
SP-Net: Slowly Progressing Dynamic Inference
Networks

Huanyu Wang1∗, Wenhu Zhang2⋆, Shihao Su1, Hui Wang1, Zhenwei Miao3,
Xin Zhan3, and Xi Li1,4,5⋆⋆

1 College of Computer Science and Technology, Zhejiang University
2 Polytechnic Institute, Zhejiang University

3 Alibaba Group, HangZhou, Zhejiang, China
4 Shanghai Institute for Advanced Study, Zhejiang University

5 Shanghai AI Laboratory
{huanyuhello, wenhuzhang, shihaocs, wanghui 17}@zju.edu.cn, {zhenwei.mzw,

zhanxin.zx}@alibaba-inc.com, xilizju@zju.edu.cn

Abstract. Dynamic inference networks improve computational efficiency
by executing a subset of network components, i.e., executing path, con-
ditioned on input sample. Prevalent methods typically assign routers
to computational blocks so that a computational block can be skipped
or executed. However, such inference mechanisms are prone to suffer
instability in the optimization of dynamic inference networks. First, a
dynamic inference network is more sensitive to its routers than its com-
putational blocks. Second, the components executed by the network vary
with samples, resulting in unstable feature evolution throughout the net-
work. To alleviate the problems above, we propose SP-Nets to slow down
the progress from two aspects. First, we design a dynamic auxiliary mod-
ule to slow down the progress in routers from the perspective of histori-
cal information. Moreover, we regularize the feature evolution directions
across the network to smoothen the feature extraction in the aspect of
information flow. As a result, we conduct extensive experiments on three
widely used benchmarks and show that our proposed SP-Nets achieve
state-of-the-art performance in terms of efficiency and accuracy.

Keywords: Dynamic Inference, Slowly Progressing, Executing Path Reg-
ularization, Feature Evolution Regularization.

1 Introduction

Recent years have witnessed a significant development in deep neural networks.
The excellent performance of these networks is ascribed not only to the sophis-
ticated design of network modules but also the increasing depth of the network.
However, the merit comes with the price that deep neural networks are highly
dependent on computational resources to ensure both efficiency and accuracy,

⋆ H. Wang and W. Zhang make equal contribution to this work.
⋆⋆ Corresponding author

2 H.Y. Wang et al.

0.1 0.2 0.3 0.4 0.5

Computation Cost (GMACCs)

92

93

94

95

A
cc

u
ra

cy
 (

%
)

Baseline

Static

(a) CIFAR-10

0.1 0.2 0.3 0.4 0.5

Computation Cost (GMACCs)

68

69

70

71

72

73

A
cc

u
ra

cy
 (

%
)

Baseline

Static

(b) CIFAR-100

smooth changessmooth changes

dramatic changes dramatic changes

Dynamic Blocks Dynamic BlocksDynamic Blocks

(c) Feature Evolution

Fig. 1. (a) The stability of static networks (ResNets [12]) and vanilla dynamic inference
networks on CIFAR-10. The size of dots is the variance of results. (b) The stability
of static networks and vanilla dynamic inference networks on CIFAR-100. The size of
dots is the variance of results. (c) Upper: The features evolve unstable throughout the
network. Lower: The features evolve stable throughout the network.

limiting the deployment of these powerful models in real-world scenarios. Hence,
to improve the inference efficiency, extensive efforts have been devoted to model
compression methods e.g., weight quantization [11,37,25], knowledge distilla-
tion [13,3,45], and low-rank approximation [16,21,17]. More often than not, these
methods reduce the computational budgets at the expense of a slight drop on per-
formance. Being different from previous streams of methods, dynamic inference
methods save computational resources by dynamically assigning adequate com-
putation conditioned on input samples to prevent performance drop. Specifically,
dynamic inference networks adaptively execute part of network components and
skip the rest when inferring a given sample.

A number of dynamic inference methods have been developed by assigning
a router for each convolutional block. At inference time, each router makes a
binary executing decision for the current block. Essentially, the binary decision
alters the block between a convolution function and an identity mapping. To
optimize the discrete executing decisions in an end-to-end fashion, relaxation
functions, e.g., Softmax and Gumbel-Softmax, are introduced in the aforemen-
tioned methods. However, such an inference mechanism makes the optimization
of the dynamic inference network unstable. As shown in Fig. 1(a) and Fig. 1(b),
the vanilla dynamic inference methods show larger variance than static inference
methods. First, a dynamic inference network is more sensitive to its routers than
its convolutional blocks. In essence, the relaxed executing decision in the training
process is a coefficient in the linear combination of a convolution function and
an identity mapping. Thus, a slight difference in the executing decision results
in changes of each element in the output feature map while changes in the input
feature impose less effect on the output. Second, since the information flow of
the network is calculated in a chain, selectively executing a subset of the net-
work components would cause the interruption of the flow. As a result, features
usually evolve unstably across the whole network. For an instance, compared

SP-Net: Slowly Progressing Dynamic Inference Networks 3

with the features that evolve stable in the lower figure of Fig. 1(c), features in
the upper one of Fig. 1(c) show unstable evolution throughout the network.

