
Disentangled Differentiable Network Pruning

Shangqian Gao , Feihu Huang , Yanfu Zhang , and Heng Huang

Department of Electrical and Computer Engineering, University of Pittsburgh

{shg84,feh23,yaz91,heng.huang}@pitt.edu

Abstract. In this paper, we propose a novel channel pruning method for
compression and acceleration of Convolutional Neural Networks (CNNs).
Many existing channel pruning works try to discover compact sub-networks
by optimizing a regularized loss function through differentiable opera-
tions. Usually, a learnable parameter is used to characterize each chan-
nel, which entangles the width and channel importance. In this setting,
the FLOPs or parameter constraints implicitly restrict the search space
of the pruned model. To solve the aforementioned problems, we propose
optimizing each layer’s width by relaxing the hard equality constraint
used in previous works. The relaxation is inspired by the definition of
the top-k operation. By doing so, we partially disentangle the learning of
width and channel importance, which enables independent parametriza-
tion for width and importance and makes pruning more flexible. We also
introduce soft top-k to improve the learning of width. Moreover, to make
pruning more efficient, we use two neural networks to parameterize the
importance and width. The importance generation network considers
both inter-channel and inter-layer relationships. The width generation
network has similar functions. In addition, our method can be easily
optimized by popular SGD methods, which enjoys the benefits of dif-
ferentiable pruning. Extensive experiments on CIFAR-10 and ImageNet
show that our method is competitive with state-of-the-art methods.

Keywords: Model Compression, Channel Pruning, Differentiable Prun-
ing

1 Introduction

Convolutional Neural Networks (CNNs) have accomplished tremendous success
in various computer vision tasks [2,28,43,44,47]. To deal with real-world appli-
cations, recently, the design of CNNs has become more and more complicated in
terms of width, depth, etc. [14,20,28,48]. These complex CNNs can attain better
performance on benchmark tasks, but their computational and storage costs in-
crease dramatically. As a result, a typical application based on CNNs can quickly
exhaust an embedded or mobile device due to its enormous costs. Given such
costs, the application can hardly be deployed on resource-limited platforms. To
tackle these problems, many researches [11, 12] have been devoted to compress-
ing the original large CNNs into compact models. Among these methods, weight
pruning and structural pruning are two popular topics for model compression.

https://orcid.org/0000-0001-9699-1790
https://orcid.org/0000-0003-0806-6074
https://orcid.org/0000-0002-0183-925X
https://orcid.org/0000-0002-3483-8333
 {shg84, feh23, yaz91, heng.huang}@pitt.edu

2 S. Gao et al.

Unlike weight pruning or sparsification, structural pruning, especially chan-
nel pruning, is an effective way to truncate the computational cost of a model
because it does not require any post-processing steps to achieve actual accelera-
tion and compression. Many existing works [9,24,25,54] try to discover compact
sub-networks by optimizing a regularized loss function through differentiable op-
erations. Usually, the width of a layer and the importance of each channel are
entangled in this setting since they use one learnable parameter to characterize
each channel. Specifically, the FLOPs or parameter constraints implicitly restrict
the search space of the pruned model. On the other hand, search based prun-
ing algorithms (through reinforcement learning [17], evolutionary algorithms [33]
and so on) can directly generate the width of each layer with flexible importance
definition, which leads to competitive performance. However, the costs of search
based method is usually more expansive.

Previous differentiable pruning methods [9, 24, 25, 54] entangle width and
importance, limiting the potential search space of sub-networks. To tackle this
problem, we aim to disentangle the learning of width and importance, and conse-
quently make pruning more flexible. The disentanglement of pruning can be
understood as using independent parameterization for channel importance and
layer width. To achieve this, we first observe that the width of a certain layer
can be represented by k of the top-k operation. Inspired by the definition of
top-k, we then relax the hard equality constraint used in previous works to a
soft regularization term, where k and importance scores can be optimized sep-
arately. By doing so, we partially disentangle the importance and width of a
layer for pruning. Under our setting, the choices of channel importance become
more flexible compared to previous works. Additionally, the width k of each
layer can be generated directly, which shares similar property of search based
algorithms. Following previous works, we also formulate the channel pruning
problem as a constrained optimization problem, which can be efficiently opti-
mized through regular SGD methods. Compared to differentiable pruning meth-
ods [9, 24, 25, 54], our method disentangles the learning of width and channel
importance, which potentially enlarge the search space. Compared to search
based algorithms [17,33], our method provides a way to efficiently generate and
optimize width without additional costs.

To make the learning efficient, we further parameterize the importance and
width by using two neural networks. We use an importance generation network to
capture inter-channel and inter-layer relationships. Similarly, a width generation
network is used to generate the width of each layer. A soft constraint term is
then used to connect importance and width. With these techniques, our method
can outperform state-of-the-art pruning methods on CIFAR-10 and ImageNet
datasets. Our contributions can be summarized as:

1) We aim to disentangle the learning of width and importance for differen-
tiable channel pruning, which is achieved by relaxing the equality constraint
derived by the definition of the top-k operation. By relaxing the equality
constraint, width and importance can be parameterized independently. We

Disentangled Differentiable Network Pruning 3

also extend the discrete top-k masks to soft top-k masks with a smoothstep
function allowing custom width for soft windows.

