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Appendix

This appendix is organized as follows:

◦ Section A presents mathematical definition for the equivariant representation
(Section 1) and derivation of the interventional ERM (Eq. (1)).

◦ Section B provides the implementation details of the Fig. 2 and Eq. (6). We
also elaborate the details of the used Colored MNIST dataset (Fig. 5) and
the NICO dataset (Section 5.1).

◦ Section C shows the results with MAE pretrained feature (Section 4); the
attention map visualizations (Section 5.4) and the algorithm complexities
(Section 5.4).

A Mathematical Definition & Derivation

A.1 The Mathematical Definition of Equivariance

Let U be a set of (unseen) semantics, e.g., attributes such as “digit” and “color”.
There is a set of independent and causal mechanisms [13] φ : U → I, generating
images from semantics, e.g., writing a digit “0” when thinking of “0” [18]. A
visual representation is the inference process ϕ : I → X that maps image
pixels to vector space features, e.g., a neural network. We define semantic rep-
resentation as the functional composition f : U → I → X . Let G be the group
acting on U , i.e., g · u ∈ U × U transforms u ∈ U , e.g., a “turn green” group
element changing the semantic from “red” to “green”.
Definition 1. (Equivariant Representation) Suppose there is a direct product
decomposition G = g1 × . . . × gm and U = U1 × . . . × Um, where gi acts on
Ui respectively. A feature representation is equivariant if there exists a group G
acting on X such that:

f(g · u) = g · f(u), ∀g ∈ G,∀u ∈ U (A1)

e.g., the feature of the changed semantic: “red” to “green” in U , is equivalent to
directly change the color vector in X from “red” to “green”.

As stated in Section 3.2, we follow the definition and implementation in [19]
to achieve the sample-equvariant by using contrastive loss. Specifically, by as-
suming x ∈ X as the feature, we can write the contrastive loss briefly as

ℓ = − log
exp(xT

i xj)∑
x∈X exp(xT

j x)
. Then, if we use all the samples in the denominator

of the loss, we can approximate to G-equivariant features given limited training
samples. This is because the loss minimization guarantees ∀(xi,xj) ∈ X ×X , i ̸=
j → xi ̸= xj . We provide the proof in the following.

Suppose that the training loss ℓ is minimized, yet ∃xa = xb ∈ X for a ̸= b.
Let xi ∈ X in the denominator, and we have xT

j xi = cos(θi,j) ∥xi∥ ∥xj∥, where
θi,j is the angle between the two vectors. When xi = xj , cos(θi,j) = 1. So keeping
∥xi∥ ∥xj∥ constant (i.e., the same regularization penalty such as L2), xT

j xi can be
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further reduced if xi ̸= xj , which reduces the training loss. This contradicts with
the earlier assumption. Hence by minimizing the training loss, we can achieve
sample-equivariant, i.e., different samples have different features. Note that this
does not necessarily mean group-equivariant. However, the variation of training
samples is all we know about the group action of G, and we establish that the
action of G is transitive on X , hence we use the sample-equivariant features as
the approximation of G-equivariant features.

A.2 Derivation of Eq. (1)

In this section, we will show the derivation for the backdoor adjustment formula
using the three rules of do-calculus [15], whose detailed proof can be found
in [15,14]. For a causal directed acyclic graph G, let X,Y, Z and W be arbitrary
disjoint sets of nodes. We use GX to denote the manipulated graph where all
incoming arrows to node X are deleted. Similarly GX represents the graph where
outgoing arrows from node X are deleted. We use lower case x, y, z and w for
specific values taken by each set of nodes: X = x, Y = y, Z = z and W = w. For
any interventional distribution compatible with G, we have the following three
rules:
Rule 1 Insertion/deletion of observations. If (Y ⊥⊥ Z|X,W )GX

:

P (y|do(x), z, w) = P (y|do(x), w), (A2)

Rule 2 Action/observation exchange. If (Y ⊥⊥ Z|X,W )GXZ
,

P (y|do(x), do(z), w) = P (y|do(x), z, w), (A3)

Rule 3 Insertion/deletion of actions. If (Y ⊥⊥ Z|X,W )G
XZ(W )

,

P (y|do(x), do(z), w) = P (y|do(x), w), (A4)

where Z(W ) is the set of nodes in Z that are not ancestors of any W -node in
GX .

