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Abstract. The exponentially large discrete search space in mixed-precision
quantization (MPQ) makes it hard to determine the optimal bit-width
for each layer. Previous works usually resort to iterative search methods
on the training set, which consume hundreds or even thousands of GPU-
hours. In this study, we reveal that some unique learnable parameters in
quantization, namely the scale factors in the quantizer, can serve as im-
portance indicators of a layer, reflecting the contribution of that layer to
the final accuracy at certain bit-widths. These importance indicators nat-
urally perceive the numerical transformation during quantization-aware
training, which can precisely provide quantization sensitivity metrics of
layers. However, a deep network always contains hundreds of such indi-
cators, and training them one by one would lead to an excessive time
cost. To overcome this issue, we propose a joint training scheme that
can obtain all indicators at once. It considerably speeds up the indica-
tors training process by parallelizing the original sequential training pro-
cesses. With these learned importance indicators, we formulate the MPQ
search problem as a one-time integer linear programming (ILP) problem.
That avoids the iterative search and significantly reduces search time
without limiting the bit-width search space. For example, MPQ search
on ResNet18 with our indicators takes only 0.06 seconds, which improves
time efficiency exponentially compared to iterative search methods. Also,
extensive experiments show our approach can achieve SOTA accuracy on
ImageNet for far-ranging models with various constraints (e.g., BitOps,
compress rate).
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1 Introduction

Neural network quantization can effectively compress the size and runtime over-
head of a network by reducing the bit-width of the network. Using an equal bit-
width for the entire network, a.k.a, fixed-precision quantization, is sub-optimal
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because different layers typically exhibit different sensitivities to quantization
[25,4]. It forces the quantization-insensitive layers to work at the same bit-width
as the quantization-sensitive ones, missing the opportunity further to reduce the
average bit-width of the whole network.

Mixed-precision quantization has thus become the focus of network quantiza-
tion research, with its finer-grained quantization by allowing different bit-widths
for different layers. In this way, the quantization-insensitive layers can use much
lower bit-widths than the quantization-sensitive layers, thus providing more flex-
ible accuracy-efficiency trade-off adjustment than the fixed-precision quantiza-
tion. Finer-grained quantization also means exponentially larger searching space
to search from. Suppose we have an L-layers network, each layer has n optional
bit-widths for weights and activations, the resulting search space is n2L.

Most of the prior works are search-based. HAQ [25] and AutoQ [21] uti-
lize deep reinforcement learning (DRL) to search the bit-widths by modeling
bit-width determination problem as a Markov Decision Process. However, due
to the exploration-exploitation dilemma, most existing DRL-based methods re-
quire a significant amount of time to finish the search process. DNAS [26] and
SPOS [14] apply Neural Architecture Search (NAS) algorithms to achieve a dif-
ferentiable search process. As a common drawback of NAS, the search space
needs to be greatly and manually limited in order to make the search process
feasible, otherwise the search time can be quite high. In a word, the search-based
approach is very time-consuming due to the need to evaluate the searched policy
on the training set for multiple rounds (e.g., 600 rounds in HAQ [25]).

Different from these search-based approaches, some studies aim to define
some “critics” to judge the quantization sensitivity of the layer. HAWQ [12] and
HAWQ-v2 [11] employ second-order information (Hessian eigenvalue or trace)
to measure the sensitivity of layers and leverage them to allocate bit-widths.
MPQCO [6] proposes an efficient approach to compute the Hessian matrix and
formulate a Multiple-Choice Knapsack Problem (MCKP) to determine the bit-
widths assignment. Although these approaches reduce the searching time as
compared to the search-based methods, they have the following defects:
(1) Biased approximation. HAWQ and HAWQv2 approximate the Hessian in-
formation on the full-precision (unquantized) network to measure the relative
sensitivity of layers. This leads to not only an approximation error in these
measurements themselves, but more importantly, an inability to perceive the
existence of quantization operations. A full-precision model is a far cry from a
quantized model. We argue that using the information from the full-precision
model to determine the bit-widths assignment of the quantized model is seri-
ously biased and results in a sub-optimal searched MPQ policy.
(2) Limited search space. MPQCO approximates its objective function with
second-order Taylor expansion. However, the inherent problem in its expan-
sion makes it impossible to quantize the activations with mixed-precision, which
significantly limits the search space. A limited search space means that a large
number of potentially excellent MPQ policies cannot be accessed during search-
ing, making it more likely to result in sub-optimal performance due to a large
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Table 1. A comparison of our method and existing works. Iterative search avoiding
can significantly reduce the MPQ policy search time. Unlimited search space can pro-
vide more potentially excellent MPQ policies. Quantization-aware search can avoid the
biased approximation on the full-precision model. Fully automatic bit-width assign-
ment can effectively save human efforts and also reduce the MPQ policy search time.
∗: MPQCO only can provide the quantization-aware search for weights.

