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1 Error Propagation Comparison
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Fig. 1A: KL Divergence of depthwise convolution output between the baseline
MobileNet-V2 and the model with ours (e.g., SymReg, SatNL, and ASAM) on
the ImageNet dataset. The weights of both networks are quantized into 8-bit
through PTQ (ACIQ).

Fig. 1A shows the layer-wise KL divergence of output activation before and
after the 8-bit weight quantization. As shown in the figure, the KL divergence
of the baseline network becomes larger in the last depthwise convolution layer,
while the divergence of the proposed network has a much smaller difference.
Because the proposed methods minimize the quantization error through SatNL,
the layer-wise error is smaller than the original network. In addition, SymReg
mitigates the error propagation, which prevents the accumulation of quantization
errors over multiple layers. As a result, the output activation could maintain the
consistent features, and we could enjoy the benefit of low-precision computation
with minimal accuracy degradation.

2 Weight Distribution Visualization

Fig. 2A shows the effect of the proposed methods by visualizing the histograms of
weights in the 15th convolution layer of MobileNet-v2 at CIFAR-100. As shown
in the left figure, the original weight has an irregular distribution with a few
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Fig. 2A: Weight distribution of convolution kernels in the 15th convolution
layer of MobileNet-V2 at CIFAR-100. Left : Baseline, Middle : SatNL, Right
: SatNL+SymReg.

large values. Due to these infrequent values, the quantization error is increased
after the quantization. When we train the network with SatNL, the distributions
are concentrated within the narrowed range, as shown in the middle figure.
As a result, the statistics difference before and after the quantization could
be minimized. After applying SymReg in addition to SatNL, the distribution
now becomes symmetric, and thereby the biased quantization error is forced to
zero regardless of quantization algorithms. While the proposed methods reduce
the degree of freedom of weight, introducing minor accuracy degradation, the
robustness of the network against quantization could be enhanced significantly.

3 Training Configurations

Table 1A: Hyper-parameters to train the networks

Cosine annealing with warmup ASAM

configuration epoch lr weight decay warmup len ηmin ρ

ResNet18 ImageNet 150 0.4 1× 10−5 5 1× 10−2 1

MobileNetv2
Cifar100 120 0.4 5× 10−5 5 1× 10−2 1
ImageNet 150 0.4 1× 10−5 5 1× 10−2 1

MobileNetv3 ImageNet 240 0.4 1× 10−5 5 1× 10−2 0.2

In this work, we need to train the target models from scratch for PTQ exper-
iments. Tab. 1A shows the hyper-parameters we use to train the models. We use
the well-known SGD with a momentum algorithm and the exponential moving
average of parameters. In the case of QAT, we apply 90 epochs of fine-tuning
with 1/10 lower learning rates than used in the pre-training stage. The rest of
the hyper-parameters are set identical to the initial full-precision pre-training
stage.
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4 Reproducibility

The entire source code is available in the author’s public Github repository.
https://github.com/EunhyeokPark/RobustQuant

5 Other Non-linearities for SatNL
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Fig. 3A: Various saturating non-linearity functions.

As mentioned in section 4.2, SatNL requires three properties; 1. odd function,
2. bounded range, and 3. decreased slope. We reproduce the experiments of
Table 1 in the main paper by replacing tanh with two other functions satisfying
the properties (Fig. 3A). We observe that the accuracy difference is negligible,
proving that the choice of the SatNL function has no notable impact on the
accuracy.

6 ImageNet Experiments with KURE

Tab. 2A extends Table 1 in the main paper by including the comparison to
the previous state-of-the-art method, KURE[3]. As shown in the table, the joint
regularization of ours and KURE shows the highest accuracy in extreme low-
precision PTQ (3-bit) compared to other methods. However, because KURE
is a strong regularization, it introduces slight accuracy degradation in the full-
precision pre-training stage. When applying PTQ with 4-bit or higher precision,
ours without KURE shows higher accuracy in every case. Our novel ideas push
the boundaries of achievable accuracy when one quantizes the network with PTQ
in 4-bit or higher.

7 Additional Experiments on Non-linear PTQ Algorithms

In order to show the outstanding benefit of the proposed methods for the non-
linear quantization algorithms, we conducted extensive studies based on non-
linear PTQ algorithms (i.e., logarithm-based quantization and K-means clustering-
based quantization). As shown in Fig. 4A, our proposed methods increase the
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Table 2A: Results of applying PTQ to baseline and network with proposed ideas
including KURE on ImageNet dataset. The values in the table represent the
top-1 accuracy. The dashed cells represent the points where the PTQ fails to
converge, having lower than 1 % of accuracy.

