic Segmentation. Semantic segmentation is a costly, spatially
dense prediction task. Its application to videos remains relatively limited. To
reduce the computational cost, most works rely on exploiting temporal relations
between frames using methods such as feature warping [19,47,26,28], feature
propagation [44,32], feature aggregation [24], and knowledge distillation [36].



StreamDEQ 5

Gadde et al. [19] propose warping features of the previous frame at different
depths based on optical flow. Xu et al. [47] evaluate regions of the input frame
and decide whether to warp the features with a cheap flow network or use the
large segmentation model based on a confidence score. Huang et al. [26] keep a
moving average over time by combining the segmentation maps from the current
frame with the warped map from the previous frame. Jain et al. [28] warp high-
quality features from the previous key-frame and fuse them with lower quality
features calculated on the current frame to make predictions.

Shelhamer et al. [44] propose an adaptive method that schedules updates to
the multi-level feature map so that features of layers with smaller changes are
carried forward (without any transformation). Li et al. [32] introduce an adap-
tive key-frame scheduling method based on the deviation of low-level features
compared to the previous key-frame and if the deviation is small, the features
are propagated with spatially variant convolution.

Hu et al. [24] use a set of shallow networks, each calculating features of
consecutive frames starting from scratch. Then, these features are aggregated
at the current frame with an attention-based module. Liu et al. [36] propose
to use an expensive network during training including optical flow and applies
knowledge distillation on a student network to benefit from the high capacity
of a teacher network while cutting computational costs thanks to a smaller and
more efficient student network which the authors use during inference.

In contrast to all these approaches, the proposed StreamDEQmethod directly
leverages the similarities across video frames, without requiring any ad-hoc video
handling strategies, as a way to adapt the implicit layer inference mechanism to
efficient streaming video analysis.

Video Object Detection. Most modern video object detection methods ex-
ploit temporal information to improve the accuracy and/or efficiency. To this
end, optical flow [53,52,29,45], feature aggregation [52,8,46,12] and post-processing
techniques [20,30] are prominently used.

Zhu et al. [53] use optical flow estimates to warp features on selected key-
frames to intermediate frames for increased efficiency. Zhu et al. [52] also propose
FGFA that uses optical flow to warp features of nearby frames to the current
frame and aggregates these features adaptively based on a weight calculated
from feature similarity. Kang et al. [29] create links between objects through
time (tubelets) from the predictions calculated with optical flow across a video
linking objects through time and apply tubelet re-scoring to keep detections of
high-confidence. Wang et al. [45] adds an instance level calibration module to
FGFA [52] and combines them to generate better predictions.

Bertasius et al. [8] sample features from neighboring support frames via de-
formable convolution that learns object offsets between frames and aggregates
these features over these frames. Wu et al. [46] focus on linking object proposals
in a video according to their semantic similarities. Chen et al. [12] propose a
model that aggregates local and global information with a long-range memory.



6 U. Ertenli et al.

Another common way to improve performance is to apply a post-processing
method. For example, Han et al. [20] introduce Seq-NMS to exploit temporal
consistency by constructing a temporal graph to link objects in adjacent frames.
With a similar idea, Kang et al. [30] generate tubelets by combining single image
detections through the video and use a tracker to re-scored the tubelets as a
post-processing to improve temporal consistency.

Saliency Based Techniques. To reduce computational cost, another viable
approach is to select important regions in an image and process only those small
patches [38,1,14,37]. Video extensions of these models also exist [7,18,51].

Mnih et al. [38] and Ba et al. [1] model human eye movements by capturing
glimpses from images with a recurrent structure and process those glimpses at
each step. Cordonnier et al. [14] propose selecting most important regions to
process by first processing a downsampled version of the image. Liu et al. [37]
stops processing for regions with high-confidence predictions at an earlier stage.