Method AutoQDNASHAWQHAWQv2 MPQCO Ours

Iterative search avoiding No No Yes Yes Yes Yes

Unlimited search space Yes No Yes Yes No Yes

Quantization-aware search Yes Yes No No Partial yes∗ Yes

Fully automatic bit-width assignment Yes Yes No Yes No Yes

number of MPQ policies being abandoned. Moreover, MPQCO needs to assign
the bit-witdhs of activations manually, which requires expert involvement and
leaves a considerable room for improving search efficiency.

To tackle these problems, we propose to allocate bit-widths for each layer ac-
cording to the learned end-to-end importance indicators. Specifically, we reveal
that the learnable scale factors in each layer’s quantization function (i.e., quan-
tizer), initially used to adjust the quantization mappings in classic quantization-
aware training (QAT) [13,18], can be used as the importance indicators to distin-
guish whether one layer is more quantization-sensitive than other layers or not.
As we will discuss later, they can perceive the numerical error transfer process
and capture layers’ characteristics in the quantization process (i.e., rounding
and clamping) during QAT, resulting in a significant difference in the value of
quantization-sensitive and insensitive layers. Since these indicators are learned
end-to-end in QAT, errors that might arise from the approximation-based meth-
ods are avoided. Moreover, the detached two indicators of each layer for weights
and activations allow us to explore the whole search space without limitation.

Besides, an L-layer network with n optional bit-widths for each layer’s weights
and activations has M = 2 × L × n importance indicators. Separately training
these M indicators requires M training processes, which is time-prohibitive for
deep networks and large-scale datasets. To overcome this bottleneck, we propose
a joint scheme to parallelize these M training processes in a once QAT. That
considerably reduces the indicators training processes by M×.

Then, based on these obtained layer-wise importance indicators, we transform
the original iterative MPQ search problem into a one-time ILP-based mixed-
precision search to determine bit-widths for each layer automatically. For ex-
ample, a sensitive layer (i.e., larger importance) will receive a higher bit-width
than an insensitive (i.e., smaller importance) layer. By this means, the time-
consuming iterative search is eliminated, since we no longer need to use training
data during the search. A concise comparison of our method and existing works
is shown in Table 1.

To summarize, our contributions are the following:

– We demonstrate that a small number of learnable parameters (i.e., the scale
factors in the quantizer) can act as importance indicators, to reflect the rel-
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ative contribution of layers to performance in quantization. These indicators
are learned end-to-end without performing time-consuming fine-tuning or
approximating quantization-unaware second-order information.

– We transform the original iterative MPQ search problem into a one-time
ILP problem by leveraging the learned importance of each layer, increasing
time efficiency exponentially without limiting the bit-widths search space.
Especially, we achieve about 330× MPQ policy search speedup compared to
AutoQ on ResNet50, while preventing 1.7% top-1 accuracy drop.

– Extensive experiments are conducted on a bunch of models to demonstrate
the state-of-the-art results of our method. The accuracy gap between full-
precision and quantized model of ResNet50 is further narrowed to only 0.6%,
while the model size is reduced by 12.2×.

2 Related Work

2.1 Neural Network Quantization

Fixed-Precision Quantization Fixed-precision quantization [3,29,30,1] focus
on using the same bit-width for all (or most of) the layers. In particular, [28]
introduces a learnable quantizer, [7] uses the learnable upper bound for activa-
tions. [13,18] proposes to use the learnable scale factor (or quantization intervals)
instead of the hand-crafted one.

Mixed-Precision Quantization To achieve a better balance between accuracy
and efficiency, many mixed-precision quantization methods which search the
optimal bit-width for each layer are proposed.