Model PTQ Method
Weight/activation bit-width configuration

FP 4/FP 3/FP 2/FP 6/6 5/5 4/4 3/3

ResNet-18

ACIQ

Baseline 70.54 47.44 - - 68.70 64.87 38.46 -
Ours 70.92 69.22 49.06 - 70.02 68.99 66.65 42.95
KURE 69.39 66.69 44.19 - 68.01 66.84 61.80 26.58

Ours+KURE 70.33 69.85 67.59 - 69.23 68.65 67.11 61.07

AdaQuant

Baseline 70.54 69.29 66.18 3.23 70.17 69.55 67.67 57.57
Ours 70.92 70.36 68.84 48.39 70.75 70.37 69.35 64.04
KURE 69.39 69.09 68.32 62.21 69.23 68.77 67.77 64.22

Ours+KURE 70.33 69.96 69.21 63.16 70.11 69.77 69.14 66.06

QDrop

Baseline 70.54 70.15 69.39 66.40 70.27 69.93 68.91 65.75
Ours 70.92 70.69 70.06 66.98 70.81 70.57 69.93 67.45
KURE 69.39 69.35 69.14 67.60 69.25 69.13 68.30 66.10

Ours+KURE 70.33 70.18 69.86 67.77 70.13 69.86 69.38 67.47

MobileNet-V2

ACIQ

Baseline 72.22 28.68 - - 69.30 64.20 18.15 -
Ours 72.87 70.07 40.79 - 71.07 68.66 58.30 6.25
KURE 72.07 54.34 6.43 - 69.77 64.37 39.31 2.14

Ours+KURE 72.48 70.30 42.24 - 70.68 68.31 61.51 13.87

AdaQuant

Baseline 72.22 70.67 59.80 - 71.52 70.72 63.70 -
Ours 72.87 72.23 69.03 - 72.27 71.76 68.91 18.36
KURE 72.07 71.51 68.71 3.58 71.62 70.71 66.25 4.61

Ours+KURE 72.48 71.93 70.17 10.16 71.90 71.26 68.84 29.27

QDrop

Baseline 72.22 71.41 68.32 48.68 71.57 70.64 67.08 50.79
Ours 72.87 72.44 71.18 61.68 72.61 72.05 69.87 62.55
KURE 72.07 71.75 70.55 59.51 71.76 70.91 68.23 56.20

Ours+KURE 72.48 72.13 71.25 63.78 72.15 71.60 70.00 63.30

MobileNet-V3

ACIQ

Baseline 74.52 29.65 - - - - - -
Ours 74.43 61.95 1.04 - - - - -
KURE 73.81 55.15 3.09 - - - - -

Ours+KURE 73.84 66.21 5.44 - - - - -

AdaQuant

Baseline 74.52 72.92 64.17 - 72.73 68.95 43.88 -
Ours 74.43 73.51 70.50 2.87 72.69 71.02 62.73 -
KURE 73.81 73.11 70.46 7.44 72.63 70.63 59.25 -

Ours+KURE 73.84 73.25 70.91 20.05 72.29 70.32 62.35 1.84

robustness by a large margin in both methods, allowing minimal accuracy degra-
dation in low-precision. This result verifies that the proposed methods are also
applicable for non-linear quantization. Compared to the previous best, KURE,
ours gives comparable or slightly better robustness in the optimized networks,
i.e., MobileNet-V2/V3. According to our observation, SatNL is highly beneficial
to stabilize the non-linear PTQ process because the statistical difference before
and after the quantization could be minimized.
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Fig. 4A: Robustness of quantized networks with non-linear quantization al-
gorithms. The weight precision is changed while the activation remains full-
precision.
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8 Addtional Results Regarding Robustness for
Quantization Step Size

Fig. 5A shows the additional experiments for measuring the robustness of net-
works for step size changes corresponding to Fig. 7 in the main paper. In all cases,
the quantized models with proposed methods maintain the accuracy in various
quantization step sizes. Our methods are beneficial for robust quantization even
for the optimized networks, i.e., MobileNet-V2/V3.
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Fig. 5A: Robustness of quantized network when we change step size of quantiza-
tion operator for weight. The networks are optimized for the step size ∆′, and
the accuracy is measured with the scaled step size ∆. All networks are quantized
into the given bitwidth with PTQ [2], including activation and weight.