2) To improve the learning efficiency, we parameterize the importance of each
channel and width of each layer by using neural networks. The importance
generation network is used to capture inter-channel and inter-layer relation-
ships. The width generation network shares similar intuition.

3) Extensive experiments on CIFAR-10 and ImageNet show that our method
can outperform existing channel pruning methods on ResNets and Mo-
bileNetV2/V3.

2 Related Works

Recently, model compression has drawn a lot of attention from the community.
Weight pruning and structural pruning are two popular directions.

2.1 Weight Pruning

Weight pruning eliminates redundant connections without assumptions on the
structures of weights. Weight pruning methods can achieve a very high compres-
sion rate while they need specially designed sparse matrix libraries to achieve
acceleration and compression. As one of the early works, [12] proposes to use L1

or L2 magnitude as the criterion to prune weights and connections. SNIP [29]
updates the importance of each weight by using gradients from the loss function.
Weights with lower importance will be pruned. Lottery ticket hypothesis [7] as-
sumes there exist high-performance sub-networks within the large network at
initialization time. Besides one-shot pruning, repeated pruning and fine-tuning
can lead to better performance but with larger costs. In rethinking network
pruning [35], they challenge the typical model compression process (training,
pruning, fine-tuning) and argue that fine-tuning is not necessary. Instead, they
show that training the compressed model from scratch with random initialization
can obtain better results.

2.2 Structural Pruning

One of the previous works [30] in structural pruning uses the sum of the abso-
lute value of kernel weights as the criterion for filter pruning. Instead of directly
pruning filters based on magnitude, structural sparsity learning [52] is proposed
to prune redundant structures with Group Lasso regularization. On top of struc-
tural sparsity, GrOWL regularization is applied to make similar structures share
the same weights [56]. One of the problems when using Group Lasso is that
weights with small values could still be important, and it is difficult for struc-
tures under Group Lasso regularization to achieve exact zero values. As a re-
sult, [36] proposes to use explicit L0 regularization to make weights within struc-
tures have exact zero values. Besides using the magnitude of structure weights
as a criterion, other methods utilize the scaling factor of batchnorm to achieve

4 S. Gao et al.

Fig. 1. Flowchart of our proposed method. Importance score generator gs and width
generator gk are used to generate the importance score and width. We then use them
to generate the mask vector a, and it is used to produce the sub-network architecture.
The network is pruned according to a. Finally, gk and gs are optimized by minimizing
the loss function.

structure pruning, since batchnorm [22] is widely used in recent neural network
designs [14, 20]. A straightforward way to achieve channel pruning is to make
the scaling factor of batchnorm to be sparse [34]. If the scaling factor falls below
a certain threshold, the channel will be removed. Structure sparse selection [21]
extends the idea of using scaling factors to more structures, like an entire layer.
Another line of research formulates pruning as a constrained optimization prob-
lem [8, 9, 24, 25, 54, 57], and they use learnable parameters (also called gate pa-
rameters) to control each channel. These parameters are differentiable in their
setting, which enables an efficient end-to-end optimization process. Though these
methods have succeeded in channel pruning, the width of each layer and the im-
portance of each channel are entangled, limiting the search space. Besides using
gates, Collaborative channel pruning [41] tries to prune channels by using Taylor
expansion. Greedy forward selection [53] is proposed to find good sub-networks,
which starts from an empty network and greedily adds important channels from
the original network. In Automatic Model Compression (AMC) [17], they use
policy gradient to update the policy network. This policy network is then used to
generate the width of each layer. MetaPruning [33] uses a hypernet to generate
parameters for sub-networks, and evolutionary algorithms are utilized to find
the best configuration (width) of sub-networks. Our method can generate width
directly like MetaPruning and AMC. In addition, our method can be optimized
more efficiently through regular stochastic gradient methods.

2.3 Other Methods

Besides weight and channel pruning methods, there are works from other per-
spectives, including bayesian pruning [37,39], weight quantization [5,42], pruning
for fairness [58], and knowledge distillation [18].

Disentangled Differentiable Network Pruning 5

3 Proposed Method

3.1 Preliminary

To better describe our proposed approach, necessary notations are introduced
first. In a CNN, the feature map of lth layer can be represented by Fl ∈
ℜCl×Wl×Hl , l = 1, . . . , L, where Cl is the number of channels, Hl and Wl are
height and width of the current feature map, L is the number of layers. The mini-
batch dimension of feature maps is ignored to simplify notations. sigmoid(·) is
the sigmoid function. round(·) rounds inputs to nearest integers. 1(·) is the in-
dicator function.

Usually, differentiable channel pruning algorithms aim to solve the following
problem:

min
Θ

J (Θ) = L(f(x;Θ,W), y) + λR(Θ), (1)

where x, y are input samples and their labels. W, L and R are model weights,
loss functions and regularization functions on parameters or FLOPs. Θ are learn-
able parameters to decide whether to prune the channel. There are many ways
to characterize a channel, such as Gumbel-sigmoid approximation [23], shape
function [25] and so on. R is the regularization function to control the number
of channels or FLOPs of each layer. Our method aims to disentangle the learn-
ing of width and channel importance. As a result, Θ will be reparameterized
into two variables: importance score s and layer width k. How to achieve such a
disentanglement will be detailed in this section.