Search-Based Methods. Search-based methods aim to sample the vast search
space of choosing bit-width assignments more effectively and obtain higher per-
formance with fewer evaluation times. [25] and [21] exploit DRL to determine
the bit-widths automatically at a layer and kernel level. After that, [24] deter-
mines the bit-width by parametrizing the optimal quantizer with the step size
and dynamic range. Furthermore, [15] repurposes the Gumbel-Softmax estima-
tor into a smooth estimator of a pair of quantization parameters. In addition,
many NAS-based methods have emerged recently [26,27,4,14]. They usually or-
ganize the MPQ search problem as a directed acyclic graph (DAG) and make
the problem solvable by standard optimization methods (e.g., stochastic gradi-
ent descent) through differentiable NAS-based algorithms. DiffQ [9] uses pseudo
quantization noise to perform differentiable quantization and search accordingly.

Criterion-Based Methods. Different from exploration approaches, [12] lever-
ages the Hessian eigenvalue to judge the sensitivity of layers, and manually
selects the bit width accordingly. [11] further measures the sensitivity by the
Hessian trace, and allocates the bit-width based on Pareto frontier automati-
cally. Furthermore, [6] reformulates the problem as a MCKP and proposes a
greedy search algorithm to solve it efficiently. The successful achievement of
criterion-based methods is that they reduce search costs greatly, but causing a
biased approximation or limited search space as we discussed above.
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2.2 Indicator-Based Model Compression

Measuring the importance of layers or channels using learned (e.g., scaling
factors of batch normalization layers) or approximated indicators are seen as
promising work thanks to its excellent efficiency and performance. Early prun-
ing work [19] uses second-derivative information to make a trade-off between
network complexity and accuracy. [20] pruning the unimportant channels ac-
cording to the corresponding BN layer scale factors. [5] sums the scale factors
of BN layer to decide which corresponding convolution layer to choose in NAS
search process. However, quantization is inherently different from these studies
due to the presence of numerical precision transformation.

3 Method

3.1 Quantization Preliminary

Quantization maps the continuous values to discrete values. The uniform quanti-
zation function (a.k.a quantizer) under b bits in QAT maps the input float32 ac-
tivations and weights to the homologous quantized values [0, 2b−1] and [−2b−1,
2b−1 − 1]. The quantization functions Qb(·) that quantize the input values v to
quantized values vq can be expressed as follows:

vq = Qb(v; s) = round(clip(
v

s
,minb,maxb))× s, (1)

where minb and maxb are the minimum and maximum quantization value [2,13].
For activations, minb = 0 and maxb = 2b − 1. For weights, minb = −2b−1 and
maxb = 2b−1−1. s is a learnable scalar parameter used to adjust the quantization
mappings, called the step-size scale factor. For a network, each layer has two
distinct scale factors in the weights and activations quantizer, respectively.

To understand the role of the scale factor, we consider a toy quantizer exam-
ple under b bits and omit the clip(·) function. Namely,

vq = round(
v

s
)× s = v̂q × s, (2)

where v̂q is the quantized integer value on the discrete domain.
Obviously, for two continuous values vi and vj (vi ̸= vj), their quantized

integer values
∣∣∣v̂qi − v̂qj

∣∣∣ = 0 if and only if 0 < |vi − vj | ≤ s
2 . Thus s actually

controls the distance between two adjacent quantized values. A larger s means
that more different continuous values are mapped to the same quantized value.

3.2 From Accuracy to Layer-wise Importance

Suppose we have an L-layer network with full-precision parameter tensorW, each
layer has n optional bit-widths B = {b0, ..., bn−1} for activation and weights of
each layer, respectively. The bit-width combination of weights and activations
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(b
(l)
w , b

(l)
a ) for layer l is b

(l)
w ∈ B and b

(l)
a ∈ B. Thus S = {(b(l)w , b

(l)
a )}Ll=0 is the

bit-width combination for the whole network, and we use WS to denote the
quantized parameter tensor. All possible S construct the search space A. Mixed-
precision quantization aims to find the appropriate bit-width combination (i.e.,
searched MPQ policy) S∗ ∈ A for the whole network to maximize the validation
accuracy ACCval, under certain constraints C (e.g., model size, BitOps, etc.).
The objective can be formalized as follows:

S∗ = argmax
S∼Γ (A)

ACCval(f(x;S,WS),y) (3)

s.t. WS = argmin
W

Ltrain(f(x;S,W),y) (3a)

BitOps(S) ≤ C (3b)

where f(·) denotes the network, L(·) is the loss function of task (e.g., cross-
entropy), x and y are the input data and labels, Γ (A) is the prior distribution
of S ∈ A. For simplicity, we omit the data symbol of training set and validation
set, and the parameter tensor of quantizer. This optimization problem is com-
binatorial and intractable, since it has an extremely large discrete search space
A. As above, although it can be solvable by DRL or NAS methods, the time
cost is still very expensive. This is due to the need to evaluate the goodness
of a specific quantization policy S on the training set to obtain metrics Ltrain

iteratively to guide the ensuing search. As an example, AutoQ [21] needs more
than 1000 GPU-hours to determine a final quantization strategy S∗ [6].