In this paper, we propose a slowly progressing dynamic inference network to
stabilize the optimization via slowing down the progress from the following two
aspects. First, we slow down the progress in routers. Considering the unbalance
of sensitivity between the parameters in convolutional blocks and routers, we
take advantage of the historical information by introducing a dynamic auxiliary
module to provide a guidance. Specifically, the auxiliary module is implemented
as a momentum-based moving average of the dynamic inference network and
gives out pseudo executing paths. Guided by the pseudo executing paths, the
routers are more stable against instant changes in paths, and the dynamic infer-
ence network reduces gradient variance, thus stabilizing the training procedure.
Moreover, we slow down the feature evolution between blocks to ease the in-
terruption of information flow brought by dynamic inference. In this way, the
feature evolves smoothly throughout the information flow, and skipping some of
the blocks brings in less drastic changes in feature maps. The most straightfor-
ward solution to the interruption brought by the varying executing components
is minimizing the changes between blocks. However, such a solution cost severe
harm to the performance of networks. Thus, we take an alternative strategy
that restricts the direction of feature evolution to remedy the interruption of
information flow in dynamic inference.

The contributions of this paper are summarized as follows:

– We propose a slowly progressing dynamic inference network, which effectively
stabilizes the optimization of dynamic inference networks.

– We slow down the progress in routers by taking advantage of the informa-
tion from historical iterations to solve the unbalance of sensitivity between
parameters in convolutional blocks and routers.

– We slow down the feature evolution by regularizing the direction of the feature
evolution, making the feature evolves smoothly throughout the network.

– We conduct experiments on three widely used benchmarks and show that our
method obtains state-of-the-art results in terms of performance and efficiency.

2 Relates Work

Dynamic Inference Networks. Dynamic inference networks have emerged as
a promising technique to skip blocks or layers at inference time for accelera-
tion [32,41,38,28]. Specifically, ConvNet-AIG [32] proposed a convolutional net-
work that adaptively defines its inference graph conditioned on the input images.
It proposes a router to make the execution decision for each convolutional block.
SkipNet [41] introduced a method with LSTM gate-ways to determine whether
the current block would be skipped or not. Besides, BlockDrop [38] adopted an
extra policy network to sample executing paths from the whole routing space to
speed up the inference of ResNet. Spatial dynamic convolutions for fast inference
were proposed in [33,44,29,40]. Multi-scale networks were introduced in [15,43].

4 H.Y. Wang et al.

They learn easy samples at low resolutions, while hard samples at high resolu-
tions. Channel-based dynamic inference methods [28] were introduced as well.
Recently, various dynamic methods with different kinds of selection have been
proposed. Multi-kernel methods [2] select different CNN kernels for better per-
formance. Recursive network [10] are introduced to reuse the networks.

Different from these method who mainly focus on designing dynamic in-
ference mechanisms, we pay attention to the training problem of the dynamic
inference network and stabilize the dynamic inference network via slow down
the process in router and smoothen feature evolution throughout the network.

Early Prediction Networks. While a dynamic inference network has only one
exit, an early prediction network is characterized by multiple exits. In an early
prediction network, the network exits once the criterion for a certain sample
is satisfied. SACT [5] proposed a halting unit for a recurrent neural network
(RNN) to realize early prediction, adopting a stopping unit for each point on
feature maps. Since then, early prediction frameworks have been widely used in
classification for efficient inference. Considering multi-scale inputs, MSDN [15]
introduced early-exit branches. According to the allowed time budget, McIntosh
et al. [22] proposed an RNN architecture to dynamically determine the exit. Li
et al. [20] proposed a self-distillation mechanism to supervise inter-layer outputs
with deeper layers. Instead of bypassing residual units, DCP [8] generated de-
cisions to save the computational cost for channels. Hydranets [31] proposed to
replace the last residual block with a Mixture-of-Experts layer. Recently, meth-
ods have been adopted to other applications, such as action recognition [9,23]
and object detection [48].

Our method belongs to dynamic inference networks and does not have multi-
ple exits as early prediction networks do at inference time. However, at training
time, we insert several classifiers at different stages of the network.

Knowledge Distillation Methods. Knowledge distillation proposed a concept of
distillation, where a lightweight student model is trained to learn the outputs log-
its of an over-parameterized teacher model. Initially, knowledge distillation [13]
is applied to image classification by utilizing the probabilities of each class, gen-
erated from the teacher model as soft labels for training a student model [1,14]
or learning the intermediate feature maps [26,46]. Moreover, self-distillation is
an extension of knowledge distillation, which leverages the network itself as a
teacher. Specifically, Born-Again [7] proposes a well-trained model as a teacher
to guide a student model from scratch. Furthermore, self ensemble is another way
to take advantage of the knowledge distillation. For example, mean teacher [30]
proposes an exponential moving average of the model weights. Besides, ensemble
in temporal is introduced in [18] to regularized consistent output by a sample
wised moving average on the predictions. Recently, self ensemble is also intro-
duced in domain adaptation [42], unsupervised domain adaptation task [6], and
medical images segmentation [24].

Different from these methods who conduct knowledge distillation to transfer
knowledge, we introduce it for stabilizing the training of the dynamic execution

SP-Net: Slowly Progressing Dynamic Inference Networks 5

 Conv Block

 Router

(a) Dynamic Residual Block. (b) Feature Evolution.

decisions in dynamic inference network. To our best knowledge, this is the first
work to introduce the distillation in dynamic inference.

3 Method

In this section, we introduce our slowly progressing dynamic inference network
(SP-Net) in detail. First, we illustrate the preliminaries of dynamic inference
and overview our proposed SP-Net. Second, we introduce the dynamic auxiliary
module to provide guidance. Next, we explain the feature evolution regulariza-
tion. Finally, we summarizes the optimization of the proposed model.