Bazzani et al. [7] and Denil et al. [18] approach video processing in a human-
like manner where the model looks at a different patch around the objects of
interest at each frame and tracks them. Zhu et al. [51] takes a key-frame based
approach. At each key-frame they process the full input and at intermediate
frames, they update the feature maps partially based on temporal consistency.

Implicit Layer Models. Implicit layer models have seen a recent surge of
interest and have been successful at numerous tasks. DEQs [2] are a recent
addition to the implicit model family aimed at solving sequence modeling tasks.
DEQs pose a fixed-point solving problem as a root finding problem and utilize an
iterative root finding algorithm to find a solution. Multiscale Deep Equilibrium
Models (MDEQ) [4] are the extension of the base DEQ to image-based models.
Bai et al. [6] propose adding a Jacobian regularization term to improve model
training.

In addition, Huang et al. [27] propose re-using the fixed-point across training
iterations with the drawback of having to stay in full-batch mode for the training.
Also, Bai et al. [5] suggests a new initialization scheme that is realized through
a small network. Furthermore, inferring information from the last few iterations
reduces the number of solver iterations required for convergence.

3 Proposed Method

We build our method on the Deep Equilibrium Model (DEQ). In this section,
we first give an overview of DEQ and then present the details of our method.

3.1 DEQ Overview

Weight-tied networks are models where some or all layers share the same weights [3,16].
A DEQ is essentially a weight-tied network with only one shallow block. DEQ



StreamDEQ 7

leverages the fact that continuously applying the same layer to its output tends
to guide the output to an equilibrium point, i.e. a fixed-point. Let x represent
the model’s input, z∗ the equilibrium point and fθ the applied shallow block,
then a DEQ can be described as

lim
i→∞

z[i+1] = lim
i→∞

fθ(z
[i];x) ≡ fθ(z

∗;x) = z∗. (1)

Since the depth of processing is obtained through repeatedly applying the same
layer(s), these models are also called implicit deep models. DEQ’s fundamental
difference from a standard weight-tied model is that the fixed-point is found by
root finding algorithms in both forward and backward passes as in Eq. 2:

gθ(z;x) = fθ(z;x)− z = 0 =⇒ z∗ = RootFind(gθ;x). (2)

DEQ uses the Broyden’s method [9] for this purpose. The accuracy of the solution
depends on the number of Broyden iterations [5,6]. While more iterations yield
better accuracy, they increase computation cost. DEQs have been successfully
adapted to computer vision tasks, too, with the introduction of Multiscale Deep
Equilibrium Models (MDEQ) [4]. MDEQ is a multiscale model where each scale
is driven to equilibrium together with other scales again by using Broyden’s
method. Iterations start with z[0] = 0 and continue N times to obtain the final
solution, z[N ]. N is set to 26 for ImageNet classification and 27 for Cityscapes
semantic segmentation in MDEQ [4].

3.2 Streaming DEQ

Let X be a H ×W × 3× T dimensional tensor representing a video where T
is the temporal dimension. We represent the frame at time t with xt which is
a H × W × 3 tensor. It should be noted that, we primarily target videos with
temporal continuity, without too frequent shot changes. But we also study the
effects of shot changes in Section 4.

To process a video, DEQ can be applied to each video frame xt to obtain zt,
the representation of that frame. This amounts to running the Broyden solver

for N iterations starting from z
[0]
t = 0 for each frame.

However, we know a priori that transitions between subsequent video frames
are typically smooth, i.e. xt+1 ∼ xt. From this observation, we hypothesize
that the corresponding fixed-points, i.e. representations z∗t and z∗t+1, are likely
to be similar. Therefore, the representation of the previous frame can be used
effectively as a starting point for inferring the representation of the current
frame. To validate this hypothesis, we run an analysis on the ImageNet-VID [42]
dataset using the ImageNet pretrained MDEQ model. We assume that at each
frame xt, we have access to the reference representation, z∗t−1, of the previous
frame. Reference representations are obtained by running the MDEQ model
until convergence (N = 26 iterations). At each frame, we use the reference
representation of the previous frame as the starting point of the solver:

z
[0]
t = z∗t−1, (3)