Therefore, we focus on replacing the iterative evaluation on the training set
with some once-obtained importance score of each layer. In this way, the layer-
wise importance score indicates the impact of quantization between and within
each layer on the final performance, thus avoiding time-consuming iterative ac-
curacy evaluations. Unlike the approximated Hessian-based approach [12,11],
which is imperceptible to quantization operations or limits the search space [6],
we propose to learn the importance in the Quantization-Aware Training.

3.3 Learned Layer-wise Importance Indicators

Quantization mapping is critical for a quantized layer since it decides how to
use confined quantization levels, and improper mapping is harmful to the per-
formance [18]. As shown in Equation 1, during QAT, the learnable scale factor
of the quantizer in each layer is trained to adjust the corresponding quantiza-
tion mapping properly at a specific bit-width. This means that it can naturally
capture certain quantization characteristics to describe the layers due to its con-
trolled quantization mapping being optimized directly by the task loss.

As we discussed in § 3.1, the continuous values in a uniform range fall into the
same quantization level, the specific range is controlled by the scale factor s of
this layer. We consider two example layers with well-trained s and weights (i.e.,,
both in a local minimum after a quantization-aware training) and quantized
through Equation 2. As shown in Figure. 1, the continuous distribution of layer
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Figure 1. Illustration of distribution for two example layers, both under 2 bits quanti-
zation. The grey dashed line (representing the scale factor of quantizer s) separates the
different quantization levels (i.e., 22 = 4 quantized values {q0, q1, q2, q3} for 2 bits).
For example, the continuous values in green and red area are quantized to the same
quantization level q1 and q2, respectively.

1 is much wider than layer 0. According to the analysis in § 3.1, this results in
layer 1 more different continuous values being mapped to the same quantized
values (e.g., the values in green area are mapped to q1), and therefore having
a large learned scale factor s. However, while the green area in layer 0 and
layer 1 are both quantized to the value q1, the green area of layer 1 contains a
much broader continuous range, and the same goes for other areas. In extreme
cases, this extinguishes the inherent differences of original continuous values,
thus reducing the expressiveness of the quantized model [23]. To overcome this
and maintain the numerical diversity, we should give more available quantization
levels to those layers with large scale factors, namely, increasing their bit-width.

Therefore, the numerically significant difference in the learned scale factors
of heterogeneous layers can properly assist us to judge the sensitivity of layer.
Moreover, the operation involved in the scale factor takes place in the quantizer,
which allows it to be directly aware of quantization. Last but not least, there are
two quantizers for activations and weights for a layer, respectively, which means
that we can obtain the importance of weights and activations separately.

Feasibility Verification Despite the success of indicator-based methods for
model compression [5,19,20] to avoid a time-consuming search process, to the
best of our knowledge, there is no literature to demonstrate that the end-to-
end learned importance indicators can be used for quantization. To verify the
scale factors of quantizer can be used for this purpose, we conduct a contrast
experiment for MobileNetv1 [17] on ImageNet [10] as follows.

In the MobileNet family, it is well-known that the depth-wise convolutions
(DW-convs) have fewer parameters than the point-wise convolutions (PW-convs);
thus, the DW-convs are generally more susceptible to quantization than PW-
convs [15,23]. Therefore, we separately quantized the DW-conv and PW-conv
for each of the five DW-PW pairs in MobileNetv1 to observe whether the scale
factors of the quantizer and accuracy vary. Specifically, we quantized each layer
in MobileNetv1 to 2 or 4 bits to observe the accuracy degradation. Each time
we quantized only one layer to low bits while other layers are not quantized and



8 C. Tang, K. Ouyang et al.

updated, i.e., we quantized 20 (5×2×2) networks independently. If the accuracy
of layer li degrades higher when the quantization level changes from 4 bits to
2 bits than layer lj , then li is more sensitive to quantization than lj . In addi-
tion, the input channels and output channels of these five DW-PW pairs are all
512. Namely, we used the same number of I/O channels to control the variables.
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Figure 2. Results of the contrast experiment of Mo-
bileNetv1 on ImageNet. “•” and “⋆” respectively indi-
cate that the DW-conv layer or the PW-conv layer is
quantized. Different colors indicate that different layers
are quantized. Large labels indicate that the quantiza-
tion bit-width is set to 4 bits and small labels of 2 bits.

