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Abstract. We are interested in learning robust models from insufficient
data, without the need for any externally pre-trained checkpoints. First,
compared to sufficient data, we show why insufficient data renders the
model more easily biased to the limited training environments that are
usually different from testing. For example, if all the training swan sam-
ples are “white”, the model may wrongly use the “white” environment
to represent the intrinsic class swan. Then, we justify that equivari-
ance inductive bias can retain the class feature while invariance in-
ductive bias can remove the environmental feature, leaving the class fea-
ture that generalizes to any environmental changes in testing. To impose
them on learning, for equivariance, we demonstrate that any off-the-
shelf contrastive-based self-supervised feature learning method can be
deployed; for invariance, we propose a class-wise invariant risk minimiza-
tion (IRM) that efficiently tackles the challenge of missing environmental
annotation in conventional IRM. State-of-the-art experimental results on
real-world benchmarks (VIPriors, ImageNet100 and NICO) validate the
great potential of equivariance and invariance in data-efficient learn-
ing. The code is available at https://github.com/Wangt-CN/EqInv.
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1 Introduction

Data is never too big. As illustrated in Fig. 1 (a), if we have sufficiently large
training sample size of swan and dog, e.g., dogs and cats in any environment
such as different colors, shapes, poses, and backgrounds, by using a conventional
softmax cross-entropy based “swan vs. dog” classifier, we can obtain a “perfect”
model that discards the shared environmental features but retains the dis-
criminative class features. The underlying common sense is that if the model
has seen any “case” in training, the testing data is merely a seen IID subset of
the training data, yielding testing accuracy as good as training [76].

In this paper, we are interested in learning from insufficient data. Besides
the common motivation that collecting data is expensive, we believe that how

https://github.com/Wangt-CN/EqInv
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Fig. 1: Illustration of how the proposed equivariance and invariance inductive biases
help learning from insufficient data. Cartoon figures such as denote the class feature.
Boxed words such as denote environmental features. Grey-boxed figures denote
the learned model. For simple illustration, we omit the environment as background.

to narrow the performance gap between insufficient and sufficient data is the
key to tackling the non-IID challenge in machine generalization—even if the
training data is sufficient, the testing can still be out of the training distribution
(OOD) [32,67,70]. After all, we can always frame up exceptional testing samples
that fail the trained model [37,28]. Note that different from few-shot learn-
ing which widely adopts pre-training on large-scale training set [74,71,73], our
task does not allow using any externally pre-trained checkpoint and backbone1.

Fig. 1 (b) illustrates why insufficient data hurts generalization. Without loss
of generality, we conduct a thought experiment that we have limited swan only
in “white” color environment while sufficient dog in diverse environments. So,
we can expect that the “dog” feature will still be extracted to represent dog

model, but the “white” feature will be recklessly learned to represent swan. This
is because training swan model by using either “swan” or “white” feature yields
the similar training risk: 1) if the former, the training loss is minimized as in the
perfect case of Fig. 1 (a); 2) if the latter, the only training error possible would
be misclassifying “white dog” as swan. However, it can be easily corrected in
practice, e.g., by discriminatively training a sample-to-model distance prior that
∥zdog∥ > ∥zwhite∥, where z denotes the feature vector2.

Why, under the same training risk, does the swan model prefer “white” but
not “swan” feature? First, feature extraction in deep network follows a bottom-
up, low-level to high-level fashion [49]—“simple” features such as color can be
easily learned at lower layers, while “complex” features such as object parts will
be only emerged in higher layers [69,86,82]. Second, the commonly used cross-
entropy loss encourages models to stop learning once “simple” features suffice
to minimize the loss [25,26]. As a result, “swan” features like “feather”, “beak”,
and “wing” will be lost after training. Such mechanism is also well-known as the

1
See https://vipriors.github.io/ for details.

2
The distance between the “white dog” sample vector (zwhite, zdog) and the swan model vector
(zwhite, 0) is: ∥(zwhite, zdog)−(zwhite, 0)∥ = ∥(0, zdog)∥ = ∥zdog∥; similarly, we have the distance
between “white dog” and dog model as ∥zwhite∥.
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shortcut bias [25] or spurious correlation in causality literature [65,78]. We will
provide formal justifications in Section 3.1.

By comparing the difference between Fig. 1 (a) and Fig. 1 (b), we can see
that the crux of improving the generalization of insufficient data is to recover the
missing “swan” class feature while removing the “white” environmental feature.
To this end, we propose two inductive biases to guide the learning: equivariance
for class preservation and invariance for environment removal.