3.1 Preliminaries and Overview

Dynamic Inference Network. Given a N -block dynamic inference network Fd,
we term the n-th convolution block Fn, where n ∈ {1, · · · , N}. Generally, a dy-
namic inference network assigns a router to each convolutional block to decide
the execution state, as shown in Fig. 2(a). Rn, the router of Fn, makes a binary
executing decision un for the current block Fn, where un is either 0 or 1, rep-
resenting skipping the block or executing the block respectively. Combining the
execution state, the output feature xn+1 of the current block Fn is calculated as

xn+1 = un · Fn(xn) + (1− un) · xn

= Rn(xn) · Fn(xn) + (1−Rn(xn)) · xn.
(1)

Let Rn be the router of the n-th convolutional block. To obtain a binary exe-
cution decision, Rn usually applies functions that are not continuously differen-
tiable, e.g., argmax, rounding, or sampling. Utilizing such functions hampers the
backpropagation of training the network in an end-to-end fashion. Thus, during
training, un is usually relaxed into a continuous form vn. Specifically, vn ∈ [0, 1]
stands for the probability of executing the convolutional block and it is obtained
by some relaxation functions involving operations such as Softmax, Gumbel-
Softmax, etc. Collecting all executing decisions for respective blocks forms an
executing path for a given sample (u1, u2, · · · , uN). Based on the relaxation
function, a continuous executing path (v1, v2, · · · , vN) is obtained accordingly.

6 H.Y. Wang et al.

The Proposed Framework. In our method, we improve the optimization of the
dynamic inference network from two aspects: utilizing the historical information
and regularizing the direction of feature evolution. The whole framework of our
method is shown in Fig. 2. Our proposed framework contains a dynamic inference
network, Fd, a dynamic auxiliary module, F t, and several attached classifiers.

To analyze the unbalance of sensitivity, we define the parameters of routers
Rn as Hn, and the parameters of convolutional blocks Fn as Wn, respectively.
In this way, the Eq. (1) is reformulated as,

xn+1 = Rn(xn, Hn) · Fn(xn,Wn) + (1−Rn(xn, Hn)) · xn. (2)

The gradient of output feature xn+1 with respect to parameters in routers, i.e.,
Hn and convolutional block, i.e., Wn are computed as,

∂xn+1

∂Hn
=

∂Rn(·)
∂Hn

[Fn(xn,Wn)− xn], (3)

∂xn+1

∂Wn
=

∂Fn(·)
∂Wn

Rn(xn, Hn). (4)

As shown in Eq. (3), the gradient with respect to router parameters is propor-
tional to Fn(xn,Wn) − xn, which is the difference between the input feature
and the output of convolutional block. Convolutional blocks are able to extract
features with large variations from input, resulting in an intense fluctuation in
the gradient of routers. In contrast, the gradients with respect to parameters in
convolutional blocks are proportional to Rn(xn, Hn) ∈ [0, 1], which are a more
restricted fluctuation interval. Therefore, the difference between the gradients of
routers and convolutional blocks shows that they are of unbalanced sensitivity.

In order to alleviate the unbalance of sensitivity, we introduce a dynamic
auxiliary module, of which the network structure is the same as the dynamic
inference model. We denote the parameters of Fd as θd and those of F t as θt.
During training, the parameters in the dynamic auxiliary module are progres-
sively updated from the dynamic inference network, in every step by

θt = m · θt + (1−m) · θd, (5)

where m ∈ [0, 1) is a momentum coefficient. In this way, the dynamic auxiliary
module F t provides historical information including executing decisions and pre-
dicted logits. A knowledge distillation loss is employed to transfer the historical
information to Fd. It is worth noting that, only the parameters of the dynamic
inference network, i.e., θd, are updated by back-propagation and the dynamic
auxiliary module is not involved in the workflow at inference time.

Second, as defined in Eq. (1), when un is zero, the whole information flow
would degrade into a skip connection. In this way, the information flow from
xn to xn+1 are interrupted, resulting in unstable feature extraction. To solve
this problem, we propose to regularize the features of consecutive stages evolve
in the same direction. Specifically, we attach several classifiers at stages where
down-sampling is applied [47] as shown in Fig. 2. Each classifier is trained with

SP-Net: Slowly Progressing Dynamic Inference Networks 7

FC Layer

FC Layer

Label Label

FC Layer

FC Layer

FC Layer

FC Layer

Label

FC Layer

FC Layer

Label

Dynamic Auxiliary Module

Dynamic Inference Network

Momentum
Updated

Dynamic
ResBlocks

Dynamic
ResBlocks

Dynamic
ResBlocks

Dynamic
ResBlocks

Dynamic
ResBlocks

Dynamic
ResBlocks

Dynamic
ResBlocks

Dynamic
ResBlocks

Alignment Alignment Alignment Alignment

Fig. 2. Illustration of the proposed Slowly Progressing Dynamic Inference Network.
The proposed framework consists of a dynamic inference network and a dynamic aux-
iliary module. We attach several classifiers at different stages of the network.

semantic labels of input. As a result, these classifiers capture the features of the
given sample at different resolutions across the network. Then, we regularize the
feature evolution angles among the features input to classifiers. These classifiers
except the one at the last stage are only utilized in the training period, so there
is no additional computation and parameters at inference time.