The results of the con-
trolled variable experi-
ment are shown in Figure
2. Based on the results,
we can draw the following
conclusions: When the
quantization bit-width de-
creases from 4 to 2 bits,
the accuracy degradation
of PW-convs is much
lower than that of DW-
convs, which consists of
the prior knowledge that
DW-convs are very sensi-
tive. Meanwhile, the val-
ues of scale factors of
all PW-convs are promi-
nent smaller than those
of DW-convs under the
same bit-width. That indicates the values of scale factor of whose sensitive lay-
ers are bigger than whose insensitive layers, which means the scale factor’s value
can adequately reflect the quantization sensitivity of the corresponding layer.
Namely, the kind of layer with a large scale factor value is more important than
the one with a small scale factor.

Initialization of the Importance Indicators Initializing the scale factors
with the statistics [2,13] of each layer results in the different initialization for
each layer. We verify whether the factors still show numerical differences by the
same initialization value scheme to erase this initialization difference. That is,
for each layer, we empirically initialize each importance indicator of bit b by
sb = 0.1× 1

b since we observed the value of factor is usually quite small (≤ 0.1)
and increases as the bit-width decreases.

As shown in Figure 3, after training of early instability, the scale factor still
showed a significant difference at the end of training. That means the scale factor
can still function consistently when using the same initialization for each layer.
Nevertheless, we find that, compared to the same initialization value scheme,
initialization with statistics [2,13] can speedup and stabilize the training process
compared to the same initialization value strategy for each layers, thus we still
use the statistics initialization scheme in our experiments.
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Figure 3. The importance value of four layers for ResNet18.

3.4 One-time Training for Importance Derivation

Suppose the bit-width options for weights and activations are B = {b0, ..., bn−1},
there are M = 2×L×n importance indicators for an L-layers network. Training
these M indicators separately requires M training sessions, which induces huge
extra training costs. Therefore, we propose a joint training scheme to obtain
importance indicators of all layers corresponding n bit-width options B at once
training.

Specifically, we use a bit-specific importance indicator instead of the original
notion s in Equation 1 for each layer. That is, for the weights and activaions of

layer l, we use the notion s
(l)
w,i and s

(l)
a,j as the importance indicator for bi ∈ B of

weights and bj ∈ B of activations. In this way, n different importance indicators
can exist for each layer in a single training session. It is worth noting that
the importance indicator parameters are only a tiny percentage of the overall
network parameters, thus do not incur too much GPU memory overhead. For
example, for ResNet18, if there are 5 bit-width options per layer, we have M =
2× 19× 5 = 190, while the whole network has more than 30 million parameters.

At each training step t, we first perform n times forward and backward
propagation corresponding to n bit-width options (i.e., respectively using same
bit-width bk ∈ B, k = 0, .., n − 1 for each layer), and inspired by one-shot NAS
[14,8] we then introduce one randomly bit-width assignment process for each
layer to make sure different bit-widths in different layers can communicate with
each other. We define the above procedure as an atomic operation of importance
indicators update, in which only the gradients are calculated n+1 times, but the
importance indicators are not updated during the execution of the operation.
After that, we aggregate the above gradients and use them to update the impor-
tance indicators. See the Supplementary Material for details and pseudocode.

We show in Figure 4 all the layer importance indicators obtained by this
method in a single training session. We observe that the top layers always show
a higher importance value, indicating that these layers require higher bit-widths.

3.5 Mixed-Precision Quantization Search Through Layer-wise
Importance

Now, we consider using these learned importance indicators to allocate bit-
widths for each layer automatically. Since these indicators reflect the corre-
sponding layer’s contribution to final performance under certain bit-width, we
no longer need to use iterative accuracy to evaluate the bit-width combination.
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(a) ResNet18
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Figure 4. The importance indicators for ResNet18 and ResNet50.