8 U. Ertenli et al.

1 2 3 4 5 6 7 8
Number of Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sq
ua

re
d 

Eu
cli

de
an

 D
ist

an
ce

StreamDEQ
Baseline (1 iteration)
Baseline (2 iterations)
Baseline (4 iterations)
Baseline (8 iterations)

Fig. 2. Squared Euclidean approximation
error as a function of inference steps,
when the solver is initialized with the
reference representation of the preceding
frame

and run the solver for various but small
numbers of iterations, M . To analyze
the amount of change in representa-
tions over time, we use an ImageNet-
pretrained model (MDEQ-XL), since
ImageNet representations are known to
be useful in many transfer learning
tasks. In Figure 2, we show the squared

Euclidean distance between z
[M ]
t and z∗t

for various t values, when the solver is
started with Eq. 3. Dashed lines cor-
respond to the squared Euclidean dis-
tance between MDEQ-XL’s reference
and M -iteration based representations.

From the results presented in Fig-
ure 2, we observe that when the solver
is initialized with the preceding frame’s
fixed-point, the inference process quickly converges towards the reference repre-
sentation. We also observe that after starting from the reference representation
of the previous frame and performing only 1 iteration on the current frame, the
approximate representation is already more similar to the reference representa-
tion than starting from scratch and performing 8 iterations.

Next, we examine the case where the inference method is given access to the
reference representations only at certain frames. To simulate this case, at each
video clip, we compute the reference representation only at the first frame x0, i.e.
z∗0. In all following ones, we initialize the solver with the estimated representation
of the preceding frame and run the solver for M iterations. That is,

z
[0]
1 = z∗0 and z

[0]
t = z

[M ]
t−1. (4)

We present the results of this scheme for M ∈ {1, 2, 4, 8} in the left hand side
of Figure 3. We observe that starting with the reference representation on the
initial frame is still useful but for longer clips its effect diminishes. Still, this
scheme helps us maintain a stable performance even after several frames. For
example, starting with the reference representation and then applying M = 2
iterations per frame throughout the following 20 frames yields a representation
that is closer to the reference representation of the final frame than the one given
by baseline DEQ inference with 4 solver iterations. This result shows that the
M -step inference scheme is able to keep up with the changes in the scene by
starting from a good initial point.

While this scheme can provide efficient inference on novel frames, we would
still need the reference representations of the initial frames, or key-frame(s),
which would share the same problems with key-frame based video recognition
approaches, e.g. [53,47,35]. To address this problem, we further develop the idea,
and hypothesize that we can start from scratch (i.e. all zeros), do a limited
number of iterations per frame, and pass the representation to the next frame



StreamDEQ 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sq
ua

re
d 

Eu
cli

de
an

 D
ist

an
ce

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 iteration)
Baseline (2 iterations)
Baseline (4 iterations)
Baseline (8 iterations)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sq
ua

re
d 

Eu
cli

de
an

 D
ist

an
ce

StreamDEQ (1 Iteration)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 iteration)
Baseline (2 iterations)
Baseline (4 iterations)
Baseline (8 iterations)

Fig. 3. Distance between the reference representations and StreamDEQ estimations
for varying number of iterations, when StreamDEQ is initialized with reference repre-
sentations (on the left) or just zeros (on the right) on the very first frame

as the starting point. That is,

z
[0]
0 = 0 and z

[0]
t = z

[M ]
t−1. (5)

We present the representation distance results for this final scheme in Figure 3
(right). The representation distances to the reference representations stabilize in
20 frames. Converged distance values (in 20 frames) are almost the same with
those of the previous scheme (Eq.4). Additionally, the initial representations have
relatively large distances but these differences get smaller as new frames arrive.
We call this final scheme as StreamDEQ. This scheme avoids any heavy process-
ing in any one of the frames, and completely avoids the concept of key-frames.
The number of Broyden iterations can be tuned, which allows easy control over
the time-vs-accuracy trade-off. Therefore, the inference iterations can be run as
much as the time budget allows. An illustration of the StreamDEQ inference
process is given in Figure 4.