3.2 Top-k Operation

In this section, we will introduce how to parameterize the width of a layer. Let us
denote the importance score vector for each channel of a layer as s = [s1, . . . , sCl

].
Suppose we need to select k most importance channels out of Cl channels, we
can use a top-k mask vector a, which is given by:

ai =

{
1 if si is a top-k element in S,

0 otherwise.
(2)

The process of selecting top-k channels is a natural way for channel pruning,
and k represents width of this layer. The relationship between k and ai can be
represented by the following equation:

k =

Cl∑
i=1

ai. (3)

Gradients with respect to k through Eq. 3 are not defined. Except Eq. 3, we
can use an alternative surrogate to represent k:

k =
1

Cl

Cl∑
i=1

1
si>s0

(si), (4)

6 S. Gao et al.

Fig. 2. Soft relaxation vs. naive binary mask. In this figure, we choose Cl = 64, γ = 20,
Clk = 40. Solid line represent the continuous function. Square dots represent the actual
values taken by the vector ã.

where s0 is a value between kth and k + 1th value, and the indicator function
1

si>s0
(·) returns 1 if si > s0, otherwise it returns 0. Here, to unify the learning

of different layers, we abuse the notation k to represent the normalized version
of k ∈ [0, 1]. If we enforce the hard equality defined in Eq. 4, it still entangles
the learning of importance and width. We then replace it with a regularization
term:

C(k, s) = ∥k − 1

Cl

Cl∑
i=1

sigmoid((s̄i − s̄0)/t)∥2, (5)

which does not enforce a hard constraint and s̄ is the unnormalized importance
score (outputs before the final activation of gs defined in Eq. 8). We also relax
the indicator function with the sigmoid function of temperature t to facilitate
gradient calculations. In practice, we let s̄0 = 0, so that the importance score
will match k automatically. The gradients with respect to k can be obtained
by utilizing this regularization term, and the width of each layer can be opti-
mized using SGD or other stochastic optimizers. Finally, we achieve pruning by
inserting the vector a to the feature map Fl:

F̂l = a⊙Fl, (6)

where F̂l is the pruned feature map, ⊙ is the element-wise product, and a is first
resized to have the same size of Fl.

3.3 Soft Top-k Operation with Smoothstep Function

When performing discrete top-k operation, we place 1 to the first k elements of
ã. Similarly, we use a smoothstep function [13] to generate values for soft relaxed
ã:

Smoothstep(x) =


0, if x ≤ −γ/2 + Clk,

− 2
γ3 (x− Clk)

3 + 3
2γ (x− Clk) +

1
2 ,

if − γ/2 + Clk ≤ x ≤ γ/2 + Clk,

1, if x ≥ γ/2 + Clk.

(7)

Disentangled Differentiable Network Pruning 7

In smoothstep function, γ controls the width of the soft relaxation. Clk represents
the center of the soft relaxation. Outside [−γ/2 + Clk, γ/2 + Clk], smoothstep
function performs binary rounding. We provide the comparison between smooth-
step function and naive binary masks in Fig. 2. The value of ãi = Smoothstep(i).
The soft version of a can be obtained by a = PT ã. Here, we abuse the notation
of ã and a for the soft relaxed mask vector.

To satisfy Eq. 3, we need Clk ≈
∑

ai. As a result, the center of the soft
window should be at Clk. Other functions like sigmoid(·) can also interpolate
between [0, 1]. We choose the smoothstep function since it provides a easy way to
control the width of soft relaxation. If Clk is close to Cl (when k is close to 1), the
soft range of ã is not symmetric any more on k. We adjust γ to round(Cl −Clk)
to ensure Clk ≈

∑
ai.

Binary values are often used to control open or close of a channel. However,
it is better to use soft relaxed values in certain circumstances. We apply soft
relaxation on the mask vector a for several reasons. In practice, it is hard for us
to generate k with discrete values, and discrete constraints on kCl dramatically
increase the difficulty for optimization. Thus, the generated k is within [0, 1]. If
only binary values are used, then kCl = 9.1 and kCl = 8.5 will produce the same
a. Soft relaxation can produce unique a when kCl = 9.1 or kCl = 8.5. Another
benefit of soft relaxation is that we can evaluate more channels compared to the
discrete settings. Let us first reindex the vector s as s̃ based on the monotone
decreasing order of s, then s̃ = P s, where P is a permutation matrix. Since a and
s have one-to-one correspondence, sorting a according to s can be represented
as ã = Pa.

3.4 Generating Width and Importance Score

To provide importance score s for each channel, we use a neural network gs to
learn it from the dataset:

S = gs(xs, Θs), (8)

where S = (s1, · · · , sL) is the collection of all scores across different layers, Θs are
learnable parameters of gs, and xs is the input of gs. Before training, we generate
xs randomly, and it is kept fixed during training. We can also use a learnable
xs, which results in similar performance. Previous pruning methods often use
a single parameter to control each channel, which can not obtain inter-channel
and inter-layer relationships. As a result, gs is designed to be composed with
GRU [4] and fully connected layers. Basically, we use GRU to capture inter-layer
relationships, and fully connected layers are for inter-channel relationships. The
additional computational costs introduced by gs is trivial, and it has little impact
to the training time. Since S is not directly involved in the forward computation,
we use straight-through gradient estimator [1] to calculate the gradients of it:
∂J
∂s = ∂J

∂a . We also want to emphasize that it’s crucial to use simgoid(·) as the
output activation for gs. Using absolute values [46] or other functions incurs much
larger errors when estimating the gradients. This is probably because simgoid(·)
better approximates binary values.