9 Explanation of Equations

9.1 Equation 4 and 6

In Equations 4 and 6, we follow the derivation of ACIQ [1] regarding the expected
mean-square-error of linear quantization. When we apply b-bit quantization to
the quantization boundaries [−α, α], the quantization interval is equally divided
into 2b discrete levels. When the density function is given as f(x), the overall
quantization error is expressed as follows:
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Quantization Error = E[(W −Q(W ))2]

=

quantization error︷ ︸︸ ︷∫ ∞

−∞
f(x) · (x− α)2dx

=

truncation error︷ ︸︸ ︷
·
∫ ∞

α

f(x) · (x− α)2dx+ ·
∫ α

−∞
f(x) · (x− α)2dx

+

rounding error︷ ︸︸ ︷
2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆
f(x) · (x− qi)

2dx,

(1)

where ∆ = 2 · α/2b and qi = −α+ (2i+ 1) ·∆/2.
In the previous study [1], the rounding error is approximated by a piece-wise

linear function based on the slope and the value of the density function at the
midpoint of quantization levels, qi. The rounding error of the quantization noise
is approximated as follows:

rounding error︷ ︸︸ ︷
2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆
f(x) · (x− qi)

2dx ≈ α2

3 · 22b
.

(2)

By substituting the above equation to the rounding error term, the quanti-
zation error is summarized as follows:

Quantization Error = E[(W −Q(W ))2]

≈

truncation error︷ ︸︸ ︷
·
∫ ∞

α

f(x) · (x− α)2dx+ ·
∫ −α

−∞
f(x) · (x− α)2dx+

rounding error︷ ︸︸ ︷
α2

3 · 22b
,

(3)

where α is the truncation boundary that minimizes ||W −Q(W )||2. In addi-
tion, because Gaussian distribution is an even function, two terms of truncation
error are identical. Overall, the quantization error is summarized as follows:

Quantization Error = E[(W −Q(W ))2]

≈

truncation error︷ ︸︸ ︷
2 ·

∫ ∞

α

f(x) · (x− α)2dx+

rounding error︷ ︸︸ ︷
α2

3 · 22b
.

(4)

In the case of Equation 6, the probability density function of G(x) is the same
as f(x), therefore the quantization error in [−d, d] could be achievable following
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the similar derivation of Equation 10 as given by:

Quantization Error’ ∈ (−d, d)

≈

truncation error︷ ︸︸ ︷
2 ·

∫ d

α′
f(x) · (x− α′)2dx+

rounding error︷ ︸︸ ︷
α′2

3 · 22b
,

(5)

where α′ is the truncation boundary that minimizes ||W ′−Q(W ′)||2. In addition,
the error of clamped values is expressed as:

F (−|d|)(d− α′)2 + (1− F (d))(d− α′)2

= 2 · F (−|d|) · (d− α′)2
(6)

By combining the above two terms, we can get the overall quantization errors
of the clamped weight:

Quantization Error′ = E[(W ′ −Q(W ′))2]

≈

truncation error︷ ︸︸ ︷
2 ·

(
F (−|d|) · (d− α′)2 +

∫ d

α′
f(x) · (x− α′)2dx

)
+

rounding error︷ ︸︸ ︷
α′2

3 · 22b
.

(7)

9.2 Proof of Error Comparison

When we compare Eq. (4) and Eq. (6), Eq. (6) always has a smaller error than Eq.
(4), showing that the clamped distribution is more robust than the unbounded
distribution. In order to prove the relationship mentioned above, we will first
give two lemmas.

Lemma 1. For the arbitrary A < d, the quantization error of unbounded
distribution with truncation boundary A is always larger than the quantization
error of bounded distribution with truncation boundary A.

The difference of error is given as:

∆Error

= 2 ·
∫ ∞

A

f(x) · (x−A)2dx− 2 · F (−|d|) · (d−A)2

= 2 ·
(∫ ∞

A

f(x) · (x−A)2dx−
∫ ∞

d

f(x) · (d−A)2dx
)

= 2 ·
∫ d

A

f(x) · (x−A)2dx

+ 2 ·
∫ ∞

d

f(x)
(
(x−A)2 − (d−A)2

)
dx.

(8)

The last two terms are always positive, therefore lemma 1 holds.
Lemma 2. For the arbitrary A < d, the quantization error of bounded

distribution with truncation boundary A is always larger than or equal to the
quantization error of bounded distribution with truncation boundary α′.
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From the definition of α′, where α′ is the truncation boundary that minimizes
||W ′ −Q(W ′)||2, lemma 2 is always valid.

From lemma 1 and lemma 2, for the arbitrary A < d, the quantization error
of unbounded distribution with truncation boundary A is larger than the quan-
tization error of bounded distribution with truncation boundary α′. Therefore,
Eq.(6) is always smaller than to Eq.(4). ■
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