4 Experimental Results

We evaluate our method on video semantic segmentation and video object de-
tection. In the following, we provide technical details regarding training and
inference setups, the datasets used, and present our experimental findings. We
use the PyTorch [40] framework for all experiments.

4.1 Video Semantic Segmentation

Experimental Setup. We use the Cityscapes semantic segmentation dataset [15],
which consists of 5K finely annotated and 20K coarsely annotated images. These
finely annotated images are divided into train, val and test set, each containing
2975, 500, and 1525 images, respectively. They correspond to frames extracted



10 U. Ertenli et al.

0 0 0 …

Prediction head

• • •

• • •

Broyden 
iteration

Broyden 
iteration

Broyden 
iteration

Broyden 
iteration

Prediction head Prediction head Prediction head

Broyden 
iteration

Broyden 
iteration

Broyden 
iteration

Broyden 
iteration

Fig. 4. StreamDEQ applied to a streaming video, performing two iterations per frame.
The representation inference process is initialized with zeros in the very first frame
(z

[0]
0 = 0), and with the most recent representation (z

[0]
t = z

[2]
t−1) in the rest of the

stream. This scheme effectively recycles all recent computations for time-efficient infer-
ence on a new frame, and therefore, allows approximating a long inference chain (i.e. a
deep network) by a few inference steps (i.e. a few layers) throughout the video stream

from video clips where each annotated image is the 20th frame of its respective
clip. To evaluate over videos, we use these clips up to the 20th frame, which has
fine annotations, and perform the evaluation on that frame.

We use the pretrained MDEQ-XL segmentation model from the MDEQ pa-
per [4] and do not perform any additional training. We also do not make any
changes to its evaluation setup or hyperparameters, perform the evaluation on
Cityscapes val and report mean intersection over union (mIoU) results. For
further details, we refer the reader to MDEQ [4].

Results. We present the results of StreamDEQ for two scenarios. The first
scenario corresponds to Eq. 4, where we use the reference representations of
the first frame to initialize the solver, and apply StreamDEQ then on. Results
of this experiment in Figure 5 (left) show that as the offset of the evaluated
frame increases, mIoU starts decreasing, which is expected because the further
we move away from the first frame the more irrelevant its representation will
become. However, mIoU then stabilizes at a value that is proportional to the
number of Broyden iterations (the more iterations, the better the mIoU). This
shows that StreamDEQ is able to extract better features over time. StreamDEQ’s
performance with 8 iterations is still comparable with the baseline (MDEQ) with
27 iterations.

The second scenario corresponds to our final StreamDEQ proposal (i.e. Eq.
5), where we initialize the solver from scratch, i.e. with all zeros, and apply
StreamDEQ. Results of this case are shown in Figure 5 (right). As the videos
progress, it might be expected that the Broyden solver cannot keep up with the
changing scenes. However, we observe that even after 20 frames, the accuracy



StreamDEQ 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

80

m
Io

U

StreamDEQ (1 Iterations)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 iteration)
Baseline (2 iterations)
Baseline (4 iterations)
Baseline (8 iterations)
Baseline (27 Iterations)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

80

m
Io

U

StreamDEQ (1 Iterations)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 iteration)
Baseline (2 iterations)
Baseline (4 iterations)
Baseline (8 iterations)
Baseline (27 Iterations)

Fig. 5. StreamDEQ semantic segmentation results (in mIoU) on the Cityscapes dataset
as a function of solver iterations when the first frame representation is initialized with
the reference representation (left) versus zeros (right)

does not drop. Additionally, the impact of this method is clearer for lower num-
bers of iterations. For example, performing 1 iteration on every frame without
our method would only yield an mIoU score of 2.2. However, StreamDEQ ob-
tains a mIoU score of 44.9 in 10 frames. This is an improvement of over 20×.
For 8 iterations, StreamDEQ is able to obtain 78.1 mIoU in 10 frames whereas
the non-streaming baseline achieves only 73.2 mIoU. Moreover, the converged
mIoU values (at larger frame offsets) are similar in Figure 5 (left) and Figure 5
(right). Therefore, we conclude that the initial point where we start the solver
becomes less important as the video streams and the performance stabilizes at
some value higher than the non-streaming case.