3.2 Dynamic Auxiliary Module

For convenience, we omit the superscript for dynamic inference network Fd and
the dynamic auxiliary module F t in the definition. The set of feature maps
extracted by the network is denoted as {x1, x2, · · · , xN} and the feature maps
fed to the classifiers is denoted as {xl1 , xl2 , · · · , xlK} ⊆ {x1, x2, · · · , xN}. To be
more specific, xlk is the feature map at the end of the k-th stage of the network.
In this way, the output classification results of the dynamic inference network
and dynamic auxiliary module are

y1, · · · , yK = c1(xl1), · · · , cK(xlK), (6)

where ck is the k-th classifier and yk is the logits output by the k-th classifier.
As defined in Section 3.1, we term the executing path p = (v1, · · · , vN).

Executing Path Distillation. With the obtained executing path in the dynamic
auxiliary module pt and the executing path in the dynamic inference network
pd, we conduct an executing path distillation, defined as

Lpath = ∥pt − pd∥22 =

N∑
n=1

(vtn − vdn)
2, (7)

8 H.Y. Wang et al.

where vtn and vdn are the executing decision of the n-th dynamic residual block
in the dynamic auxiliary module and dynamic inference network respectively.

Logits Distillation. We transfer the knowledge from the outputs logits {yt1, · · · , ytK}
of dynamic auxiliary module to the dynamic inference network by,

Llogits =

K∑
k=1

KL(ytk∥ydk), (8)

where KL(·∥·) is the Kullback-Leibler divergence loss and K is the total number
of classifiers in dynamic inference network.

3.3 Feature Evolution Direction

As defined in Eq. (1), feature evolution in a N -block network starts from the
input image x1 to the feature for classification xN . To make feature evolution
from input image to classification feature in a stable process, we propose to
regularize the feature evolution in the same direction by minimizing the angles
between features from consecutive stages.

Feature Evolution Angle. In most situations, the features from different stages
are of different resolutions. Therefore, we introduce a fully connected layer to
align them into the same size. Let ak be the alignment layer before the k-th
classifier and xlk be the input feature to the alignment layer. In this way, the
feature evolution angles are calculated by the first-order difference between the
aligned features of consecutive stages as follows,

−−−−→xl1 , xl2 = a2(xl2)− a1(xl1),

· · ·
−−−−−−−→xlK−1

, xlK = aK(xlK)− aK−1(xlK−1
).

(9)

Then, we regularize the cosine similarity on the first-order difference of features,
i.e., the evolution angles, making the feature evolution in the same direction as

Levo =
1

2
·
M−2∑
m=1

(1− cos(−−−−−−−−→xm+2, xm+1,
−−−−−−→xm+1, xm)), (10)

where cos(·, ·) is the cosine similarity. As shown in Fig. 2(b), with Levo, the
feature evolution angle throughout the network would be smaller. Thus, the
optimization space is limited and the feature variance throughout the network
is effectively smoothened. Therefore, although part of components is skipped at
inference time, the interruption brought by dynamic inference is eased.

Multi-Stage Classification. Next, to capture the semantic information along fea-
ture evolution, all classifiers are supervised by the semantic labels as

Lcls =

K∑
k=1

CE(ydk, Y), (11)

where CE(·, ·) is the Cross-Entropy loss and Y is the semantic label.

SP-Net: Slowly Progressing Dynamic Inference Networks 9

3.4 Optimization

Finally, we put all loss together and optimize the dynamic inference network in
an end-to-end fashion, the objective function is written as

Ltotal = Lcls + α · Lpath + β · Llogits + γ · Levo, (12)

where Lcls is defined in Eq. (11), Lpath is defined in Eq. (7), Llogits is defined
in Eq. (8), and Levo is defined in Eq. (10).

4 Experiment

In this section, we first introduce the experimental settings and implementation
details. Second, we compare the results of our proposed method with state-
of-the-arts on three benchmarks in terms of efficiency and accuracy. Next, we
conduct ablation studies to validate the effectiveness of our design. Finally, we
present a qualitative analysis of different designs. Our code is publicly available
at https://github.com/huanyuhello/SP-Net.

4.1 Experimental Settings

Datasets and Models. We evaluate the proposed method on three popular clas-
sification benchmarks: CIFAR-10, CIFAR-100, and ImageNet. CIFAR-10/100
consists of 50,000 training images and 10,000 testing images with a resolution of
32×32 and annotated by 10/100 classes. ImageNet consists of 1,281,167 training
images and 50,000 testing images with a resolution of 224×224 and annotated by
1,000 classes. We conduct extensive experiments based on ResNets, i.e., ResNet-
32/110 for CIFAR-10/100 and ResNet-50/101 for ImageNet. For evaluation, we
utilize the top-1 metric to measure the classification accuracy and GMACCs
(billions of multiply-accumulate operations) to measure the computational cost.

Implementation Details. At training time, we train the whole network for 320
epochs with a batch size of 256 on CIFAR-10/100, and 120 epochs with a batch
size of 128 on ImageNet. The initial learning rate of is 0.1 with different schedules.
It decreases the learning rate to its 10% at each milestone. Milestones of CIFAR-
10/100 are set at epochs 150 and 250, while milestones of ImageNet are set at
epochs 30, 60, and 90. Moreover, we employ stochastic gradient descent (SGD)
with a momentum of 0.9 and a weight decay of 1e-4 in our method. Besides, the
hyper-parameters α, β, and γ, are set to 1, 0.5, and 1e-4 in Eq. (12).