As shown in Figure 2, the DW-convs always have a higher importance score
than PW-convs, and the importance score rise when bit-width reduce, then
DW-convs should be quantized to higher bit-width than PW-convs, e.g., 2 bits
for PW-convs and 4 bits for DW-convs. For layer l, we use a binary variable

x
(l)
i,j representing the bit-width combination (b

(l)
w , b

(l)
a ) = (bi, bj) that bi bits for

weights and bj bits for activations, whether it is selected or not. Under the
given constraint C, our goal is to minimize the summed value of the importance
indicator of every layer. Based on that, we reformulate the mixed-precision search
into a simple ILP problem as Equation 4:

argmin
{x(l)

i,j}L
l=0

L∑
l=0

(s
(l)
a,j + α× s

(l)
w,i)× x

(l)
i,j (4)

s.t.
∑
i

∑
j

x
(l)
i,j = 1 (4a)

∑
l

∑
i

∑
j

BitOps
(
l, x

(l)
i,j

)
≤ C (4b)

vars x
(l)
i,j ∈ {0, 1} (4c)

where Equation 4a denotes only one bit-width combination selected for layer l,
Equation 4b denotes the summed BitOps of each layer constrains by C. Depend-
ing on the deployment scenarios, it can be replaced with other constraints, such
as compression rate. α is the hyper-parameter used to form a linear combination
of weights and activations importance indicators. Therefore, the final bit-width
combination of the whole network S∗ can be obtained by solving Equation 4.

Please note that, since Equation 4 do not involve any training data, we no
longer need to perform iterative evaluations on the training set as previous works.
Thus the MPQ policy search time can be saved exponentially. We solve this ILP
by a python library PuLP [22], elapsed time of the solver for ResNet18 is 0.06
seconds on an 8-core Apple M1 CPU. More details about MPQ policy search
efficiency please refer § 4.2.
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4 Experiments

In this section, we conduct extensive experiments with the networks ResNet-
18/50 [16] and MobileNetv1 [17] on ImageNet [10] classification. We compare
our method with the fixed-precision quantization methods including PACT [7],
PROFIT [23], LQ-Net [28], and layer-wise MPQ methods HAQ [25], AutoQ [21],
SPOS [14], DNAS [26], BP-NAS [27], MPDNN [24], HAWQ [12], HAWQv2 [11],
DiffQ [9] and MPQCO [6]. Experimental setups can be found in the Supplemen-
tary Material.

Table 2. Results for ResNet18 on ImageNet with BitOps constraints. “W-bits” and
“A-bits” indicate bit-width of weights and activations respectively. “MP” means mixed-
precision quantization. “Top-1/Quant” and “Top-1/FP” indicates the top-1 accuracy of
quantized and Full-Precision model. “Top-1/Drop” = “Top-1/FP” − “Top-1/Quant”.

Method W-bits A-bits Top-1/Quant Top-1/FP Top-1/Drop BitOps (G)

PACT 3 3 68.1 70.4 -2.3 23.09
LQ-Net 3 3 68.2 70.3 -2.1 23.09
Nice 3 3 67.7 69.8 -2.1 23.09

AutoQ 3MP 3MP 67.5 69.9 -2.4 -
SPOS 3MP 3MP 69.4 70.9 -1.5 21.92
DNAS 3MP 3MP 68.7 71.0 -2.3 25.38

Ours 2.5MP 3MP 68.7 69.6 -0.9 19.81
Ours 3MP 3MP 69.0 69.6 -0.6 23.07
Ours 3MP 3MP 69.7 70.5 -0.8 23.07

PACT 4 4 69.2 70.4 -1.2 33.07
LQ-Net 4 4 69.3 70.3 -1.0 33.07
Nice 4 4 69.8 69.8 0 33.07
SPOS 4MP 4MP 70.5 70.9 -0.4 31.81

MPDNN 4MP 4MP 70.0 70.2 -0.2 -
AutoQ 4MP 4MP 68.2 69.9 -1.7 -
DNAS 4MP 4MP 70.6 71.0 -0.4 33.61

MPQCO 4MP 4MP 69.7 69.8 -0.1 -

Ours 4MP 4MP 70.1 69.6 0.5 33.05
Ours 4MP 4MP 70.8 70.5 0.3 33.05

4.1 Mixed-Precision Quantization Performance Effectiveness

ResNet18 In Table 2, we show the results of three BitOps (computation cost)
constrained MPQ schemes, i.e., 2.5W3A of 19.81G BitOps, 3W3A of 23.07G
BitOps and 4W4A of 33.05G BitOps.