Equivariance. This prior requires that the feature representation of a sample
should be equivariant to its semantic changes, e.g., any change applied to the
sample should be faithfully reflected in the feature change (see Appendix for
the mathematical definition). Therefore, if we impose a contrastive loss for each
sample feature learning, we can encourage that different samples are mapped
into different features (see Section 3.2 for a detailed analysis and our choice). As
illustrated in Fig. 1 (c), equivariance avoids the degenerated case in Fig 1 (b),
where all “white swan” samples collapse to the same “white” feature. Thus, for a
testing “black swan”, the retained “swan” feature can win back some swan scores
despite losing the similarity between “black” and “white”. It is worth noting that
the equivariance prior may theoretically shed light on the recent findings that
self-supervised learning features can improve model robustness [36,68,35,79]. We
will leave it as future work.

Invariance. Although equivariance preserves all the features, due to the limited
environments, the swan model may still be confounded by the “white” environ-
ment, that is, a testing “black swan” may still be misclassified as dog, e.g., when
∥(zblack−zwhite, zswan−zswan)∥ > ∥(zblack−0, zswan−zdog)∥. Inspired by invari-
ant risk minimization [4] (IRM) that removes the environmental bias by imposing
the environmental invariance prior (Section 3.3), as shown in Fig. 1 (d), if we
split the training data into two environments: “white swan” vs. “white dog” and
“white swan” vs. “black dog”, we can learn a common classifier (i.e., a feature
selector) that focuses on the “swan” and “dog” features, which are the only in-
variance across the two kinds of color environments—one is identical as “white”
and the other contains two colors. Yet, conventional IRM requires environment
annotation, which is however impractical. To this end, in Section 4, we propose
class-wise IRM based on contrastive objective that works efficiently without
the need for the annotation. We term the overall algorithm of using the two
inductive biases, i.e., equivariance and invariance, as EqInv.

We validate the effectiveness of EqInv on three real-world visual classifica-
tion benchmarks: 1) VIPriors ImageNet classification [12], where we evaluate
10/20/50 samples per class; 2) NICO [32], where the training and testing en-
vironmental distributions are severely different; and 3) ImageNet100 [75] which
denotes the case of sufficient training data. On all datasets, we observe significant
improvements over baseline learners. Our EqInv achieves a new single-model
state-of-the-art on test split: 52.27% on VIPriors-50 and 64.14% on NICO.
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2 Related Work

Visual Inductive Bias. For a learning problem with many possible solutions,
inductive bias is a heuristic prior knowledge that regularizes the learning behav-
ior to find a better solution [57]. It is ubiquitous in any modern deep learning
models: from the shallow MLP [55] to the complex deep ResNet [10,3] and Trans-
formers [80,18]. Inductive biases can be generally grouped into two camps: 1)
Equivariance: the feature representation should faithfully preserve all the data
semantics [19,20,52]. 2) Invariance: generalization is about learning to be in-
variant to the diverse environments [77,7]. Common practical examples are the
pooling/striding in CNN [44], dropout [33], denoising autoencoder [42], batch
normalization [23], and data augmentations [11,14].
Data-Efficient Learning. Most existing works re-use existing datasets [87,13]
and synthesize artificial training data [48,22]. We work is more related to those
that overcome the data dependency by adding prior knowledge to deep nets [9,27].
Note that data-efficient learning is more general than the popular setting of few-
shot learning [74,71,73] which still requires external large pre-training data as
initialization or meta-learning. In this work, we offer a theoretical analysis for
the difference between learning from insufficient and sufficient data, by posing
it in an OOD generalization problem.
OOD Generalization. Conventional machine generalization is based on the In-
dependent and Identically Distributed (IID) assumption for training and testing
data [76]. However, this assumption is often challenged in practice—the Out-of-
Distribution (OOD) problem degrades the generalization significantly [34,84,67].
Most existing works can be framed into the stable causal effect pursuit [65,78,43]
or finding an invariant feature subspace [62,81]. Recently, Invariant Risk Mini-
mization (IRM) takes a different optimization strategy such as convergence speed
regularization [4,47] and game theory [1]. Our proposed class-wise IRM makes it
more practical by relaxing the restrictions on needing environment annotation.