4.2 Performance Comparison

In this section, we compare the performance of SP-Net with state-of-the-arts on
CIFAR and ImageNet datasets w.r.t accuracy and computational cost.

https://github.com/huanyuhello/SP-Net

10 H.Y. Wang et al.

Table 1. Performance comparison with state-of-the-arts on CIFAR-10.

Methods Backbones GMACCs Acc. (%)

ResNet-32 [12] — 0.14 92.40
ResNet-110 [12] — 0.50 93.60

dynamic inference
SkipNet [41] ResNet-74 0.09 92.38
BlockDrop [38] ResNet-110 0.17 93.60
ConvAIG [32] ResNet-110 0.41 94.24
IamNN [19] ResNet-101 1.10 94.60
CGap [4] ResNet-110 0.19 93.43
CoDiNet [35] ResNet-110 0.29 94.47
RDI-Net [34] ResNet-110 0.38 95.10

early prediction
ACT [5] ResNet-110 0.38 93.50
SACT [5] ResNet-110 0.31 93.40
DDI [36] ResNet-74 0.14 93.88
DG-Net [27] ResNet-101 3.20 93.99
DG-Net (light) ResNet-101 2.22 91.99

SP-Net ResNet-110 0.46 95.22
SP-Net (light) ResNet-110 0.13 93.79

Comparison on CIFAR-10. In this section, we compare our method with re-
lated method on CIFAR-10. We compare with baselines, dynamic inference
methods including: SkipNet [41], BlockDrop [38], ConvAIG [32], CoDiNet [35],
IamNN [19], CGap [4], and RDI-Net [34], and early prediction methods includ-
ing: ACT [5], SACT [5], DDI [36], and DG-Net [27]. Specifically, dynamic infer-
ence methods concentrate on skipping the unnecessary blocks with a trainable
routing module. Among these methods, RDI-Net achieves 95.10% accuracy with
0.38 GMACCs. CoDiNet achieves 94.47% accuracy with 0.29 GMACCs. Differ-
ently, early prediction methods define multiple classifiers and adaptively exit
the network. Among these methods, ACT achieves 93.50% with 0.38 GMACCs,
while SACT achieves 93.40% with 0.31 GMACCs. In comparison, we provide two
versions of model. The light-weight version achieves 93.79% with 0.13 GMACCs,
while the normal version achieves 95.22% accuracy with 0.46 GMACCs.

Comparison on ImageNet. In this section, we compare our method with related
method on ImageNet including: ConvAIG [32], SkipNet [41], LCNet [39], Block-
Drop [38], DG-Net [27], CoDiNet [35], RDI-Net [34], MSDN [15], RA-Net [43],
IamNN [19], ACT [5], and SACT [5]. As shown in Table 2, the backbone network
ResNet-50 achieves 75.36% with 7.72 GMACCs. In dynamic inference methods,
ConvAIG achieves 76.18% with 6.12 GMACCs. SkipNet achieves 75.22% with
7.20 GMACCs. Recently, CoDiNet proposes to regularize the consistency and di-
versity among the executing paths, which achieves 76.63% with 6.20 GMACCs.
Similarly, the RDI-Net proposes to ranking the similarity among input samples

SP-Net: Slowly Progressing Dynamic Inference Networks 11

Table 2. Performance comparison with state-of-the-arts on ImageNet.

Methods Backbones GMACCs Acc. (%)

ResNet-50 [12] — 7.72 75.36
ResNet-101 [12] — 15.26 76.45

dynamic inference
ConvAIG [32] ResNet-50 6.12 76.18
SkipNet [41] ResNet-101 13.40 77.40
SkipNet (light) ResNet-101 7.20 75.22
LCNet [39] ResNet-50 5.78 74.10
BlockDrop [38] ResNet-101 14.64 76.80
DG-Net [27] ResNet-101 14.10 76.80
CoDiNet [35] ResNet-50 6.20 76.63
RDI-Net [34] ResNet-50 7.42 76.96

early prediction
MSDN [15] DenseNets 4.60 74.24
RA-Net [43] DenseNets 4.80 75.10
IamNN [19] ResNet-101 8.00 69.50
ACT [5] ResNets 13.40 75.30
SACT [5] ResNets 14.40 75.80

SP-Net ResNet-50 7.24 77.21
SP-Net (light) ResNet-50 5.62 76.41

and their executing paths, which achieves 76.96% with 7.42 GMACCs. In com-
parison, SP-Net achieves 77.21% with 7.24 GMACCs, which improves 1.75%
with 0.32 GMACCs reduction than the static one.

4.3 Ablation Studies

In this part, we discuss the effectiveness of each module in the proposed method.
First, we perform the ablation studies on different proposals. Then, we discuss
the customizable dynamic routing module to strike the balance.

Evaluation of Proposals. As shown in Table 3, we conduct the ablation studies
on our proposed modules. We conduct our method based on ResNet-110 and
show a series of experiments. The baseline refers to the vanilla dynamic infer-
ence network. Component A refers to dynamic auxiliary module. Component B
refers to multi-task regularization. And Component C refers to feature evolution
direction regularization. Specifically, the baseline method achieves an accuracy
of 93.83% with 0.47% GMACCs and 70.17% with 0.46 GMACCs on CIFAR-10
and CIFAR-100, respectively. With the dynamic auxiliary module, it increases to
94.40% under similar computational cost on CIFAR-10. Moreover, when apply-
ing the multi-stage loss, the performance improves by 0.56% on CIFAR-10 and
1.28% on CIFAR-100. Finally, putting all the components together, our method
achieves 1.61% improvements with 0.05 GMACCs cost reduction on CIFAR-10
and 3.9% improvements with 0.05 GMACCs cost reduction on CIFAR-100.