In our causal graph, the desired interventional distribution P (Y |do(X)) can
be derived by:

P (Y |do(X)) =
∑
z

P (Y |do(X), Z = z)P (Z = z|do(X)s) (A5)

=
∑
z

P (Y |do(X), Z = z)P (Z = z) (A6)

=
∑
z

P (Y |X,Z = z)P (Z = z), (A7)

where Eq. (A5) follows the law of total probability; Eq. (A6) uses Rule 3 given
S ⊥⊥ X in GX ; Eq. (A7) uses Rule 2 to change the intervention term to observa-
tion as (Y ⊥⊥ X|Z) in GX . Therefore, by imposing Eq. (A7) into Eq. (1) of the
main paper, we can have:

R =
∑
x

∑
y

∑
z

L(f(ϕ(x)), y)P (y|x, z)P (z)P (x). (A8)
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Fig.A1: We illustrate (a) the example images of the Colored MNIST dataset; (b) the
generated environment E0 with adjusted similarity.

B Implementation Details

B.1 Implementation Details of Fig. 2

The t-SNE Visualization. We adopt the t-SNE visualization here to reflect
the true data distribution and expect the feature extraction model to be able
to accurately structure the relationships between images. Recently, Contrastive
Language-Image Pretraining (CLIP) [16] is proposed for solving vision tasks by
exploiting contrastive learning with very large-scale noisy image-text pairs. Such
large data makes it nearly a “Sufficient Data Situation”. And the conventional
ERM algorithm can achieve optimal performance, as we introduced in Section 3
of the main paper. Indeed, CLIP achieves inspirational performances on various
visual classification tasks. In this paper, we utilize the CLIP pretrained backbone
(“ViT-Base/32”) to extract feature of the training and testing images of class
Hen which is randomly chosen. Then we draw t-SNE visualization with the open-
source codebase1.
The Test Accuracy. We trained a ResNet-50 model from scratch on each
training set and evaluated on testing images. We calculated accuracy on class
Hen.

B.2 Implementation Details of Eq. (6)

In Section 4 Step 3, we propose the class-wise IRM to regularize the invariance
within each class as stated in Eq. (6). In practice, we adopt a more practical ver-
sion named REx [11] of Eq. (6) which improves the vanilla IRM in the covariate
shift situation. Specifically, [11] discards the dummy classifier w and changes the
penalty term of IRM to the variance of risks as the regularization:

Lk = λVar({ℓ(1), ..., ℓ(e)}) +
∑

e∈Ek

ℓ(e). (A9)

Same as IRM, REx aims to encourage the invariance across different environ-
ments, but provides a simpler, stabler and more effective implementation [11].

1 https://github.com/DmitryUlyanov/Multicore-TSNE
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Table A1: Construction of the NICO subset [9,20] for OOD multi-classification. Con-
text denotes the context class name, while Class represents the object class name.
“Long-Tailed Contexts” is the training contexts arranged by the sample number order
(from more to less) and “Zero-shot Contexts” represents the context labels only appear
in testing rather than training.

Class

Context
Long-Tailed Contexts Zero-shot Contexts

Dog on grass in water in cage eating on beach lying running at home in street on snow

Cat on snow at home in street walking in river in cage eating in water on grass on tree

Bear in forest black brown eating grass in water lying on snow on ground on tree white

Sheep eating on road walking on snow on grass lying in forest aside people in water at sunset

Bird on ground in hand on branch flying eating on grass standing in water in cage on shoulder

Rat at home in hole in cage in forest in water on grass eating lying on snow running

Horse on beach aside people running lying on grass on snow in forest at home in river in street

Elephant in zoo in circus in forest in river eating standing on grass in street lying on snow

Cow in river lying standing eating in forest on grass on snow at home aside people spotted

Monkey sitting walking in water on snow in forest eating on grass in cage on beach climbing

B.3 Details of Colored MNIST dataset in Fig. 5

Figure A1 (a) shows the example images of the Colored MNIST [12] dataset.
As we introduced in Section 4 of the main paper, the Colored MNIST dataset
injects color bias on each digit. There are 99.5% bias-aligned samples and only
0.5% images are non-bias samples. For example, most of 0 are red. Figure A1
(b) illustrates the generated environment E0 of anchor class 0 with the adjusted
similarity using real images. We can clearly observe that the biased color c0

(i.e., red) of digit 0 distributes differently in Env#1 and Env#2, while other
semantics keep invariant. This will encourages the bias color to be removed
during the following class-wise IRM process.