3 Justifications of the Two Inductive Biases

As we discussed in Section 1, given an image X = x with label Y = y, our
goal is to extract the intrinsic class feature ϕ(x) invariant to the environmental
changes z ∈ Z. Specifically, Z is defined as all the class-agnostic items in the
task of interest. For example, spatial location is the intrinsic class feature in
object detection task, but an environmental feature in image classification. This
goal can be achieved by using the interventional Empirical Risk Minimization
(ERM) [43]. It replaces the observational distribution P (Y |X) with the interven-
tional distribution P (Y |do(X)), which removes the environmental effects from
the prediction of Y , making Y = y only affected by X = x [63]. The interven-
tional empirical risk R with classifier f can be written as (See Appendix for the
detailed derivation):

R = Ex∼P (X),y∼P (Y |do(X))L(f(ϕ(x)), y)

=
∑
x

∑
y

∑
z

L(f(ϕ(x)), y)P (y|x, z)P (z)P (x), (1)
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Fig. 2: The t-SNE [56] data visualization of class “hen” on different-scale ImageNet
dataset using CLIP [66] pretrained feature extractor. Blue dot and orange triangle
represent training and testing samples, respectively. The testing accuracy is evaluated
by ResNet-50 [31] trained from scratch on each dataset. See Appendix for details.

where L(f(ϕ(x)), y) is the standard cross-entropy loss. Note that Eq. (1) is hard
to implement since the environment Z is unobserved in general.

When the training data is sufficient, X can be almost observed in any envi-
ronment Z, leading to the approximate independence of Z andX, i.e., P (Z|X) ≈
P (Z). Then R in Eq. (1) approaches to the conventional ERM R̂:

R ≈ R̂ =
∑
x

∑
y

L(f(ϕ(x)), y)P (y|x)P (x) = E(x,y)∼P (X,Y )L(f(ϕ(x)), y), (2)

3.1 Model Deficiency in Data Insufficiency

However, when the training data is insufficient, P (Z|X) is no longer approximate
to P (Z) and thus R̂ ̸≈ R. For example, P (Z = | ) > P (Z = | ).
Then, as we discussed in Section 1, some simple environmental semantics Z,
e.g., Z = , are more likely dominant in minimizing R̂ due to P (y|x) =
P (y|x, z)P (z|x) in Eq. (2), resulting the learned ϕ that mainly captures the
dominant environment but missing the intrinsic class feature. Empirical results in
Fig. 2 also support such analysis. We show the ImageNet classification results of
class hen using various training sizes. We can observe that with the decreasing of
training samples, the accuracy degrades significantly, from 86.0% to 4.0%. After
all, when the training size is infinite, any testing data is a subset of training.

3.2 Inductive Bias I: Equivariant Feature Learning

To win back the missing intrinsic class feature, we impose the contrastive-based
self-supervised learning (SSL) techniques [15,30,61], without the need for any
external data, to achieve the equivariance. In this paper, we follow the definition
and implementation in [77] to achieve sample-equivariant by using contrastive
learning, i.e., different samples should be respectively mapped to different fea-
tures. Given an image x, the data augmentation of x constitute the positive
example x+, whereas augmentations of other images constitute N negatives x−.
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Fig. 3: The t-SNE [56] visualization of learned features w.r.t both class and con-
text annotations on NICO dataset with (a) training from scratch; (b) equivariant
learning; and (c) equivariant & invariant learning.

The key of contrastive loss is to map positive samples closer, while pushing apart
negative ones in the feature space:

E
x,x+,{x−

i }Ni=1

[
− log

exp(ϕ(x)Tϕ(x+))

exp(ϕ(x)Tϕ(x+)) +
∑N

i=1 exp(ϕ(x)Tϕ(x−
i ))

]
. (3)

Note that we are open to any SSL choice, which is investigated in Section 5.
We visualize the features learned by training from scratch and utilizing the

equivariance inductive bias on NICO [32] dataset with both class and context
annotations. In Fig. 3 (a), it is obvious that there is no clear boundary to dis-
tinguish the semantics of class and context in the feature space, while in Fig. 3
(b), the features are well clustered corresponding to both class and context.

3.3 Inductive Bias II: Invariant Risk Minimization

Although the equivariance inductive bias preserves all the features, the swan

model may still be confounded by the “white” feature during the downstream
fine-tuning, causing R̂ ≠ R. To mitigate such shortcut bias, a straightforward
solution is to use Inverse Probability Weighting (IPW) [5,41,53] (also known
as reweighting [6,60,51]) to down weight the overwhelmed “white” feature in
swan. However, they must follow the positivity assumption [39], i.e., all the
environmental semantics Z should exist in each class. However, when the training
data is insufficient, such assumption no longer holds. For example, how do you
down weight “white” over “black” if there is even no “black swan” sample?