We also illustrate these results qualitatively in Figure 6. For 1 iteration,
while the baseline cannot produce any meaningful segmentation, StreamDEQ
starts capturing many segments correctly at the 4th frame. With 2 iterations,
while the DEQ baseline still produces poor results, StreamDEQ starts to yield
accurate predictions in early frames compared to the single iteration case. With
4 iterations, while both models provide rough but relevant predictions in the
first frame, StreamDEQ predictions start to become clearly more accurate in
the following frames; for example, tree trunks and the sky become visible only
when StreamDEQ is applied.

We examine the effects of increasing the number of iterations on inference
speed in Table 1. We note that our method does not introduce any computation
overhead other than the time it takes to store the fixed-point representation of
the previous frame. Therefore, we observe a linear increase in compute times
as the number of iterations increases. StreamDEQ with 4 iterations achieves an
mIoU score of 71.5 at 530 ms per image. MDEQ with 4 iterations can only achieve
42.3 mIoU. Additional inference results can be found in the videos provided on
our project page.



12 U. Ertenli et al.

Table 1. Inference time comparisons of the proposed method with differing number of
iterations on Cityscapes and ImageNet-VID datasets

Cityscapes ImageNet-VID

Model # iterations mIoU FPS mAP@50 FPS

StreamDEQ 1 45.5 4.3 9.1 10.3
StreamDEQ 2 57.9 2.9 39.5 9.2
StreamDEQ 4 71.5 1.9 50.4 6.2
StreamDEQ 8 78.2 1.1 54.8 3.5

MDEQ (Baseline) 27/26 79.7 0.3 55.0 1.2

Effect of Shot Changes. We also study the effects of shot changes for the video
semantic segmentation task. For this purpose, we initialize the solver with the
reference representations from a random frame from the Cityscapes or ImageNet-
VID datasets and run StreamDEQ starting from the representations of that
frame. Results of ImageNet-VID to Cityscapes shot change experiments can be
found in Figure 7. In this case, even though at first, the obtained scores are
lower, following a similar trajectory to the ones in Figure 5 (right), mIoU scores
stabilize to a value close to our original experiment. We conclude that, even
with occasional shot changes, our method is able to adapt to the new scene in a
few frames. The Cityscapes-to-Cityscapes shot change experiments, with similar
results, are provided in the supplementary material.

4.2 Video Object Detection

Experimental Setup. For the video object detection task, we evaluate our
method on the ImageNet-VID dataset [42] utilizing the MMDetection [11] and
MMTracking [13] frameworks. ImageNet-VID dataset consists of 3862 training
and 555 validation videos from 30 classes that are a subset of the 200 classes
of the ImageNet-DET dataset. The frames and annotations for each video are
available at a rate of 25-30 FPS per video. Note that the ImageNet-DET dataset
consists only of images rather than videos. We follow the widely used proto-
col [52,45,17,46,12] and train our model on the combination of ImageNet-VID
and ImageNet-DET datasets using the 30 overlapping classes. We use a mini-
batch size of 4, distributed to 4 NVIDIA A100 GPUs. We resize each image to
have a shorter side of 600 pixels and train the model for a total of 12 epochs in
3 stages. We initialize the learning rate to 0.01 and reduce it by a factor of 10 at
epochs 7 and 10. We test the model on ImageNet-VID val and report mAP@50
scores following the common practice.