8 S. Gao et al.

Algorithm 1: Disentangled Differentiable Network Pruning

Input: D, p, λ, ρ, E, f ,
Freeze W in f .
Initialization: initialize xs and xk for gs and gk; randomly initialize Θs and
Θk

for e := 1 to E do
shuffle(D)
for a mini-batch (x, y) in D do

1. generate the width of each layer k from gk by using Eq. 9
2. generate the importance score of each layer S from gs using Eq. 8.
3. produce the soft mask vector ã with Eq. 7, and obtain a = PT ã
4. calculate gradients for Θs : ∂J

∂Θs
= ∂L

∂Θs
+ ρ ∂C

∂Θs
and

Θk : ∂J
∂Θk

= λ ∂R
∂Θk

+ ρ ∂C
∂Θk

separately.
5. update Θk and Θs with ADAM.

end

end
Pruning the model with resulting gk and gs, and finetune it.

We also use a neural network gk to generate the width for each layer:

k = gk(xk, Θk), (9)

where xk is the input to gk, Θk are parameters for gk, and k = [k1, · · · , kL] is a
vector contains width of all layers. The output activate function is the sigmoid
function again, since we need to restrict the range of k ∈ [0, 1]. gk is composed
with fully connected layers. In addition, like xs, xk is also generated randomly,
and it is kept fix when training gk.

3.5 The Proposed Algorithm

With techniques introduced in previous sections, we can start to prune the net-
work. The network pruning problem in our setting can be formulated as the
following problem:

min
Θk,Θs

J (Θk, Θs) =
{
L(f(x;A,W), y) + λR(T (k), pTtotal)

+ ρC(k,S)
}

(10)

where (x, y) is the input sample and its corresponding label, f(x;A,W) is a
CNN parameterized by W and controlled by A = [a1, · · · ,aL], R is the FLOPs
regularization term, T (k) is the FLOPs of the current sub-network, p is the
pruning rate, Ttotal is the total prunable FLOPs, J is the overall objective
function, C(k,S) is defined in Eq. 5, and ρ, λ are hyper-parameters for C, R
separately. We let R(x, y) = log(max(x, y)/y), which can quickly push R to
approach 0. Our objective function defined in Eq. 10 can be optimized efficiently
by using any stochastic gradient optimizer. Using learnable importance score

Disentangled Differentiable Network Pruning 9

produces quite strong empirical performance. If better learning mechanism for
importance score is designed, it can also be merged into our algorithm.

The overall algorithm is given in Algorithm 1. The input of Algorithm 1
are D: a dataset for pruning, p: the pruning rate defined in Eq. 10, λ and ρ:
hyper-parameter for R and C, f : a neural network to be pruned and E: the
number of pruning epochs. In order to facilitate pruning, we usually choose D
as a subset of the full training set. In step 4 of Algorithm 1, the gradients of Θk

and Θs are calculated separately because of C. This operation brings marginal
computational burden, since C and R are not depend on input samples. The
fine-tuning process is very time-consuming. As a result, we use the performance
of a sub-network within the pre-trained model to represent its quality. This
setup is used in many pruning methods, like AMC [17], and we freeze weights W
during pruning. When performing actual pruning, we round Clkl to its nearest
integer, and soft relaxation is not used. Instead, we use Eq. 2 to generate a,
which ensures that a ∈ {0, 1}. Like previous differentiable pruning works, our
method can be directly applied to pre-trained CNNs, which are flexible to use.
The overall flowchart of our method is shown in Fig. 1.

4 Connections to Previous Works

In this section, we will discuss the difference and connections of our methods
compared to previous works. To connect our method with previous work, we
can use an equality constraint to replace the regularization term in Eq. 10:

min
k,S

J (k,S) = L(f(x;a,W), y) + λR(T (k), pTtotal),

s.t. kl =
1

Cl

Cl∑
i=1

1
sli>0.5

(sli), l = 1, · · · , L. (11)

Here, we do not use gk and gs to simplify the analysis, and we also let
sl0 = 0.5 since we use sigmoid activation functions for gs. Eq. 11 is closely related

to Eq. 1. If we insert 1
Cl

∑Cl

i=1 1
sli>0.5

(sli) to every kl in T (k), we almost recover

Eq. 1. Compared to Eq. 10, Eq. 11 is more restrictive since it reduces the number
of parameters for pruning one layer from Cl + 1 to Cl, which is equivalent to
saying that disentangled pruning provides an extra degree of freedom compared
to previous works. This may explain why using independent parameterization
for importance and width achieves better empirical performance than previous
works. Also note that Eq. 11 corresponds to set ρ to ∞ in Eq. 10, and k is no
longer a validate variable. If we let ρ = 0, we have completely disentangled k and
S. But in this situation, the resulting k will be a trivial solution because it only
depends on R. From this perspective, the proposed method in Eq. 10 actually
interpolates between previous differentiable pruning works and the complete
disentangled formulation.