Recently, Invariant Risk Minimization (IRM) [4,47] resolves the non-positivity
issue by imposing the invariance inductive bias to directly remove the effect of
environmental semantics Z. Specifically, IRM first splits the training data into
multiple environments e ∈ E . Then, it regularizes ϕ to be equally optimal in
different splits, i.e., invariant across environments:∑

e

Le(wTϕ(x), y) + λ∥∇w=1Le(wTϕ(x), y)∥22, (4)

where λ is trade-off hyper-parameter, w stands for a dummy classifier [4] to
calculate the gradient penalty across splits—though different environments may
induce different losses, the feature ϕ must regularize them optimal at the same
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time (the lower gradient the better) in the same way (by using the common
dummy classifier). Note that each environment should contain a unique mode
of environmental feature distribution [4,21,2]: suppose that we have k environ-
mental features that are distributed as {p1, p2, ..., pk}. If pe1i ̸= pe2i , i = 1 to k,
IRM under the two environments will remove all the k features—the keeping of
any one will be penalized by the second term of Eq. (4).

Conventional IRM requires the environment annotations, which are gener-
ally impossible in practice. To this end, we propose a novel class-wise IRM to
regularize the invariance within each class, without the need for environment su-
pervision. We show the qualitative results of imposing such invariance inductive
bias in Fig. 3 (c). Compared to Fig. 3 (b), we can observe that after apply-
ing our proposed class-wise IRM, the equivariance of intrinsic class features are
reserved with well-clustered data points while the context labels are no longer
responsive—the environment features are removed.

4 Our EqInv Algorithm

Fig. 4 depicts the computing flow of EqInv . In the following, we elaborate each
of its components.

Input: Insufficient training samples denoted as the pairs {(x, y)} of an image x
and its label y.

Output: Robust classification model f · ϕ with intrinsic class feature ϕ(x) and
unbiased classifier f(ϕ(x)).

Step 1: Equivariant Learning via SSL. As introduced in Section 3, a wide
range of SSL pretext tasks are sufficient for encoding the sample-equivariance.
For fair comparison with other methods in VIPriors challenge dataset [12], we
use MoCo-v2 [30,16], Simsiam [17], and IP-IRM [77] to learn ϕ in Fig 4 (a). We
leave the results based on the most recent MAE [29] in Appendix.

Step 2: Environment Construction based on Adjusted Similarity. Now
we are ready to use IRM to remove the environmental features in ϕ. Yet, con-
ventional IRM does not apply as we do not have environment annotations. So,
this step aims to automatically construct environments E . However, it is ex-
tremely challenging to identify the combinatorial number of unique environ-
mental modes—improper environmental split may contain shared modes, which
cannot be removed. To this end, we propose an efficient class-wise approxima-
tion that seeks two environments w.r.t. each class. Our key motivation is that,
for insufficient training data, the environmental variance within each class is rel-
atively simple and thus we assume that it is single-modal. Therefore, as shown
in Fig. 4 (b), we propose to use each class (we call anchor class) as an anchor
environmental mode to split the samples of the rest of the classes (we call other
classes) into two groups: similar to the anchor or not. As a result, for C classes,
we will have totally 2C approximately unique environments. Intuitively, this
class-wise strategy can effectively remove the severely dominant context bias in
a class. For example, if all swan samples are “white”, the “white” feature can
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Fig. 4: The flowchart of our proposed EqInv with 3 steps. Rectangle with shading
denotes the feature and Ej represents the generated environment of class j. x−

1k and x−
2k

in (c) are the k-th negative samples of subset e1 and e2, respectively. We highlight that
class-wise IRM optimizes the mask layer m (and an extra MLP g) without gradients
flowing back to the feature extract ϕ.

still be identified as a non-discriminative color feature, thanks to the “black”
and “white” samples of dog class.