Firstly, we observe that in 3-bits level (i.e., 23.07G BitOps) results. We
achieve a least absolute top-1 accuracy drop than all methods. Please note that
the accuracy of our initialization full-precision (FP) model is only 69.6%, which
is about 1% lower than some MPQ methods such as SPOS and DNAS. To make
a fair comparison, we also provide a result initializing by a higher accuracy FP
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model (i.e., 70.5%). At this time, the accuracy of the quantized model improves
0.7% and reaches 69.7%, which surpasses all existing methods, especially DNAS
1.0% while DNAS uses a 71.0% FP model as initialization. It is noteworthy
that a 2.5W3A (i.e., 19.81G BitOps) result is provided to demonstrate that our
method causes less accuracy drop even with a much strict BitOps constraint.

Secondly, in 4-bits level results (i.e., 33.05G BitOps), we also achieve a high-
est top-1 accuracy than prior arts whether it is fixed-precision quantization
method or mixed-precision quantization method. A result initialized by a higher
FP precision model is also provided for a fair comparison.

ResNet50 In Table 3, we show the results that not only perform a BitOps
constrainted MPQ search but also set a model size constraint (i.e., 12.2 × com-
pression rate). We can observe that our method achieves a much better perfor-
mance than PACT, LQ-Net, DeepComp, and HAQ, under a much smaller model
size (i.e., more than 9MB vs. 7.97MB). In addition, the accuracy degradation
of our method is smaller than the criterion-based methods HAWQ, HAWQv2
and MPQCO, which indicates that our quantization-aware search and unlimited
search space is necessary for discovering a well performance MPQ policy.

Table 3. Results for ResNet50 on ImageNet with BitOps and compression rate con-
straints. “W-C” means weight compression rate, the size of original full-precision model
is 97.28 (MB). “Size” means quantized model size (MB).

Method W-bitsA-bits Top-1/Quant Top-1/Full Top-1/Drop. W-C Size (M)

PACT 3 3 75.3 76.9 -1.6 10.67× 9.17
LQ-Net 3 3 74.2 76.0 -1.8 10.67× 9.17

DeepComp 3MP 8 75.1 76.2 -1.1 10.41× 9.36
HAQ 3MP 8 75.3 76.2 -0.9 10.57× 9.22
DiffQ MP 32 76.3 77.1 -0.8 11.1× 8.8

BP-NAS 4MP 4MP 76.7 77.5 -0.8 11.1× 8.76
AutoQ 4MP 3MP 72.5 74.8 -2.3 - -
HAWQ MP MP 75.5 77.3 -1.8 12.2× 7.96

HAWQv2 MP MP 75.8 77.3 -1.5 12.2× 7.99
MPQCO 2MP 4MP 75.3 76.1 -0.8 12.2× 7.99

Ours 3MP 4MP 76.9 77.5 -0.6 12.2× 7.97

MobileNetv1 In Table 4, we show the results of two BitOps constrainted in-
cluding a 3-bits level (5.78G BitOps) and a 4-bits level (9.68G BitOps). Espe-
cially in the 4-bit level result, we achieve a meaningful accuracy improvement
(up to 4.39%) compared to other MPQ methods.

In Table 5, we show the weight only quantization results. We find that the
accuracy of our 1.79MB model even surpasses that of the 2.12M HMQ model.

4.2 Mixed-Precision Quantization Policy Search Efficiency

Here, we compare the efficiency of our method to other SOTAs MPQ algorithms
with unlimited search space (i.e., MPQ for both weights and activations instead
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Table 4. Results for MobileNetv1 on Ima-
geNet with BitOps constraints. “W-b” and
“A-b” means weight and activation bit-
widths. “Top-1” and “Top-5” represent top-
1 and top-5 accuracy of quantized model re-
spectively. “B (G)” means BitOps (G).

Method W-b A-b Top-1 Top-5 B (G)

PROFIT 4 4 69.05 88.41 9.68
PACT 6 4 67.51 87.84 14.13
HMQ 3MP 4MP 69.30 - -
HAQ 4MP 4MP 67.45 87.85 -
HAQ 6MP 4MP 70.40 89.69 -

Ours 3MP 3MP 69.48 89.11 5.78
Ours 4MP 4MP 71.84 90.38 9.68

Table 5. Weight only quantization re-
sults for MobileNetv1 on ImageNet. “W-
b” means weight bit-widths. “S (M)”
means quantized model size (MB).