10 S. Gao et al.

Method Architecture Baseline Acc Pruned Acc ∆-Acc ↓ FLOPs

AMC [17]

ResNet-56

92.80% 91.90% −0.90% 50.0%
DCP [59] 93.80% 93.81% +0.01% 47.0%
CCP [41] 93.50% 93.42% −0.08% 52.6%
HRank [32] 93.26% 93.17% −0.09% 50.0%
LeGR [3] 93.90% 93.70% −0.20% 53.0%

DDNP (ours) 93.62% 93.83% +0.21% 51.0%

Uniform [59]

MobileNetV2

94.47% 94.17% −0.30% 26.0%
DCP [59] 94.47% 94.69% +0.22% 26.0%
MDP [10] 95.02% 95.14% +0.12% 28.7%
SCOP [49] 94.48% 94.24% −0.24% 40.3%

DDNP (ours) 94.58% 94.81% +0.23% 43.0%

Table 1. Comparison results on CIFAR-10 dataset with ResNet-56 and MobileNetV2.
∆-Acc represents the performance changes before and after model pruning. +/- indi-
cates increase or decrease compared to baseline results.

5 Experiments

5.1 Settings

Similar to many model compression works, CIFAR-10 [27] and ImageNet [6] are
used to evaluate the performance of our method. Our method uses p to control
the FLOPs budget. The detailed choices of p are listed in the supplementary
materials. The architectures of gs and gk are also provided in supplementary
materials. γ in Eq. 7 is chosen as round(0.1Cl). γ then depends on layer width
Cl, and it empirically works well.

Within the experiment section, our method is called as DDNP (D isentangled
D ifferentiable for N etwork Pruning). For CIFAR-10, we compare with other
methods on ResNet-56 and MobileNetV2. For ImageNet, we select ResNet-34,
ResNet-50, MobileNetV2 and MobileNetV3 small as our target models. The
reason we choose these models is because that ResNet [14], MobileNetV2 [45] and
MobileNetV3 [19] are much harder to prune than earlier models like AlexNet [28]
and VGG [48].

λ decides the regularization strength in our method. We choose λ = 2 in
all CIFAR-10 experiments and λ = 4 for all ImageNet experiments. We choose
ρ = 2 and t = 0.4 for both datasets. For CIFAR-10 models, we train ResNet-56
and MobileNet-V2 from scratch following PyTorch examples. After pruning, we
finetune the model for 160 epochs using SGD with a start learning rate of 0.1,
weight decay 0.0001, and momentum 0.9. For ImageNet models, we directly use
the pre-trained models released from pytorch [40]. After pruning, we finetune the
model for 100 epochs using SGD with an initial learning rate of 0.1, weight decay
0.0001, and momentum 0.9. For MobileNetV2 on ImageNet, we choose weight
decay as 0.00004 and use an initial learning rate of 0.05 with cosine annealing
learning rate scheduler, which is the same as the original paper [45]. Most settings
for MobileNetV3 small are the same as MobileNetV2. The difference is that
weight decay is reduced to 0.00001 following the original setting [19].

For training gk and gs, we use ADAM [26] optimizer with a constant learning
rate of 0.001 and train them for 200 epochs. We start pruning from the whole

Disentangled Differentiable Network Pruning 11

(a) Layer-wise width (p=0.5) (b) Layer-wise width (p=0.35)

Fig. 3. (a) and (b): Layer-wise width for two different pruning rates: p = 0.5/0.35. We
compare DDNP with differentiable pruning (DP) in both figures.

network. To achieve this, we add a constant bias to the sigmoid function in gk,
and we set it to 3.0. We randomly sample 2, 500 and 25, 000 samples from CIFAR-
10 and ImageNet, and they are used as the pruning subset D in Algorithm 1.
In the experiments, we found that a separate validation set is not necessary. All
samples in D come from the original training set. All codes are implemented
with pytorch [40].

5.2 CIFAR-10

We present comparison results on CIFAR-10 in Tab. 1. On ResNet-56, our
method achieves the largest performance gain (+0.21% ∆-Acc) compared to
other baselines. All methods prune around 50% of FLOPs, and LeGR has the
largest pruning rate. At this pruning rate, our method has obvious advantages
compared to other methods. Specifically, our method is 0.20% better than DCP
regarding ∆-Acc. Although DCP has the second best ∆-Acc, it has the lowest
FLOPs reduction rate. CCP and HRank have similar pruning rates and perfor-
mance, and our method outperforms them by around 0.30% in terms of ∆-Acc.
LeGR prunes more FLOPs than our method, but it has a much lower ∆-Acc
(−0.20% vs. +0.21%).

For MobileNetV2, our method achieves the best ∆-Acc and prunes most
FLOPs (+0.23% ∆-Acc and 43% FLOPs). SCOP prunes slightly less FLOPs,
and the performance of SCOP is also lower than our method (−0.24% vs. +0.23%
regarding ∆-Acc). Our method and DCP have similar performance, but our
method prunes 17% more FLOPs. In summary, the CIFAR-10 results demon-
strate that our method is an effective way for network pruning.