For each anchor class containing l images, environment Env#1 contains these
l samples as positive and the “similar” samples from other classes as negative;
environment Env#2 contains the same positive samples while the “dissimilar”
samples from other classes as negative. A straightforward way to define the
“similarity” between two samples is to use cosine similarity. We compute the
cosine similarity between the pair images sampled from anchor class and other

classes, respectively. We get the matrix S ∈ Rl×n, where n is the number of
images in other classes. Then, we average this matrix along the axis of anchor
class, as in the pseudocode: s+ = mean(S,dim = 0). After ranking s+, it is easy
to get “similar” samples (corresponding to higher half values in s+) grouped
in Env#1 and “dissimilar” samples (corresponding to lower half values in s+)
grouped in Env#2. It is an even split. Fig. 5 (a) shows the resultant environments
for anchor class 0 on the Colored MNIST3 [60] using the above straightforward
cosine similarity. We can see that the digit classes distribute differently in Env#1
and Env#2, indicating that the difference of the two environments also include
class information, which will be disastrously removed after applying IRM.

To this end, we propose a similarity adjustment method. It is to adjust every
sample-to-class similarity by subtracting a class-to-class similarity, where the
sample belongs to the class. First, we calculate the class-to-class similarity s̄i
between the i-th (i = 1, ..., C − 1) other class and the anchor class: s̄i =
mean(s+[ai : bi]), where we assume that the image index range of the i-th other

class is [ai : 1 : bi]. Such similarity can be viewed as a purer “class effect” to be

3
It is modified from MNIST dataset [50] by injecting color bias on each digit (class). The non-bias
ratio is 0.5%, e.g., 99.5% samples of 0 are in red and only 0.5% in uniform colors.
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Fig. 5: The obtained environments E0 for an example anchor class 0 on the Colored
MNIST [60], by using (a) the vanilla cosine similarity and (b) our adjusted similarity.
On X-axis, 1-9 are other digit classes, and c0-c9 denote 10 colors used to create this
color-bias dataset. On Y-axis, the percentage point denotes the proportion of a digit
(or a color) grouped into a specific environment.

removed from the total effect of both class and environment—only “environment
effect” is then left. Therefore, for any sample xj from the i-th other class, its
adjusted similarity to the anchor class is: s = s+[j] − s̄i. Using this similarity,
we obtain new environments and show statistics in Fig. 5 (b). It is impressive
that the biased color of anchor class 0 (i.e., the 0-th color c0 or red) varies
between Env#1 and Env#2, but the classes and other colors (red dashed boxes)
distribute almost uniformly in these two environments. It means the effects of
class and environment are disentangled.
Step 3: Class-wise Invariant Risk Minimization. With the automatically
constructed environments, we are ready to remove the environmental feature
from ϕ. In particular, we propose a class-wise IRM based on the contrastive
objective, which is defined as follows. As shown in Fig. 4 (c), given a training
image x in environment e of class i, we use a learnable vector mask layer m
multiplied on ϕ(x) to select the invariant feature. Then, we follow [15] to build a
projection layer g(·) to obtain z = g(m◦ϕ(x)) for contrastive supervision, where
g is a one-hidden-layer MLP with ReLU activation and ◦ denotes element-wise
production. For each anchor class k, we define an environment-based supervised
contrastive loss [45]. It is different from the traditional self-supervised contrastive
loss. Specifically, our loss is computed within each environment e ∈ Ek. We
take the representations of anchor class samples (in e) as positives z+, and the
representations of other class samples (in e) as negatives z−, and we have:

ℓ(e ∈ Ek, w = 1) =
∑
z∈e

1

N+

∑
z+∈e

[
− log

exp(zTz+ · w)

exp(zTz+ · w) +
∑

z−∈e exp(zTz− · w)

]
, (5)

where N+ denotes the number of the positive samples in the current minibatch
and w = 1 is a “dummy” classifier to calculate the gradient penalty term [4].
Therefore, the proposed class-wise IRM loss4 is:

Lk =
∑

e∈Ek

ℓ(e, w = 1) + λ∥∇w=1ℓ(e, w = 1)∥22, (6)

4
Please note that in implementation, we adopt an advanced version [47] of IRM. Please check
appendix for details.
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where λ is the trade-off hyper-parameter. The overall training objective is the
combination of minimizing a conventional cross entropy Lce and the class-wise
IRM regularization Lk:

min
f,g,m,ϕ

Lce(f,m, ϕ) +
∑C

k=1
Lk(g,m), (7)

where we use f(m ◦ ϕ(x)) for inference. It is worth noting that each loss trains
a different set of parameters—ϕ is frozen during the class-wise IRM penalty up-
date. As the equivariance of ϕ is only guaranteed by SSL pretraining, compared
to the expensive SSL equivariance regularization in training [77], our frozen strat-
egy is more efficient to mitigate the adversary effect introduced by the invariance
bias, which may however discard equivariant features to achieve invariance. We
investigate this phenomenon empirically in Section 5.4.

