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1 Experimental Setups

For layer-wise quantization, we use the bit-width options B ={2,3,4,5,6} for its
weights and activation. For weight only quantization, we set the bit-width of
activations to 8. We use the pre-trained model as initialization and keep the
first and last layer at 8 bits. Based the method in Section 3.4 (main paper),
we train 5 epochs for ResNet18 and MobileNet and 1 epoch for ResNet50, both
with 0.01 learning rate (LR). Then, we extract the layer-wise importance indi-
cators to apply mixed-precision search upon different constraints according to
Equation. 4 (main paper). The hyper-parameter α for ResNet18, ResNet50, Mo-
bileNetv1 is 3.0, 2.0, 1.0 respectively. After searching, we quantize the models
with the searched policies and finetuning them 90 epochs, both using the cosine
LR scheduler and the SDG optimizer with 0.04 LR and 2.5×10−5 weight-decay,
the first 5 epochs are used for warm-up.

2 Details of One-time Training for Importance Derivation

According to Section 4.3 of the main paper, the parameters θ of the whole
network, including weights and all importance indicators, at training step t are
updated through

θt = θt−1 − η × gt (1)

where η is the learning rate and

gt =
∂

∂θt

(
ES∼Γ (A)

[
L(f(x;S, θ(S)

t ),y)
]
+R(θ)

)
,︸ ︷︷ ︸

ideal loss function Ψ(·; θ)
(2)

where A is the search space, S is the mixed-precision quantization policy (i.e.,

the bit-width of each layer), Γ (A) is the prior distribution of S ∈ A, θ
(S)
t is the
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parameters of policy S (i.e., quantized weights and the importance indicators of
S), R(θ) is the regularization term (e.g., L2 regularization), L(·) is the task loss
(e.g., cross entropy). We call Ψ(·; θ) as the ideal loss function due to the expec-
tation is time prohibitive to solve in training, however, it can be approximated
by the Monte-Carlo Sampling. That is,

∇θtES∼Γ (A)

[
L(f(x;S, θ(S)

t ),y)
]
=

1

K

K∑
Sk∼Γ (A)

[
∇

θ
(Sk)
t

(
L(f(x;Sk, θ

(Sk)
t ),y)

)]
.

(3)
Here, we use uniform distribution as our prior distribution since its simplicity

and effectiveness in our experiments, thus θ
(Sk)
t is the parameters of uniformly

sampled policy Sk. Also, it is obvious that there are several key policies that
seriously affect other policies. These key policies occur when the bit-widths of

Algorithm 1: One-time Training for Importance Derivation

Input: Full-precision Network f ; Bit-list, for example, [6, 5, 4, 3, 2]; Learning
rate η.

Output: A trained network with importance indicators for each layer.
1 Initialize each layer’s importance indicators of each bit-width in Bit-list;
2 for t=1,...,T do
3 Get batch of input data x and label y;
4 Clear gradients of weights and importance indicators, optimizer.zerograd();
5 n = length(Bit-list);
6 for i=0,...,n-1 do

/* Compute gradient of n key policies in this For loop. */

7 Get the biw-witdh b = Bit-list[i];
8 Switch f ’s each layer to bit-width policy b;

9 Get the parameters θ
(Si)
t of i-th policy Si ;

10 Compute outputs under i-th policy ŷ = f(x;Si, θ
(Si)
t ) ;

11 Compute loss, loss = L(ŷ, y);
12 Compute gradient through BP, ∇

θ
(Si)
t

= loss.backward();

13 end
/* Compute the gradient of uniformly sampled policy. */

14 A bit-width is selected independently and randomly for each layer;

15 Get the parameters θ
(Sn+1)
t of (n+ 1)-th policy Sn+1 ; // Notice that

Sn+1 is a uniformly sampled policy.

16 Compute outputs under n-th policy ŷ = f(x;Sn+1, θ
(Sn+1)
t );

17 Compute loss, loss = L(ŷ, y);
18 Compute gradient through BP, ∇

θ
(Sn+1)

t

= loss.backward();

/* Use joint gradient to update the whole network. */

19 Aggregate above gradient to get gt;
20 Update f ’s parameters θt = θt−1 − η ∗ gt
21 end
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each layer are equal. For example, when optional bit-widths B = {b0, ..., bn−1},
there are n key policies corresponding to the bit-width of each layer equal to
b0, ..., bn−1. It is indispensable to ensure these key policies are sampled at each
training step, because their bit-widths construct the bit-width options B.

Therefore, at training step t, we first compute the gradient of n key policies.
Then, we uniformly sample K policies and compute their gradient to make sure
different bit-widths in different layers can communicate with each other. Inspired
by one-shot NAS [3] and due to we already sample n policies, we set K = 1.
Finally, we aggregate the above gradient to update the parameters of whole
network.

Given all this, we build our importance indicators training algorithm. The
pseudocode of our importance indicators training method is shown in Alg. 1.

3 Additional Comparisons

We add HAWQ [2] and DiffQ [1] as additional comparisons, both accuracy results
in Tab. 1 come from the papers directly. Since the DiffQ and HAWQ pipelines
contain search and fine-tuning time and are hard to measure the search time
only, we measure the total time costs through their official training settings as
the efficiency results. Please notice that DiffQ do not quantize the activations,
and our method can quantize the activations to low bits while providing higher
accuracy/compress rate and about 3× speedup. Red column: higher is better;
Blue column: lower is better.

Table 1. Accuracy results. “W-b” represents the bit-width of weights. “A-b” represents
the bit-width of activations. “MP” represents the mixed-precision quantization is sup-
ported. “FP” represents the full-precision (float 32) is used. “Top-1 Quant” represents
the top-1 accuracy of quantized model. “Top-1 Drop” represents the top-1 accuracy
degradation.

Method W-b A-b Top1 Quant Top1 Drop Model Size

HAWQ MP MP 75.48% 1.91% 7.96MB
DiffQ MP FP 76.3% 0.8% 8.8MB
Ours MP MP 76.9% 0.6% 7.97MB

Table 2. Efficiency results. We measure the total time consumption instead of search-
ing time only here.

Method Total Costs (Search + Fine-tuning, GPU-hours)

HAWQ 540
DiffQ 613
Ours 191
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4 Bit-width Assignment Visualization

We visualize the bit-width assignment for MobileNet and ResNet50 in Fig. 1 to
understand the behavior of our method. We can observe that the top layers tend
to be assigned more bit-widths due to their extraction of low-level features. In
particular, in MobileNet, DW-convs are assigned higher bit-width due to their
sensitivity to quantization. Thus, we can conclude that our method does achieve
not only better performance and but also a reasonable bit-width assignment
through the learned importance indicators.
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Figure 1. Bit-width for MobileNet and ResNet50.
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