5.3 ImageNet Results

The ImageNet results are given in Tab. 2. We present both base and pruned
Top-1/Top-5 accuracy in the table.
ResNet-34. Our method achieves the best ∆ Top-1 and ∆ Top-5 accuracy
with ResNet-34. IE performs the second best regarding ∆ Top-1/∆ Top-5, but
it prunes much less FLOPs compared to other baselines. SCOP, FPGM, IE, and
our method have similar pruning rates. SCOP has the largest FLOPs reduction

12 S. Gao et al.

Method Architecture Base/Pruned Top-1 Base/Pruned Top-5 ∆ Top-1 ∆ Top-5 ↓ FLOPs

SFP [15]

ResNet-34

73.93%/71.84% 91.62%/89.70% −2.09% −1.92% 41.1%
IE [38] 73.31%/72.83% -/- −0.48% - 24.2%

FPGM [16] 73.92%/72.63% 91.62%/91.08% −1.29% −0.54% 41.1%
SCOP [49] 73.31%/72.62% 91.42%/90.98% −0.69% −0.44% 44.8%

DDNP (ours) 73.31%/73.03% 91.42%/91.23% −0.28% −0.19% 44.2%

DCP [59]

ResNet-50

76.01%/74.95% 92.93%/92.32% −1.06% −0.61% 55.6%
CCP [41] 76.15%/75.21% 92.87%/92.42% −0.94% −0.45% 54.1%

MetaPruning [33] 76.60%/75.40% -/- −1.20% - 51.2%
GBN [54] 75.85%/75.18% 92.67%/92.41% −0.67% −0.26% 55.1%
HRank [32] 76.15%/74.98% 92.87%/92.33% −1.17% −0.54% 43.8%
LeGR [3] 76.10%/75.30% -/- −0.80% - 54.0%
SCOP [49] 76.15%/75.26% 92.87%/92.53% −0.89% −0.34% 54.6%
GReg [50] 76.13%/75.36% -/- −0.77% - 56.7%
SRR [51] 76.13%/75.11% 92.86%/92.35% −1.02% −0.51% 55.1%
CC [31] 76.15%/75.59% 92.87%/92.64% −0.56% −0.13% 52.9%

DDNP (ours) 76.13%/75.89% 92.86%/92.90% −0.24% + 0.04% 55.0%

Uniform [45]

MobileNetV2

71.80%/69.80% 91.00%/89.60% −2.00% −1.40% 30.0%
AMC [17] 71.80%/70.80% -/- −1.00% - 30.0%
AGMC [55] 71.80%/70.87% -/- −0.93% - 30.0%

MetaPruning [33] 72.00%/71.20% -/- −0.80% - 30.7%
GFS [53] 72.00%/71.60% -/- −0.40% - 30.0%

DDNP (ours) 72.05%/72.20% 90.39%/90.51% +0.15% +0.12% 29.5%

Uniform [19]
MobileNetV3 small

67.50%/65.40% -/- −2.10% - 26.6%
GFS [53] 67.50%/65.80% -/- −1.70% - 23.5%

DDNP (ours) 67.67%/67.03% 87.40%/86.94% −0.64% −0.46% 24.5%

Table 2. Comparison results on ImageNet dataset with ResNet-34, ResNet-50, ResNet-
101 and MobileNetV2. ∆-Acc represents the performance changes before and after
model pruning. +/- indicates increase or decrease compared to baseline results.

rate, but the FLOPs gap between our method and SCOP is quite marginal (only
0.6%). Given similar pruning rates, our method outperforms other baselines by
at least 0.41% in terms of ∆ Top-1 accuracy.

ResNet-50. For ResNet-50, our method achieves the best pruned Top-1/Top-5
accuracy, and the reduction of FLOPs is also obvious. DCP prunes most FLOPs
among all comparison baselines. Our method is 0.84% better than DCP regard-
ing ∆ Top-1 accuracy while only removing 0.6% less FLOPs than it. The gap
between GBN and CC is around 0.09%, and they outperform other baselines.
Our method further improves the result of GBN and CC by 0.43% and 0.32%
with ∆ Top-1 accuracy. CC has the second best performance, but our method
prunes 2% more FLOPs than it. Notably, our method achieves no loss on Top-5
accuracy (+0.02%). Also notice that CC considers both channel pruning and
weight decomposition, introducing extra performance efficiency trade-off.

MobileNetV2. MoibleNetV2 is a computationally efficient model by design
that is harder to prune than ResNets. With this architecture, all methods prune
similar FLOPs within ranges between 29.5% to 30.7%. Our method obtains
72.20%/90.51% Top-1/Top-5 accuracy after pruning, and both of them are better
than all the other methods. Compared to the second best method GFS [53],
the Top-1/∆ Top-1 accuracy of our method is 0.60%/0.65% higher than it.
MetaPruning prunes most FLOPs, but the performance is lower than our method
by a large margin. AGMC improves the results of AMC, but the improvement
is not very significant.

Disentangled Differentiable Network Pruning 13

(a) DP baseline
(p = 0.5)

(b) Soft/Hard
(p = 0.5)

(c) gs architecture
(p = 0.5)

(d) Output func-
tions (p = 0.5)

(e) DP baseline
(p = 0.35)

(f) Soft/Hard
(p = 0.35)

(g) gs architecture
(p = 0.35)

(h) Output func-
tions (p = 0.35)

Fig. 4. (a,e): Comparisons of our method and the diferentiable pruning (DP) baseline.
(b,f): Comparisons of soft and hard setting for the top-k operation. (c,g): Performance
during pruning when using different architectures of gs. (d,h): Performance during
pruning when using different output functions of gs. We run each setting three times
and use shaded areas to represent variance. All experiments are done on CIFAR-10
with ResNet-56.