5 Experiments

5.1 Datasets and Settings

VIPriors [12] dataset is proposed in VIPrior challenge [12] for data-efficient
learning. It contains the same 1,000 classes as in ImageNet [24], and also follows
the same splits of train, val and test data. In all splits, each class contains only
50 images, so the total number of samples in the dataset is 150k. Some related
works [8,54] used the merged set (of train and val) to train the model. We argue
that this to some extent violates the protocol of data-efficient learning—using
insufficient training data. In this work, our EqInv models as well as comparing
models are trained on the standard train set and evaluated on val and test

sets. In addition, we propose two more challenging settings to evaluate the mod-
els: VIPriors-20 and VIPriors-10. The only difference with VIPriors is they
have 20 and 10 images per class in their train sets, respectively. There is no
change on val and test sets. We thus call the original VIPriors-50. NICO [32]
is a real-world image dataset proposed for evaluating OOD methods. The key
insight of NICO is to provide image labels as well as context labels (annotated
by human). On this dataset, it is convenient to “shift” the distribution of the
class by “adjusting” the proportions of specific contexts. In our experiments,
we follow the “adjusting” settings in the related work [78]. Specifically, this is a
challenging OOD setting using the NICO animal set. It mixes three difficulties:
1) Long-Tailed; 2) Zero-Shot and 3) Orthogonal. See Appendix for more details.
ImageNet100 [75] is a subset of original ImageNet [24] with 100 classes and
1k images per class. Different with previous OOD datasets, ImageNet100 is to
evaluate the performances of our EqInv and comparison methods in sufficient
training data settings.

5.2 Implementation Details

We adopted ResNet-50/-18 as model backbones for VIPriors/ImageNet100 and
NICO datasets, respectively. We trained the model with 100 epochs for “training
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Table 1: Recognition accuracies (%) on the VIPriors-50, -20, -10, NICO and ImageNet-
100 (IN-100) datasets. “Aug.” represents augmentation. Note that due to the effective-
ness of “Random Aug.”, we set it as a default configuration for the methods trained
from SSL. Our results are highlighted.

Model
VIPriors-50 [12] VIPriors-20 VIPriors-10 NICO [32] IN-100 [75]

Val Test Val Test Val Test Val Test Val

T
ra

in
fr

o
m

S
cr

a
tc

h

Baseline 32.30 30.60 13.13 12.39 5.02 4.59 43.08 40.77 83.56

Augmentation

Stronger Aug. [15] 36.60 34.72 16.17 15.21 3.49 3.26 42.31 43.31 83.72

Random Aug. [22] 41.09 39.18 16.71 16.03 3.88 4.01 45.15 44.92 85.12

Mixup [83] 34.66 32.75 13.35 12.69 2.47 2.31 40.54 38.77 84.52

Label smoothing [58] 33.77 31.87 12.71 12.05 4.76 4.43 39.77 38.15 85.22

Debias Learning

Lff [60] 35.04 33.29 13.26 12.58 5.20 4.79 41.62 42.54 83.74

Augment Feat. [51] 35.41 33.63 13.62 12.97 3.43 3.12 42.31 43.27 83.88

CaaM [78] 36.13 34.24 14.68 13.99 4.88 4.63 46.38 46.62 84.56

T
ra

in
fr

o
m

S
S

L MoCo-v2 [16] 49.47 46.98 30.76 28.83 18.40 16.97 46.45 45.70 86.30

+EqInv (Ours) 54.21 52.09 38.30 36.66 26.70 25.20 52.55 51.51 88.38

SimSiam [17] 42.69 40.75 22.09 21.15 6.84 6.68 41.27 42.68 85.28

+EqInv (Ours) 52.55 50.36 37.29 35.65 24.74 23.33 45.67 44.77 86.80

IP-IRM [77] 51.45 48.90 38.91 36.26 29.94 27.88 63.60 60.26 86.94

+EqInv (Ours) 54.58 52.27 41.53 39.21 32.70 30.36 66.07 64.14 87.78

from scratch” methods. We initialized the learning rate as 0.1 and decreased it
by 10 times at the 60-th and 80-th epochs. We used SGD optimizer and the
batch size was set as 256. For equivariant learning (i.e., SSL), we utilized MoCo-
v2 [16], SimSiam [17] and IP-IRM [77] to train the model for 800 epochs without
using external data, using their default hyper-parameters. We pretrain the model
for 200 epochs on ImageNet100 dataset. Then for downstream fine-tuning, We
used SGD optimizer and set batch size as 128. We set epochs as 50, initialized
learning rate as 0.05, and decreased it at the 30-th and 40-th epochs. Please check
appendix for more implementation details. Below we introduce our baselines
including augmentation-based methods, debiased learning methods and domain
generalization (DG) methods.