Method W-b Top-1 Top-5 S (M)

DeepComp 3MP 65.93 86.85 1.60
HAQ 3MP 67.66 88.21 1.58
HMQ 3MP 69.88 - 1.51

Ours 3MP 71.57 90.30 1.79

PACT 8 70.82 89.85 4.01
DeepComp 4MP 71.14 89.84 2.10

HAQ 4MP 71.74 90.36 2.07
HMQ 4MP 70.91 - 2.12

Ours 4MP 72.60 90.83 2.08

of weights only MPQ, layer-wise MPQ instead of block-wise). Additional results
about DiffQ [9] and HAWQ [12] can be found in the Supplementary Material.

The time consumption of our method consists of 3 parts. Namely, 1) Impor-
tance indicators training. 2) MPQ policy search. 3) Quantized model fine-tuning.
The last part is necessary for all MPQ algorithms while searching the MPQ pol-
icy is the biggest bottleneck (e.g., AutoQ needs more than 1000 GPU-hours to
determine the final MPQ policy), thus we mainly focus on the first two parts.

Comparison with SOTAs on ResNet50 The time consumption of the first
part is to leverage the joint training technique (see § 3.4) to get importance
indicators for all layers and their corresponding bit-widths, but it only needs
to be done once. It needs to train the network about 50 minutes (using 50%
data of training set) on 4 NVIDIA A100 GPUs (i.e., 3.3 GPU-hours). The time
consumption of the second part is to solve the ILP problem. It consumes 0.35
seconds on a six-core Intel i7-8700 (at 3.2 GHz) CPU, which is negligible.

Hence, suppose we have different z devices with diverse computing capabil-
ities to deploy, our method consumes 50 + 0.35 × 1

60 × z minutes to finish the
whole MPQ search processes.

Compared with the search-based approach AutoQ [21] needs 1000
GPU-hours to find the MPQ policy for a single device, which means it needs
1000z GPU-hours to search MPQ policies for these z devices. Thus we achieve
about 330z× speedup and obtain a higher accuracy model simultaneously.

Compared with the criterion-based approach, HAWQv2 [11] takes 30
minutes on 4 GPUs to approximate the Hessian trace. The total time consump-
tion of HAWQv2 for these z devices is 30+ c× 1

60 × z minutes, and c is the time
consumption for solving a Pareto frontier based MPQ search algorithm with less
than 1 minute. Thus if z is large enough, our method has almost the same time
overhead as HAWQv2. If z is small, e.g., z = 1, our method only needs a one-time
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additional 20-minute investment for the cold start of first part, but resulting in
a significant accurate model (i.e., 1.1% top-1 accuracy improvement).

4.3 Ablation Study

In previous analysis, we empirically verify that the layers with bigger scale factor
values are more sensitive to quantization when their quantization bit-width is re-
duced. Motivated by this, we propose our ILP-based MPQ policy search method.
However, an intuitive question is what if we reverse the correlation between scale
factors and sensitivity. Namely, what if we gave the layers with smaller scale fac-
tor values more bit-widths instead of fewer bit-widths. And, what if we gave the
layers with bigger scale factor values fewer bit-widths instead of more bit-widths.

The result is shown in Table 6, we use “Ours-R” to denote the result of
reversed bit-width assignment manner; “Ours” results come from Table 4 directly
to represent the routine (not reversed) bit-width assignment manner.

We observe that “Ours-R” has 6.59% top-1 accuracy lower than our routine
method under the same BitOps constraint. More seriously, it has 4.23% absolute
accuracy gap between “Ours-R” (with 4-bits level constrainted, i.e., 9.68 BitOps)
and a 3-bits level (i.e., 5.78G BitOps) routine result. Such a colossal accuracy
gap demonstrates that our ILP-based MPQ policy search method is reasonable.

Table 6. Ablation study for MobileNetv1 on ImageNet.

Method W-bits A-bits Top-1/Quant Top-5/Quant BitOps

Ours 3MP 3MP 69.48 89.11 5.78
Ours 4MP 4MP 71.84 90.38 9.68

Ours-R 4MP 4MP 65.25 86.15 9.68

5 Conclusion

In this paper, we propose a novel MPQ method that leverages the unique param-
eters in quantization, namely the scale factors in the quantizer, as the importance
indicators to assign the bit-width for each layer. We demonstrate the association
between these importance indicators and the quantization sensitivity of layers
empirically. We conduct extensive experiments to verify the effectiveness of using
these learned importance indicators to represent the contribution of certain lay-
ers under specific bit-width to the final performance, as well as to demonstrate
the rationality of the bit-width assignment obtained by our method.
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