We adopt Faster R-CNN [41] by replacing its ResNet backbone with the
MDEQ-XL model. To incorporate multi-level representations, we also use a Fea-
ture Pyramid Network (FPN) [33] module after MDEQ-XL. Without any addi-
tional modifications, we directly use the model while keeping the model hyper-
parameters and remaining architecture details same as in Faster R-CNN models



StreamDEQ 13

Fig. 6. Qualitative comparison of the baseline with StreamDEQ with different numbers
of iterations on the Cityscapes dataset

for ResNet backbones. Exceptionally, we only modify the number of channels for
the FPN module to match that of MDEQ-XL. We start training with the Ima-
geNet pretrained MDEQ-XL model from MDEQ [4]. During training, we use 26
solver iterations for both forward and backward passes of the MDEQ, following
the ImageNet classification experiments in MDEQ [4]. Unlike the video object
detection models [52,17,12], we train our model in the causal single-frame set-
ting, meaning we do not use any temporal information for improved training.
Furthermore, we also incorporate the Jacobian regularization loss for MDEQs
introduced by Bai et al. [6] to stabilize training.

Results. To the best of our knowledge, this is the first time that an implicit
model (MDEQ) is used for an object detection task. We achieve 55.0 mAP@50 on
ImageNet-VID val. We are aware that Faster R-CNN with ResNet-18 backbone
yields 64.9 mAP@50, however, Faster R-CNN is highly optimized to perform well
with ResNet backbones. Yet, we use this same setting with an MDEQ without
any parameter optimization, as our focus is not on constructing a MDEQ-based
state-of-the-art video object detector. We believe that there is room for improve-
ment in detector design and tuning details, which we leave for future work.

Similar to the video segmentation task, we run StreamDEQ with different
numbers of iterations. We present the results of this experiment in Figure 8. We
observe the same trends with the segmentation task. Over time, detection perfor-
mance increases and stabilizes at a value proportional to the number of Broyden



14 U. Ertenli et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

60

70

80

m
Io

U

StreamDEQ (1 Iterations)
StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 iteration)
Baseline (2 iterations)
Baseline (4 iterations)
Baseline (8 iterations)
Baseline (27 Iterations)

Fig. 7. mIoU results of StreamDEQ with
shot changes from ImageNet-VID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Offset of the Evaluated Frame

0

10

20

30

40

50

m
AP

@
50 StreamDEQ (1 Iterations)

StreamDEQ (2 Iterations)
StreamDEQ (4 Iterations)
StreamDEQ (8 Iterations)
Baseline (1 iteration)
Baseline (2 iterations)
Baseline (4 iterations)
Baseline (8 iterations)
Baseline (26 Iterations)

Fig. 8. mAP@50 results of StreamDEQ
for various number of iterations after ini-
tialization with zeros from the beginning
of a clip on the ImageNet-VID dataset

iterations. The 1 and 2 iteration cases do not produce any detection results in
the non-streaming mode, but if we perform 2 iterations with StreamDEQ, we
improve the performance from 0 to 39.5 mAP@50 in 20 frames.

In addition, we also compare the inference speed of StreamDEQ with our
baseline for different number of iterations in Table 1. In the 8 iteration case, we
obtain a score of 54.8 with StreamDEQ which is only 0.2 lower than our baseline
model, while being almost 3 times faster.

5 Conclusions & Future Work

In this paper, we proposed StreamDEQ, an efficient streaming video applica-
tion of the multiscale implicit deep model, MDEQ. We showed that our model
can start from scratch (i.e. all zeros) and efficiently update its representations to
reach near-optimal representations as the video streams. We validated this claim
on video semantic segmentation and video object detection tasks with thorough
experiments. StreamDEQ presents a viable approach for both real-time video
analysis and off-line large-scale methods. StreamDEQ is not specific to segmen-
tation or object detection, and can be used as a drop-in replacement for most
other structured prediction problems on streaming videos as long as the pre-
diction task is performed by an implicit model. In addition, application to time
series prediction and event camera based recognition tasks can be interesting
future work directions.