Augmentation-based Methods are quite simple yet effective techniques in
the VIPriors challenges as well as for the task of data-efficient learning. We chose
four top-performing methods in this category to compare with: stronger augmen-
tation [15], random augmentation[22], mixup [83] and label smoothing [58].

Debias Learning Methods. Data-efficient learning can be regarded as a task
for OOD. We thus compared our EqInv with three state-of-the-art (SOTA)
debiased learning methods: Lff [60], Augment Feat. [51] and CaaM [78].

Domain Generalization Methods. Domain Generalization (DG) task also
tackles the OOD generalization problem, but requires sufficient domain samples
and full ImageNet pretraining. In this paper, we select three SOTA DG ap-
proaches (SD [64], SelfReg [46] and SagNet [59]) for comparison. These methods
do not require domain labels which share the same setting as ours.



12 T. Wang, et al.

5.3 Comparing to SOTAs

Table 1 shows the overall results comparing to baselines on VIPriors-50, -20, -
10, NICO and ImageNet100 datasets. Our EqInv achieves the best performance
across all settings. In addition, we have another four observations. 1) Incorporat-
ing SSL pretraining, vanilla fine-tuning can achieve much higher accuracy than
all the methods of “training from scratch”. This validates the efficiency of the
equivariance inductive bias (learned by SSL) for Etackling the challenge of lack-
ing training data. 2) When decreasing the training size of VIPriors from 50 to 10
images per class, the comparison methods of training from scratch cannot bring
performance boosting even hurt the performance. This is because the extremely
insufficent data cannot support to establish an equivariant representation, not
mention to process samples with harder augmentations. 3) Interestingly, com-
pared to SSL methods, we can see that the improvement margins by our method
are larger in the more challenging VIPriors-10, e.g., 8.2% on MoCo-v2 and 16.7%
on SimSiam. It validates the invariance inductive bias learned by the class-wise
IRM (in our EqInv) helps to disentangle and alleviate the OOD bias effectively.
4) Results on ImageNet100 dataset show the consistent improvements of EqInv
due to the additional supervised contrastive loss, indicating the generalizability
of our EqInv in a wide range of cases from insufficient to sufficient data.

Table 2: Test accuracy (%) of DG SOTA
methods. V-50/-10 denote VIPriors-50/-10.

Methods V-50 V-10 Methods V-50 V-10

T
ra

in
fr

o
m

S
cr

a
tc

h Boardline 30.60 4.59

T
ra

in
fr

o
m

S
S

L IP-IRM 48.90 26.88

SD [64] 33.91 4.85 +SD [64] 49.91 28.01

SelfReg [46] 23.85 3.64 +SelfReg [46] 36.48 22.75

SagNet [59] 34.92 5.62 +SagNet [59] 47.82 26.17

+EqInv 52.27 30.36

In Table 2, we compare
our EqInv with DG methods. We
try both “train from scratch” and
“train from SSL” to meet the pre-
training requirement of DG. We
can find that our EqInv out-
performs DG methods with large
margins, showing the weaknesses
of existing OOD methods for han-
dling insufficient data.

In Table 3, we compare our EqInv with the solutions from other competition
teams in the challenge with the same comparable setting: no val is used for train-
ing, single model w/o ensemble, similar ResNet50/ResNext50 backbones. We can
observe the best performance is by our method. It is worth noting that the com-
petitors Zhao et al. also used SSL techniques for pretraining. They took the
knowledge distillation [38,40] as their downstream learning method. Our EqInv
outperforms their model with a large margin.