12 H.Y. Wang et al.

0.05 0.15 0.25 0.35 0.45 0.55

Computation Cost (GMACCs)

90

91

92

93

94

95
A

cc
u
ra

cy
 (

%
)

ResNet

ACT

SACT

SkipNet

DropBlock

CoDiNet

RDI-Net

SP-Net

(a) CIFAR-10

0.1 0.2 0.3 0.4 0.5

Computation Cost (GMACCs)

67.0

68.5

70.0

71.5

73.0

74.5

A
cc

u
ra

cy
 (

%
)

ResNet

SkipNet

DropBlock

CoDiNet

RDI-Net

SP-Net

(b) CIFAR-100

4 6 8 10 12 14

Computation Cost (GMACCs)

74

75

76

77

A
cc

u
ra

cy
 (

%
)

Conv-AIG

SkipNet

DropBlock

MSDN

RA-Net

RDI-Net

SP-Net

(c) ImageNet

Fig. 3. The accuracy against computation comparison with state-of-the-art methods.

Table 3. Ablation Studies of our method on CIFAR-10 / 100. Baseline refers to vanilla
dynamic inference network. A refers to the dynamic auxiliary module. B refers to multi-
stage classification. C refers to the feature evolution direction regularization.

Method
Components CIFAR-10 CIFAR-100

A B C Acc. (%) GMACC Acc. (%) GMACC

ResNet110 — — — 93.61 0.51 71.24 0.51

Baseline — — — 93.83 0.47 70.17 0.46
EXP-1 ✓ — — 94.40 0.48 73.63 0.47
EXP-2 ✓ ✓ — 95.04 0.47 74.91 0.46
EXP-3 ✓ ✓ ✓ 95.22 0.46 75.14 0.46

Customizable Computation Cost. As shown in Fig. 3, we show the performance
of our method compared with the baseline under different computational costs.
To enable the computational cost controllable, we apply a cost loss to adjust
the executing rates of each block as Lcost =

∑N
n=1 ∥vdn − t∥22, where vdn is the

executing rates, i.e., relaxed executing decision, of the n-th convolution block.
t is a hyper-parameter, standing for the target executing rate of the dynamic
inference network. We set t to 0.2, 0.4, 0.6, 0.8, and 0.9 on our method and
the baseline method. With different target executing rates t, the accuracy varies
with the computational cost accordingly. On CIFAR-10, when t is set to 0.2, our
method achieves 93.75% at the computational cost of 0.14 GMACCs compared
with the baseline method of 90.48% with 0.11 GMACCs. When t is set to 0.4, our
method achieves 94.47% accuracy with 0.21 GMACCs, while the baseline method
achieves 93.52% with 0.19 GMACCs. Similarly, on CIFAR-100, when t is set to
0.8, our method achieves 75.14% accuracy with 0.46 GMACCs compared with
the baseline method of 70.17% accuracy with 0.46 GMACCs. Besides, we train
each setting multiple times and demonstrate the variance of the performance
as the size of the dots in Fig. 4 on CIFAR-10, CIFAR-100, and ImageNet. The
variances of our SP-Nets are smaller than baseline methods, which indicates that

SP-Net: Slowly Progressing Dynamic Inference Networks 13

0.1 0.2 0.3 0.4 0.5

Computation Cost (GMACCs)

92

93

94

95

A
cc

u
ra

cy
 (

%
)

Baseline

Ours

(a) CIFAR-10

0.1 0.2 0.3 0.4 0.5

Computation Cost (GMACCs)

69

70

71

72

73

74

75

A
cc

u
ra

cy
 (

%
)

Baseline

Ours

(b) CIFAR-100

5 6 7 8

Computation Cost (GMACCs)

75.0

75.5

76.0

76.5

77.0

A
cc

u
ra

cy
 (

%
)

Baseline

Ours

(c) ImageNet

Fig. 4. The stability and accuracy against computational cost of our method compar-
ing to vanilla dynamic inference networks (Baselines) on CIFAR-10, CIFAR-100, and
ImageNet. It is worth noting that the size of dots is the variance of results.

Table 4. Ablation Studies on the momentum coefficient, i.e., m, of SP-Net on CIFAR-
10 / 100. We set momentum from 0.5 to 0.8 under the same setting.

Method
Momentum CIFAR-10 CIFAR-100

Coefficient Acc. (%) GMACCs Acc. (%) GMACCs

EXP-1 m=0.5 94.97 0.47 74.79 0.46
EXP-2 m=0.6 95.03 0.46 75.14 0.46
EXP-3 m=0.7 95.22 0.46 74.86 0.45
EXP-4 m=0.8 94.82 0.47 74.53 0.45

our proposed SP-Net not only improves the performance of dynamic inference
but also stabilizes the training process accordingly.

4.4 Qualitative Analysis

In this section, we present a qualitative analysis of the key design of our proposed
method. First, we conduct a case study on the momentum coefficientm to update
the parameter in the dynamic auxiliary module. Second, we evaluate different
strategies to regularize the feature evolution.