MobileNetV3 small. MobileNetV3 small is a tiny model with FLOPs of
around 64M. The uniform baseline prunes most FLOPs which is 3.1% and 2.1%
higher than GFS and our method, but the absolute FLOPs difference is small
(Uniform: 47M; GFS: 49M; Ours: 48.3M). Our method has significant advan-
tages on MobileNet-V3 small, and it is 1.23%/1.06% better than GFS on Top-
1/∆ Top-1 accuracy. GFS greedily selects neurons with the largest impact on
the loss starting from an empty set, and it performs well across multiple archi-
tectures. They argue that forward selection is better than backward elimination
with greedy selection. On the contrary, in our setting, disentangled pruning
can successfully discover good sub-networks starting from the whole model, es-
pecially for compact architectures. The superior performance of our method
demonstrates the advantage of disentangled pruning.

5.4 Impacts of Different Settings

In this section, we will demonstrate the effectiveness of different design choices.

We first build a differentiable pruning (DP) baseline by using the Gumbel-
sigmoid function. We then compare DP with our method in Fig. 4 (a,e). Our
method outperforms DP when p = 0.5 and p = 0.35. The advantage becomes
obvious when the pruning rate is large (p = 0.35). This observation suggests that
our method can discover better sub-networks than DP across different pruning
rates. We also visualize the layer-wise width in Fig. 3. An interesting observation

14 S. Gao et al.

is that, with different p, the relative order of width changes (like the first and
second block) with our method.

In Fig. 4 (b,f), we verify the effectiveness of soft top-k defined in section 3.3.
The hard setting refers to set γ = 0 in Eq. 7. From the figure, we can see that soft
top-k operation achieves better performance than the hard version. Moreover,
when the pruning rate is large, the effect of soft top-k becomes more clear (gap
around 5%). These results suggest soft top-k is preferred when disentangling the
learning of width and importance.

In Fig. 4 (c,g), we present results by varying the architecture of gs. We can see
that full gs (GRU+FC) has the best performance, followed by FC and channel-
wise importance score. The learning of importance may become difficult when
we use disentangled pruning (probably due to gradient calculations with STE),
and naive parametrization (one parameter per channel) lacks enough capacity
to efficiently capture inter-channel and inter-layer relationships. Using a model
with a larger capacity enables fast learning.

Finally, we compare different output functions of gs in Fig. 4. We compare
three different output functions: sigmoid function, absolute function and square
function. Recall that we use s and s̄ to represent the importance score and
unnormalized importance score (outputs before the final activation of gs). As
a result, importance score with sigmoid function, absolute function and square
function are defined as: s = sigmoid(s̄), sAF =| s̄ | and sSF = s̄2. From the
Fig. 4, it is clear that sigmoid(·) has the best performance, which indicates that
better alignment in the forward pass helps improve the quality of gradients when
learning importance scores.

6 Conclusion

In previous differentiable pruning works, width and channel importance are en-
tangled during the pruning process. Such a design is straightforward and easy
to use, but it restricts the potential search space during the pruning process.
To overcome this limitation, we propose to prune neural networks by disentan-
gling width and importance. To achieve such a disentanglement, we propose to
relax the hard constraint used in previous methods to a soft regularization term,
allowing independent parametrization of width and importance. We also relax
hard top-k to soft top-k with the smoothstep function. We further use an impor-
tance score generation network and a width network to facilitate the learning
process. Moreover, the design choices are empirically verified for our method.
The experimental results on CIFAR-10 and ImageNet demonstrate the strength
of our method.

Acknowledgement

This work was partially supported by NSF IIS 1845666, 1852606, 1838627,
1837956, 1956002, 2217003.

Disentangled Differentiable Network Pruning 15

References

1. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

2. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

3. Chin, T.W., Ding, R., Zhang, C., Marculescu, D.: Towards efficient model com-
pression via learned global ranking. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1518–1528 (2020)

4. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using rnn encoder-decoder for statistical machine
translation. In: Conference on Empirical Methods in Natural Language Processing
(EMNLP 2014) (2014)

5. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural net-
works with binary weights during propagations. In: Advances in neural information
processing systems. pp. 3123–3131 (2015)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. pp. 248–255. Ieee (2009)

7. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=rJl-b3RcF7

8. Ganjdanesh, A., Gao, S., Huang, H.: Interpretations steered network pruning via
amortized inferred saliency maps. In: Proceedings of the European Conference on
Computer Vision (ECCV) (2022)

9. Gao, S., Huang, F., Pei, J., Huang, H.: Discrete model compression with resource
constraint for deep neural networks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1899–1908 (2020)

10. Guo, J., Ouyang, W., Xu, D.: Multi-dimensional pruning: A unified framework for
model compression. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1508–1517 (2020)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

12. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in neural information processing systems.
pp. 1135–1143 (2015)

13. Hazimeh, H., Ponomareva, N., Mol, P., Tan, Z., Mazumder, R.: The tree ensemble
layer: Differentiability meets conditional computation. In: International Conference
on Machine Learning. pp. 4138–4148. PMLR (2020)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

15. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: International Joint Conference on Artificial
Intelligence (IJCAI). pp. 2234–2240 (2018)

16. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4340–4349 (2019)

https://openreview.net/forum?id=rJl-b3RcF7

16 S. Gao et al.

17. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 784–800 (2018)

18. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

19. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 1314–1324
(2019)

20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

21. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural net-
works. In: Proceedings of the European conference on computer vision (ECCV).
pp. 304–320 (2018)

22. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37. pp. 448–
456. ICML, JMLR.org (2015), http://dl.acm.org/citation.cfm?id=3045118.