5.4 Ablation Study

Q1: What are the effects of different components of EqInv?
A1: We traversed different combinations of our proposed three steps to evaluate
their effectiveness. The results are shown in Table 4. We can draw the follow-
ing observations: 1) By focusing on the first three rows, we can find that the
improvements are relatively marginal without the SSL equivariance pretraining.
This is reasonable as the feature similarity cannot reflect the semantics change
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Fig. 6: (a) Accuracies (%) with different optimization schedules and values of λ on the
VIPriors-20 val and test sets. (b) The intra-class feature variance of training from SSL
and our EqInv on VIPriors-10 dataet during training process. “Feature” and “Masked
Feature” represent ϕ(x) and m ◦ ϕ(x), respectively.

exactly without the equivariance property, thus affects the environments con-
struction (Step 2) and class-wise IRM (Step 3); 2) The comparison between row
4 to 6 indicates the significance of our proposed similarity adjustment (Step 2).
It is clear that the vanilla cosine similarity results in clear performance drops
due to the inaccurate environment construction.

Table 3: Accuracy (%) comparison
with other competition teams (single
model w/o ensemble) on the val set of
VIPriors-50.

Team Backbone Val Acc

Official Baseline ResNet50 33.16

Zhao et al. [85] ResNet50 44.60

Wang et al. [12] ResNet50 50.70

Sun et al. [72] ResNext50 51.82

EqInv (Ours) ResNet50 54.58

Table 4: Evaluation of the effective-
ness of our three steps in EqInv on
VIPriors-20.

Components
Val Test

Step 1 Step 2 Step 3

% % % 13.13 12.39

% % ! 13.01 12.41

% ! ! 15.69 14.17

! % % 37.61 34.88

! % ! 38.87 36.34

! ! ! 40.15 37.78

Q2: What is the optimal λ for EqInv? Why does not the class-wise IRM penalty
term update feature backbone ϕ?

A2: Recall that we highlight such elaborate design in Section 4 Step 3. In Fig. 6
(a), we evaluate the effect of freezing ϕ for Eq. (6) on VIPriors dataset. First,
we can see that setting λ = 10 with freezing ϕ can achieve the best validation
and test results. Second, when increasing λ over 10, we can observe a sharp
performance drops for updating ϕ, even down to the random guess (≈ 1%). In
contrast, the performances are much more robust with freezing ϕ while varying λ,
indicating the non-sensitivity of our EqInv . This validate the adversary effect
of the equivariance and invariance. Updating ϕ with large λ would destroy the
previously learnt equivaraince inductive bias.

Q3: Does our EqInv achieve invariance with the learned environments E and
the proposed class-wise IRM (i.e., Step 3)?
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Fig. 7: Visualizations of the top-10 images of generated environments for two classes
(i.e., great white shark and ladybug) on VIPriors-10 dataset. We manually label
their main context label (i.e., water and wild).

A3: In Fig. 6 (b), we calculate the variance of intra-class feature with train-
ing from SSL and our EqInv on VIPriors-10 data. It represents the feature
divergence within the class. We can find that: 1) Compared to our EqInv , the
variance of training from SSL increases dramatically, indicating that equivariant
features are still easily biased to environments without invariance regulariza-
tions. 2) The masked feature m◦ϕ(x) of our EqInv achieves continuously lower
variance than ϕ(x), validates the effectiveness of our learnt mask. See Appendix
for more visual attention visualizations.

Q4: What does the cluster look like for real data with the proposed similarity
adjustment (i.e., Step 2)?

A4: Recall that we have displayed the cluster results on a toy Colored MNIST
data in Fig. 5 and validated the superiority of our similarity adjustment. Here
we wonder how does it perform on real-world data with much comprehensive
semantics? We visualize the top-10 images of Env#1 and Env#2 for two random
selected classes in Fig. 7. Interestingly, we can find that images of Env#1 mainly
share the context (e.g., water) with the anchor class (e.g., Great White Shark).
In contrast, images of Env#2 have totally different context. More importantly,
the classes distribute almost uniformly in both Env#1 and #2, indicating that
our adjusted similarity isolate the effect of the class feature.

6 Conclusion

We pointed out the theoretical reasons why learning from insufficient data is
inherently more challenging than sufficient data—the latter will be inevitably
biased to the limited environmental diversity. To counter such “bad” bias, we
proposed to use two “good” inductive biases: equivariance and invariance, which
are implemented as the proposed EqInv algorithm. In particular, we used SSL
to achieve the equivariant feature learning that wins back the class feature lost
by the “bad” bias, and then proposed a class-wise IRM to remove the “bad”
bias. For future work, we plan to further narrow down the performance gap by
improving the class-muted clustering to construct more unique environments.
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