B.4 Details of the NICO dataset
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Fig.A3: Plot of context class index
against its corresponding ratio under
various imbalance ratio (IR).

In our experiment, we use the NICO
subset proposed in [20] as a challeng-
ing benchmark to test the proposed
EqInv and baselines. Specifically, images
in NICO are labeled with a context class
(e.g., “on grass”), besides the object class
(e.g., “dog”). During training, 7 context
classes (Long-Tailed Contexts as shown
in Table A1) are chosen for each object
class. Next, a long-tailed training dataset
is formed by selecting part of the images
in each context class with multiplying a
ratio. In particular, the ratio for w-th con-
text class (w ∈ {0, . . . , 6}) is given by:

ratio = IRw/6, (A10)
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Fig.A2: We list the sample images of each context class using “Dog” and “Cat” as the
example in the utilized NICO data subset. Train, Test and ZS-Test denote samples
for training, testing and zero shot testing respectively. Note that there is no overlap
between training and testing images.

where IR is a hyper-parameter that denotes the imbalance ratio. The effect of IR
on ratio is shown in Fig. A3 — lower ratio leads to the harder OOD problem. In
the main paper we keep IR = 0.02. During testing, the number of test samples
across the 7 context classes is balanced, i.e., 50 samples per context. Moreover,
3 zero-shot context classes are added for each object class as shown in Table A1
(last three columns). These zero-shot context classes have the larger number of
test samples (100 samples per context). Therefore, a model that performs well
in such split must be robust to both long-tailed and zero-shot problems w.r.t.
the context class. Fig. A2 shows an example of the NICO subset for “cat” and
“dog” during training and testing.

B.5 Experimental Details

More Implementation Details of the Equivariant Learning. As stated
in the main paper, we utilize different Self-Supervised Learning techniques in
Step 1 Equivariant Learning. For implementation, we train for 800 epochs using
ResNet-50/-18 and ViT-Base/16 as the encoder architecture. We just follow the
original methods to use the default parameters and training schedules except for
some slight changes to adapt to the VIPriors and NICO dataset. Specifically,
we set the queue size as 16384 for MoCo-v2 [8,4]. For the NICO dataset, we
train the MAE for 2000 epochs and adopt the mixup version of IP-IRM [19] to
achieve the reasonable performance. Moreover, please note that we follow the
other team’s solution [21] of VIPriors Challenge to use both train and val set
for the Stage 1 SSL pretraining with no need of the label for all the comparison
methods. Then for the second fine-tuning stage, as stated in the main paper, we
only use the train set images and labels for training.
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Table A2: Recognition accuracies (%) on the VIPriors-10 and NICO datasets with ViT-
Base/16 as the feature backbone and MAE [7] as the SSL method. “Aug.” represents
augmentation. Our results are highlighted.