3045167
23. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.

arXiv preprint arXiv:1611.01144 (2016)
24. Kang, M., Han, B.: Operation-aware soft channel pruning using differentiable

masks. In: International Conference on Machine Learning. pp. 5122–5131. PMLR
(2020)

25. Kim, J., Park, C., Jung, H., Choe, Y.: Plug-in, trainable gate for streamlining
arbitrary neural networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence (2020)

26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

27. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009)

28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

29. Lee, N., Ajanthan, T., Torr, P.H.: Snip: Single-shot network pruning based on
connection sensitivity. ICLR (2019)

30. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. ICLR (2017)

31. Li, Y., Lin, S., Liu, J., Ye, Q., Wang, M., Chao, F., Yang, F., Ma, J., Tian, Q., Ji,
R.: Towards compact cnns via collaborative compression. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6438–
6447 (2021)

32. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2020)

33. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: Metapruning:
Meta learning for automatic neural network channel pruning. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 3296–3305 (2019)

34. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: ICCV (2017)

http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167

Disentangled Differentiable Network Pruning 17

35. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=rJlnB3C5Ym

36. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l0 regularization. In: International Conference on Learning Representations (2018),
https://openreview.net/forum?id=H1Y8hhg0b

37. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neu-
ral networks. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. pp. 2498–2507. JMLR. org (2017)

38. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation
for neural network pruning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 11264–11272 (2019)

39. Neklyudov, K., Molchanov, D., Ashukha, A., Vetrov, D.P.: Structured bayesian
pruning via log-normal multiplicative noise. In: Advances in Neural Information
Processing Systems. pp. 6775–6784 (2017)

40. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in Neural Information Processing
Systems. pp. 8024–8035 (2019)

41. Peng, H., Wu, J., Chen, S., Huang, J.: Collaborative channel pruning for deep
networks. In: International Conference on Machine Learning. pp. 5113–5122 (2019)

42. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: European Conference on
Computer Vision. pp. 525–542. Springer (2016)

43. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 779–788 (2016)

44. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

45. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510–4520 (2018)

46. Sehwag, V., Wang, S., Mittal, P., Jana, S.: Hydra: Pruning adversarially robust
neural networks. In: NeurIPS (2020), https://proceedings.neurips.cc/paper/
2020/hash/e3a72c791a69f87b05ea7742e04430ed-Abstract.html

47. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Advances in neural information processing systems. pp. 568–
576 (2014)

48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

49. Tang, Y., Wang, Y., Xu, Y., Tao, D., Xu, C., Xu, C., Xu, C.: Scop: Scientific control
for reliable neural network pruning. Advances in Neural Information Processing
Systems 33 (2020)

50. Wang, H., Qin, C., Zhang, Y., Fu, Y.: Neural pruning via growing regulariza-
tion. In: International Conference on Learning Representations (2021), https:

//openreview.net/forum?id=o966_Is_nPA

51. Wang, Z., Li, C., Wang, X.: Convolutional neural network pruning with structural
redundancy reduction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14913–14922 (2021)

https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=H1Y8hhg0b
https://proceedings.neurips.cc/paper/2020/hash/e3a72c791a69f87b05ea7742e04430ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e3a72c791a69f87b05ea7742e04430ed-Abstract.html
https://openreview.net/forum?id=o966_Is_nPA
https://openreview.net/forum?id=o966_Is_nPA

18 S. Gao et al.

52. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in neural information processing systems. pp.
2074–2082 (2016)

53. Ye, M., Gong, C., Nie, L., Zhou, D., Klivans, A., Liu, Q.: Good subnetworks prov-
ably exist: Pruning via greedy forward selection. In: International Conference on
Machine Learning. pp. 10820–10830. PMLR (2020)

54. You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. In: Advances in Neural
Information Processing Systems. pp. 2130–2141 (2019)

55. Yu, S., Mazaheri, A., Jannesari, A.: Auto graph encoder-decoder for neural network
pruning. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 6362–6372 (2021)

56. Zhang, D., Wang, H., Figueiredo, M., Balzano, L.: Learning to share: Simultaneous
parameter tying and sparsification in deep learning (2018)

57. Zhang, Y., Gao, S., Huang, H.: Exploration and estimation for model compression.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 487–496 (2021)

58. Zhang, Y., Gao, S., Huang, H.: Recover fair deep classification models via altering
pre-trained structure. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2022)

59. Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu, J.:
Discrimination-aware channel pruning for deep neural networks. In: Advances in
Neural Information Processing Systems. pp. 875–886 (2018)

	Disentangled Differentiable Network Pruning