Study on Momentum Coefficient. The performance of different momentum co-
efficient under a similar computational cost is shown in Table 4. We perform the
momentum coefficients m from 0.5 to 0.9. The accuracy increases from 94.97%
with 0.47 GMACCs to 95.22% with 0.46 GMACCs with the increasing of the
coefficient from 0.5 to 0.7 and then decreases on CIFAR-10. Specifically, on
CIFAR-10, when m is set to 0.7, our method achieves the best performance of
95.15% with 0.46 GMACCs. Differently, on CIFAR-100, when m is set to 0.6,
our method achieves the best performance of 75.14% with 0.46 GMACCs. Then
performance increases from 74.79% with 0.46 GMACCs to 75.14% with the in-
creasing of the coefficient from 0.5 to 0.6 and then decrease to 74.53% with 0.45

14 H.Y. Wang et al.

Table 5. Ablation Studies on different feature evolution regularization strategies on
CIFAR-10 / 100. EXP-1 refers to regularization on each adjacent convolutional blocks
across the whole network; EXP-2 refers to regularization on each adjacent convolu-
tional blocks within the same resolutions of features; EXP-3 refers to regularization on
different resolutions of features across the whole network.

Method
CIFAR-10 CIFAR-100

Acc. (%) GMACCs Acc. (%) GMACCs

EXP-1 94.43 0.48 73.57 0.50
EXP-2 94.66 0.49 74.05 0.49
EXP-3 95.22 0.46 74.86 0.46

GMACCs. Empirically, the coefficient is usually set to a high value in tradi-
tional knowledge distillation. However, in the dynamic inference scenarios, since
the parameters of routers are much more sensitive than those of convolutional
blocks, a high momentum coefficient would lead the optimization collapse.

Study on Feature Evolution Regularization. We study different strategies of fea-
ture evolution regularization as shown in Table 5. We design three methods
to regularize the feature evolution direction. EXP-1 refers to regularizing on
each adjacent convolutional block across the whole network, achieving 94.43%
with 0.48 GMACCs on CIFAR-10. EXP-2 refers to regularizing on each ad-
jacent convolutional blocks within the same resolutions of features, achieving
94.66% with 0.49 GMACCs on CIFAR-10. EXP-3 refers to regularizing on dif-
ferent resolutions of features across the whole network, achieving 95.22% with
0.46 GMACCs on CIFAR-10. As a result, regularizing on different resolutions of
features achieves the highest accuracy on both CIFAR-10 and CIFAR-100.

5 Conclusion

In this paper, we concentrate on researching an under-explored field in dynamic
inference method. We propose a novel strategy called slowly progressing dy-
namic inference networks via stabilizing executing path and regularizing feature
evolution. First, we design a dynamic auxiliary module to solve the imbalance
sensitivity between parameters in routers and networks. Besides, we invite a fea-
ture evolution regularization making the features evolve smooth throughout the
network. As a result, our method achieves state-of-the-art performance on three
widely used benchmark in term of accuracy and computational cost reduction.

Acknowledgement

This work was supported by Alibaba Innovative Research (AIR) Program, Al-
ibaba Research Intern Program, National Key Research and Development Pro-
gram of China under Grant 2020 AAA0107400, Zhejiang Provincial Natural
Science Foundation of China under Grant LR19F020004, and National Natural
Science Foundation of China under Grant U20A20222.

SP-Net: Slowly Progressing Dynamic Inference Networks 15

References

1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Proc. Advances
Neural Inf. Process. Syst. pp. 2654–2662. Curran Associates, Inc. (2014)

2. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution:
Attention over convolution kernels. In: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (June 2020)

3. Chen, Z., Zhang, L., Cao, Z., Guo, J.: Distilling the knowledge from handcrafted
features for human activity recognition. In: IEEE Trans. Indust Info. (2018)

4. Du, X., Li, Z., Ma, Y., Cao, Y.: Efficient network construction through structural
plasticity. In: IEEE J. Emerging Selected Topics Circ. Syst. (2019)

5. Figurnov, M., Collins, M.D., Zhu, Y., Zhang, L., Huang, J., Vetrov, D., Salakhut-
dinov, R.: Spatially adaptive computation time for residual networks. In: Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (2017)

6. French, G., Mackiewicz, M., Fisher, M.H.: Self-ensembling for visual domain adap-
tation. In: Proc. Int. Conf. Learn. Representations (2018)

7. Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born-again
neural networks. In: Proc. Int. Conf. Mach. Learn. pp. 1602–1611 (2018)

8. Gao, X., Zhao, Y., Dudziak, L., Mullins, R., Xu, C.z.: Dynamic channel prun-
ing: Feature boosting and suppression. In: Proc. Int. Conf. Learn. Representations
(2019)

9. Ghodrati, A., Bejnordi, B.E., Habibian, A.: Frameexit: Conditional early exiting for
efficient video recognition. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(2021)

10. Guo, Qiushan, Z.Y.Y.W.D.L.H.Q., Yan, J.: Dynamic recursive neural network. In:
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2019)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: Proc. Int. Conf.
Learn. Representations (2016)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
Proc. Advances Neural Inf. Process. Syst. (2015)

14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
Proc. Advances Neural Inf. Process. Syst. (2015)

15. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-
scale dense networks for resource efficient image classification. In: Proc. Int. Conf.
Learn. Representations (2018)

16. Ioannou, Y., Robertson, D., Shotton, J., Cipolla, R., Criminisi, A.: Training cnns
with low-rank filters for efficient image classification. In: Proc. Int. Conf. Learn.
Representations (2016)

17. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. In: Proc. British Mach. Vis. Conf. (2014)

18. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: Proc.
Int. Conf. Learn. Representations (2017)

