
Supplementary Materials for Disentangled
Differentiable Network Pruning

A Choice of p Given Different Datasets and
Architectures.

Dataset CIFAR-10 ImageNet

Architecture ResNet-56 MobileNet-V2 ResNet-34 ResNet-50 MobileNet-V2 MobileNet-V3 small

p 0.48 0.56 0.55 0.38/0.31 0.67 0.75

Table A1: Choice of p for different models. p is the remained FLOPs divided
by the total FLOPs.

We present the choice of p for all experiments in Tab A1. For ResNet-50, p
is set to 0.38 when we prune 55.0% FLOPs, and p is set to 0.31 when we prune
62.0% FLOPs (results in Tab. A4)

B Architectures of gs and gk.

Inputs xsl, l = 1, · · · , L

GRU(64,128), WeightNorm, ReLU
FCl(128,Cl), WeightNorm, l = 1, · · · , L

Outputs s̄l, l = 1, · · · , L

Table A2: The architecture of gs
used in our method.

Inputs xk,

FCl(32, 64), WeightNorm, ReLU
FCl(64,L), WeightNorm

Outputs k̄ = [k̄1, · · · , k̄L]

Table A3: The architecture of gk
used in our method.

The architecture of gs is shown in Tab. A2. The forward calculation of gs is:

ol, hl = GRU(xsl, hl−1)

s̄l = FCl(ol),
(1)

s̄l is the importance score before the final output function. In most experiments,
we use the sigmoid function to produce final importance score: sl = sigmoid(s̄l).
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(a) Test Acc given λ (b) R Loss given λ (c) Effect of ρ

(d) More settings (e) Different inputs

Fig.A1: (a,b): Test accuracy and normalized R loss during training given differ-
ent λ. (c): Test accuracy given different slection of ρ. (d): Impact to pruning with
additional settings. (e): Learnable inputs vs. fixed inputs. We run each setting
three times and use shaded areas to represent variance. All experiments are done
on CIFAR-10 with ResNet-56.

The experiments in Figure 4 (d,b) of the main text employees two other types of
output functions, and they are absolute value function (used in weight pruning
papers [3]): sAF =| s̄ | and square function: sSF = s̄2.

We also present the architecture of gk in Tab. A3. Here, we use k̄ to represent
outputs before normalization. Given a certain layer l, the final kl is obtained by:

kl = sigmoid(k̄l + b), (2)

where b is a positive constant to ensure we start pruning from a whole network,
and b = 3.0 for all experiments. This is also discussed in section 5.1 of the main
text.

C Additional Experiments

The test accuracy and normalized resource loss given different λ during training
are shown in Fig. A1 (a,b). These figures show that a small λ may hinder the
pruning process since the pruned model can not reach target FLOPs. Using a
larger λ can solve this problem.

We also study the impact of ρ in Fig. A1 (c). We can see that the test accuracy
of the pruned model is pretty low when ρ = 0, since learning of importance and
width are completely disentangled. The performance of pruning also increases
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Method Base/Pruned Top-1 Base/Pruned Top-5 ∆ Top-1 ∆ Top-5 ↓ FLOPs

HRank [2] 76.15%/ 71.98% 92.87%/91.01% −4.17% −1.86% 62.1%
CC [1] 76.15%/ 74.54% 92.87%/92.25% −1.61% −0.62% 62.7%

CHIP [4] 76.15%/ 75.26% 92.87%/92.53% −0.89% −0.34% 62.8%
DDNP (ours) 76.13%/75.56% 92.86%/92.68% −0.57% −0.18% 62.0%

Table A4: Additional results with ResNet-50 on ImageNet when pruning more
FLOPs.

when we increase ρ. But if we use a too large ρ, the performance decreases,
indicating that entangling width and importance reduce pruning flexibility.

In Fig. A1 (d), we present more settings for pruning. “Fix S” means that
importance s is fixed, and only the second term and third term of Eq. (9) are
used. In this setting, data is no longer used for pruning, and L1 norm is used
as the channel importance. “Fix k” represents that width k is fixed, and all kl
are set to 0.5 since they are no longer learnable. “Channel-wise-ks” means that
we use scalar parameterization (one variable per-channel and per-layer) for both
width and importance. From the figure, we can see that parameterization for
both channel importance and width can impact the pruning results, and the
parameterization of channel importance has a larger impact. Moreover, “Fix S”
or “Fix k” largely restrict the learning flexibility.

In Fig. A1 (e), we present the difference between learnable inputs and fixed
inputs for gk and gs. For fixed inputs, we randomly generate xs and xk (in
Tab. A2 and Tab. A3) before pruning and fix them during pruning. For learned-
able inputs, we just randomly initialize xs and xk and include them as learnable
parameters during pruning. It’s clear that learnable inputs and fixed inputs do
not have large difference.

In Tab. A4, we present additional results for ResNet-50 when the FLOPs
pruning rate is larger (around 62%). Compared with state-of-the-art methods
like CHIP [4] and CC [1], our method outperforms them with similar FLOPs
pruning rate. The advantage of our method compared to HRank [2] is more
obvious.

At last, we measure the additional costs bought by the importance and width
generation networks with ResNet-56 on CIFAR-10 and ResNet-50 on ImageNet.
On CIFAR-10, we measure the running time by averaging the time costs of the
last 10 epochs. For ResNet-56, with scalar parameterization, the running time
is 0.136 second/iteration. With importance and width generation networks, the
time the running time is 0.143 second/iteration. On ImageNet, we measure the
running time by averaging the time costs for the last 5 epochs. with scalar
parameterization, the running time is 1.08 second/iteration. With importance
and width generation networks, the running time is 1.15 second/iteration. From
these results, we can see that the additional costs are trivial.
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