Model
VIPriors-10 NICO

Val Test Val Test

Train from Scratch

Baseline (ViT-Base/16) 4.74 4.50 32.23 31.46

Random Aug. [5] 5.40 4.92 33.54 31.92

Train from SSL

MAE [7] 16.04 14.63 54.10 52.29

+ EqInv (Ours) 16.93 15.48 56.26 52.29

MAE [7] + Random Aug. 16.70 15.39 56.11 52.91

+ EqInv (Ours) 17.53 16.00 57.96 54.14

More Implementation Details of the Downstream Fine-tuning. In the
main paper, we have introduced most training schedules for ResNet model. Be-
sides the training schedules introduced in the main paper, we set λ = 2, 10, 100
for VIPriors-10, 20, 50 dataset. This parameter choice also makes sense from in-
tuitive since the demand of the invariance regularization is decreasing with more
training samples. Please note that, for fair comparison with data-efficient learn-
ing methods, we did not apply any strong data augmentation in our downstream
training (after SSL), even though it is common in SSL works. For MAE with
ViT-Base/16, we follow the default end-to-end fine-tuning schedule: AdamW as
the optimizer with base learning rate 5e-4 using the cosine learning rate decay;
the layer-wise learning rate decay is set to 0.65 and weight decay is set to 0.05;
the drop path is set to 0.1 and the warmup epochs are 5. We decrease the batch
size to 256 and not use the advanced augmentation (i.e., cutmix, mixup, label
smoothing) to keep consistent with the ResNet model. For our proposed class-
wise IRM, the hidden size of the MLP g is 512 with batch normalize layer and
ReLU activation. The output dimension of g is 128, same with SimCLR [3]. We
also utilize the weight normailzation [17] on the fc layer f for the stable training.

C Additional Results

C.1 Results with MAE [7] feature

Table A2 shows the recognition accuracies on the VIPriors-10 and NICO datasets
with ViT-Base/16 as the feature backbone and MAE [7] as the SSL method.
Similar to the Table 1 in the main paper, we can observe that compared to
training from scratch, both imposing equivariance and invariance inductive bias
can boost the performance. However, we also find that the improvements of
considering invariance inductive bias are not such huge compared to that of the
ResNet structure. The possible reason is the Visual Transformer [6,10] structure
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Fig.A4: Visual attention visualizations on NICO dataset with our proposed EqInv and
baseline methods. We adopt IP-IRM [19] as the SSL method. The red box represents
the failure case.

itself is more robust [2,1] to the distribution shift than the CNN model (e.g.,
ResNet). That is, the self-attention-like architectures of Visual Transformer have
partially achieved the invariance.

C.2 Algorithm Complexities

Table A3: The model size and computational cost comparison between our proposed
EqInv and baseline models with different feature backbones.

Model Params (M) Flops (G) MACs (G) Time (s)

ResNet-18 11.180 3.644 1.822 0.025

+ EqInv (Ours) 11.510 3.646 1.823 0.105

ResNet-50 25.560 8.244 4.122 0.061

+ EqInv (Ours) 26.680 8.246 4.123 0.342

ViT-Base/16 86.570 33.712 16.856 0.065

+ EqInv (Ours) 87.030 33.712 16.856 0.297

We show the model sizes and the computational costs in Table A3. The “Time
(s)” denotes the forwarding process time with bs images as input. bs is set to 128
for ResNet and 64 for ViT, based on GPU memory consumption. We can see
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Fig.A5: Visual attention visualizations on VIPriors-10 dataset with our proposed
EqInv and baseline methods. We adopt IP-IRM [19] as the SSL method. The red
box represents the failure case.

that compared to baseline models, deploying EqInv does not cause many extra
network parameters and computation costs. This is because in our EqInv, the
invariance inductive bias is implemented by only one learnable mask layer and
one MLP layer, bringing little overhead.

C.3 Attention Visualizations

Figure A4 and A5 show the qualitative attention map comparisons between
baseline (i.e., training from scratch), incorporating SSL pretraining and our
proposed EqInv. We utilize CAM [22] for the visualization. We can clearly
observe that:

◦ Training from scratch (the second column) produces many inaccurate atten-
tions, even totally misses the object area (e.g., the last three rows of Fig. A4
left). This indicates the severe environmental bias of the model trained with
the insufficient samples (cf. Section 3.1 of the main paper).

◦ Though incorporating SSL pretraining (the third column) greatly alleviates
such problem by imposing the equivariance inductive bias, the model still
attends to partial context area. It means the model may still be confounded
by the environmental feature during the downstream fine-tuning.

◦ By further imposing the invariance inductive bias with our proposed EqInv
(the last column), the model can achieve much more accurate and tighter
attention focusing on the object area. We also display the failure cases in
red boxes. We can find that our EqInv cannot accurately attend to multiple
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objects (e.g., three sheeps and two bears in Fig. A4) or small objects (e.g.,
the flagpole in Fig. A5). But our EqInv can still achieve relatively better at-
tention maps compared to comparison methods. We will explore such failure
cases in the future work.
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