Acknowledgments. The numerical calculations were partially performed at
TUBITAKULAKBIM, High Performance and Grid Computing Center (TRUBA)
and METU Robotics and AI Technologies Research Center (ROMER) resources.
Dr. Cinbis is supported by a Google Faculty Research Award. Dr. Akbas is sup-
ported by the BAGEP Award of the Science Academy, Turkey.



StreamDEQ 15

References

1. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual atten-
tion. In: ICLR (2015)

2. Bai, S., Kolter, J.Z., Koltun, V.: Deep equilibrium models. In: Advances in Neural
Information Processing Systems (NeurIPS) (2019)

3. Bai, S., Kolter, J.Z., Koltun, V.: Trellis networks for sequence modeling. In: Inter-
national Conference on Learning Representations (2019), https://openreview.
net/forum?id=HyeVtoRqtQ

4. Bai, S., Koltun, V., Kolter, J.Z.: Multiscale deep equilibrium models. In: Advances
in Neural Information Processing Systems (NeurIPS) (2020)

5. Bai, S., Koltun, V., Kolter, J.Z.: Neural deep equilibrium solvers. In: International
Conference on Learning Representations (2021)

6. Bai, S., Koltun, V., Kolter, J.Z.: Stabilizing equilibrium models by jacobian regu-
larization. In: International Conference on Machine Learning (ICML) (2021)

7. Bazzani, L., de Freitas, N., Larochelle, H., Murino, V., Ting, J.A.: Learning atten-
tional policies for tracking and recognition in video with deep networks. In: ICML
(2011)

8. Bertasius, G., Torresani, L., Shi, J.: Object detection in video with spatiotempo-
ral sampling networks. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 331–346 (2018)

9. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation 19(92), 577–593 (1965)

10. Carreira, J., Patraucean, V., Mazare, L., Zisserman, A., Osindero, S.: Massively
parallel video networks. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 649–666 (2018)

11. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,
Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R.,
Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection:
Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
(2019)

12. Chen, Y., Cao, Y., Hu, H., Wang, L.: Memory enhanced global-local aggregation for
video object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10337–10346 (2020)

13. Contributors, M.: MMTracking: OpenMMLab video perception toolbox and bench-
mark. https://github.com/open-mmlab/mmtracking (2020)

14. Cordonnier, J.B., Mahendran, A., Dosovitskiy, A., Weissenborn, D., Uszkoreit, J.,
Unterthiner, T.: Differentiable patch selection for image recognition. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 2351–2360 (2021)

15. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

16. Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., Kaiser, L.: Universal trans-
formers. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=HyzdRiR9Y7

17. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation net-
works for video object detection. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 7023–7032 (2019)

https://openreview.net/forum?id=HyeVtoRqtQ
https://openreview.net/forum?id=HyeVtoRqtQ
https://github.com/open-mmlab/mmtracking
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7


16 U. Ertenli et al.

18. Denil, M., Bazzani, L., Larochelle, H., de Freitas, N.: Learning where to attend
with deep architectures for image tracking. Neural computation 24(8), 2151–2184
(2012)

19. Gadde, R., Jampani, V., Gehler, P.V.: Semantic video cnns through representa-
tion warping. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 4453–4462 (2017)

20. Han, W., Khorrami, P., Paine, T.L., Ramachandran, P., Babaeizadeh, M., Shi, H.,
Li, J., Yan, S., Huang, T.S.: Seq-nms for video object detection. arXiv preprint
arXiv:1602.08465 (2016)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

22. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial intelligence 17(1-3),
185–203 (1981)

23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

24. Hu, P., Caba, F., Wang, O., Lin, Z., Sclaroff, S., Perazzi, F.: Temporally distributed
networks for fast video semantic segmentation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8818–8827 (2020)

25. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

26. Huang, P.Y., Hsu, W.T., Chiu, C.Y., Wu, T.F., Sun, M.: Efficient uncertainty
estimation for semantic segmentation in videos. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 520–535 (2018)

27. Huang, Z., Bai, S., Kolter, J.Z.: (Implicit)2: Implicit layers for implicit representa-
tions. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

28. Jain, S., Wang, X., Gonzalez, J.E.: Accel: A corrective fusion network for efficient
semantic segmentation on video. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 8866–8875 (2019)

29. Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C., Wang, Z.,
Wang, R., Wang, X., et al.: T-cnn: Tubelets with convolutional neural networks
for object detection from videos. IEEE Transactions on Circuits and Systems for
Video Technology 28(10), 2896–2907 (2017)

30. Kang, K., Ouyang, W., Li, H., Wang, X.: Object detection from video tubelets
with convolutional neural networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 817–825 (2016)

31. Li, M., Wang, Y.X., Ramanan, D.: Towards streaming perception. In: European
Conference on Computer Vision. pp. 473–488. Springer (2020)

32. Li, Y., Shi, J., Lin, D.: Low-latency video semantic segmentation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5997–
6005 (2018)

33. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

34. Liu, M., Zhu, M.: Mobile video object detection with temporally-aware feature
maps. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 5686–5695 (2018)



StreamDEQ 17

35. Liu, M., Zhu, M., White, M., Li, Y., Kalenichenko, D.: Looking fast and slow:
Memory-guided mobile video object detection. arXiv preprint arXiv:1903.10172
(2019)

36. Liu, Y., Shen, C., Yu, C., Wang, J.: Efficient semantic video segmentation with
per-frame inference. In: European Conference on Computer Vision. pp. 352–368.
Springer (2020)

37. Liu, Z., Wang, H.J., Xu, Z., Darrell, T., Shelhamer, E.: Confidence adaptive any-
time pixel-level recognition. In: International Conference on Learning Representa-
tions (2022), https://openreview.net/forum?id=kNKFOXleuC

38. Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models of visual
attention. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems. vol. 27.
Curran Associates, Inc. (2014), https://proceedings.neurips.cc/paper/2014/
file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf

39. Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N.R., Ganger,
G.R., Gibbons, P.B., Zaharia, M.: Pipedream: generalized pipeline parallelism for
dnn training. In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles. pp. 1–15 (2019)

40. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

41. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28 (2015)

42. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

43. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018)

44. Shelhamer, E., Rakelly, K., Hoffman, J., Darrell, T.: Clockwork convnets for video
semantic segmentation. In: European Conference on Computer Vision. pp. 852–
868. Springer (2016)

45. Wang, S., Zhou, Y., Yan, J., Deng, Z.: Fully motion-aware network for video object
detection. In: Proceedings of the European conference on computer vision (ECCV).
pp. 542–557 (2018)

46. Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for
video object detection. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 9217–9225 (2019)

47. Xu, Y.S., Fu, T.J., Yang, H.K., Lee, C.Y.: Dynamic video segmentation network.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 6556–6565 (2018)

48. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

https://openreview.net/forum?id=kNKFOXleuC
https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s11263-015-0816-y


18 U. Ertenli et al.

49. Zhao, B., Zhao, B., Tang, L., Han, Y., Wang, W.: Deep spatial-temporal joint
feature representation for video object detection. Sensors 18(3), 774 (2018)

50. Zhu, H., Wei, H., Li, B., Yuan, X., Kehtarnavaz, N.: A review of video object
detection: Datasets, metrics and methods. Applied Sciences 10(21), 7834 (2020)

51. Zhu, X., Dai, J., Yuan, L., Wei, Y.: Towards high performance video object de-
tection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 7210–7218 (2018)

52. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for
video object detection. In: Proceedings of the IEEE international conference on
computer vision. pp. 408–417 (2017)

53. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recog-
nition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 2349–2358 (2017)


	Streaming Multiscale Deep Equilibrium Models