19. Leroux, S., Molchanov, P., Simoens, P., Dhoedt, B., Breuel, T., Kautz, J.: Iamnn:
Iterative and adaptive mobile neural network for efficient image classification. In:
arXiv:1804.10123 (2018)

20. Li, H., Zhang, H., Qi, X., Yang, R., Huang, G.: Improved techniques for training
adaptive deep networks. In: Proc. IEEE Int. Conf. Comput. Vis. (2019)

16 H.Y. Wang et al.

21. McIntosh, L., Maheswaranathan, N., Sussillo, D., Shlens, J.: Convolutional neural
networks with low-rank regularization. In: Proc. Int. Conf. Learn. Representations
(2016)

22. McIntosh, L., Maheswaranathan, N., Sussillo, D., Shlens, J.: Recurrent segmen-
tation for variable computational budgets. In: Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (2018)

23. Meng, Y., Lin, C.C., Panda, R., Sattigeri, P., Karlinsky, L., Oliva, A., Saenko,
K., Feris, R.: Ar-net: Adaptive frame resolution for efficient action recognition. In:
Proc. Eur. Conf. Comput. Vis. (2020)

24. Perone, C.S., Ballester, P.L., Barros, R.C., Cohen-Adad, J.: Unsupervised do-
main adaptation for medical imaging segmentation with self-ensembling. In: arXiv
preprint arXiv:1811.06042 (2018)

25. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quan-
tization. In: Proc. Int. Conf. Learn. Representations (2018)

26. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. In: Proc. Int. Conf. Learn. Representations (2015)

27. Shafiee, M.S., Shafiee, M.J., Wong, A.: Dynamic representations toward efficient
inference on deep neural networks by decision gates. In: Proc. CVPR Workshop
(2019)

28. Su, Z., Fang, L., Kang, W., Hu, D., Pietikäinen, M., Liu, L.: Dynamic group
convolution for accelerating convolutional neural networks. In: Proc. Eur. Conf.
Comput. Vis. (2020)

29. Sun, F., Qin, M., Zhang, T., Liu, L., Chen, Y.K., Xie, Y.: Computation on sparse
neural networks: an inspiration for future hardware. In: arXiv:2004.11946 (2020)

30. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In: Proc. Ad-
vances Neural Inf. Process. Syst. pp. 1195–1204 (2017)

31. Teja Mullapudi, R., Mark, W.R., Shazeer, N., Fatahalian, K.: Hydranets: Special-
ized dynamic architectures for efficient inference. In: Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (2018)

32. Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In:
Proc. Eur. Conf. Comput. Vis. (2018)

33. Verelst, T., Tuytelaars, T.: Dynamic convolutions: Exploiting spatial sparsity for
faster inference. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2020)

34. Wang, H., Li, S., Su, S., Qin, Z., Li, X.: Rdi-net: Relational dynamic inference
networks. In: Proc. IEEE Int. Conf. Comput. Vis. (2021)

35. Wang, H., Qin, Z., Li, S., Li, X.: Codinet: Path distribution modeling with con-
sistency and diversity for dynamic routing. In: IEEE Trans. Pattern Anal. Mach.
Intell. (2021)

36. Wang, Y., Shen, J., Hu, T.K., Xu, P., Nguyen, T., Baraniuk, R.G., Wang, Z., Lin,
Y.: Dual dynamic inference: Enabling more efficient, adaptive and controllable
deep inference. In: IEEE J. of Selected Topics Signal Process. (2020)

37. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(2016)

38. Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L.S., Grauman, K., Feris, R.:
Blockdrop: Dynamic inference paths in residual networks. In: Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (2018)

39. Xia, Wenhan, H.Y.X.D., Jha, N.K.: Fully dynamic inference with deep neural net-
works. In: arXiv:2007.15151 (2020)

SP-Net: Slowly Progressing Dynamic Inference Networks 17

40. Xie, Z., Zhang, Z., Zhu, X., Huang, G., Lin, S.: Spatially adaptive inference with
stochastic feature sampling and interpolation. In: Proc. Eur. Conf. Comput. Vis.
(2020)

41. Xin, W., Fisher, Y., Zi-Yi, D., Trevor, D., Joseph, E.G.: Skipnet: Learning dynamic
routing in convolutional networks. In: Proc. Eur. Conf. Comput. Vis. (2018)

42. Xu, Y., Du, B., Zhang, L., Zhang, Q., Wang, G., Zhang, L.: Self-ensembling atten-
tion networks: Addressing domain shift for semantic segmentation. In: Proc. AAAI
Conf. Artif. Intell. pp. 5581–5588 (2019)

43. Yang, L., Han, Y., Chen, X., Song, S., Dai, J., Huang, G.: Resolution adaptive net-
works for efficient inference. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(2020)

44. Yu, J., Huang, T.S.: Universally slimmable networks and improved training tech-
niques. In: Proc. IEEE Int. Conf. Comput. Vis. (2019)

45. Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y.,
Davis, L.S.: Nisp: Pruning networks using neuron importance score propagation.
In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2018)

46. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In: Proc. Int.
Conf. Learn. Representations (2017)

47. Zhang, L., Shi, Y., Shi, Z., Ma, K., Bao, C.: Task-oriented feature distillation.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Proc.
Advances Neural Inf. Process. Syst. pp. 14759–14771 (2020)

48. Zhang, P., Zhong, Y., Li, X.: Slimyolov3: Narrower, faster and better for real-time
uav applications. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2019)

	SP-Net: Slowly Progressing Dynamic Inference Networks

