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Abstract. Knowledge distillation (KD) has been proven to be useful for
training compact object detection models. However, we observe that KD
is often effective when the teacher model and student counterpart share
similar proposal information. This explains why existing KD methods
are less effective for 1-bit detectors, caused by a significant informa-
tion discrepancy between the real-valued teacher and the 1-bit student.
This paper presents an Information Discrepancy-aware strategy (IDa-
Det) to distill 1-bit detectors that can effectively eliminate information
discrepancies and significantly reduce the performance gap between a
1-bit detector and its real-valued counterpart. We formulate the distilla-
tion process as a bi-level optimization formulation. At the inner level, we
select the representative proposals with maximum information discrep-
ancy. We then introduce a novel entropy distillation loss to reduce the
disparity based on the selected proposals. Extensive experiments demon-
strate IDa-Det’s superiority over state-of-the-art 1-bit detectors and KD
methods on both PASCAL VOC and COCO datasets. IDa-Det achieves
a 76.9% mAP for a 1-bit Faster-RCNN with ResNet-18 backbone. Our
code is open-sourced on https://github.com/SteveTsui/IDa-Det.

Keywords: 1-bit detector, Knowledge distillation, Information discrep-
ancy

1 Introduction

Recently, the object detection task [6,20] has been greatly promoted due to
advances in deep convolutional neural networks (DNNs) [12,8]. However, DNN
models comprise a large number of parameters and floating-point operations
(FLOPs), restricting their deployment on embedded platforms. Techniques such
as compact network design [15,24], network pruning [13,16,38], low-rank decom-
position [5], and quantization [26,33,36] have been developed to address these
restrictions and accomplish an efficient inference on the detection task. Among
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Fig. 1. Input images and saliency maps fol-
lowing [10]. Images are randomly selected
from VOC test2007. Each row includes: (a)
input images, saliency maps of (b) Faster-
RCNN with ResNet-101 backbone (Res101),
(c) Faster-RCNN with ResNet-18 backbone
(Res18), (d) 1-bit Faster-RCNN with ResNet-
18 backbone (BiRes18), respectively.

these, binarized detectors have con-
tributed to object detection by ac-
celerating the CNN feature extract-
ing for real-time bounding box lo-
calization and foreground classifica-
tion [34,31,35]. For example, the 1-
bit SSD300 [21] with VGG-16 back-
bone [28] theoretically achieve the
acceleration rate up to 15× with
XNOR and Bit-count operations
using binarized weights and acti-
vations as described in [31]. With
extremely high energy-efficiency for
embedded devices, they are able
to be installed directly on next-
generation AI chips. Despite these
appealing features, 1-bit detectors’
performance often deteriorates to
the point, which explains why they
are not widely used in real-world
embedded systems.

The recent art [35] employs fine-
grained feature imitation (FGFI)
[30] to enhance the performance of 1-bit detectors. However, it neglects the
intrinsic information discrepancy between 1-bit detectors and real-valued de-
tectors. As shown in Fig. 1, we demonstrate that saliency maps of real-valued
Faster-RCNN of the ResNet-101 backbone (often used as the teacher network)
and the ResNet-18 backbone, in comparison with 1-bit Faster-RCNN of the
ResNet-18 backbone (often used as the student network) from top to bottom.
They show that knowledge distillation (KD) methods like [30] are effective for
distilling real-valued Faster-RCNNs, only when their teacher model and their
student counterpart share small information discrepancy on proposals, as shown
in Fig. 1 (b) and (c). This phenomenon does not happen for 1-bit Faster-RCNN,
as shown in Fig. 1 (b) and (d). This might explain why existing KD methods
are less effective in 1-bit detectors. A statistic on COCO and PASCAL VOC
datasets in Fig. 2 show that the discrepancy between proposal saliency maps
of Res101 and Res18 (blue) is much smaller than that of Res101 and BiRes18
(orange). That is to say, the smaller the distance is, the less the discrepancy
is. Briefly, conventional KD methods show their effectiveness on distilling real-
valued detectors but seem to be less effective on distilling 1-bit detectors.

In this paper, we are motivated by the above observation and present an
information discrepancy-aware distillation for 1-bit detectors (IDa-Det), which
can effectively address the information discrepancy problem, leading to an effi-
cient distillation process. As shown in Fig. 3, we introduce a discrepancy-aware
method to select proposal pairs and facilitate distilling 1-bit detectors, rather
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(a) VOC trainval0712 (b) VOC test2007 (c) COCO trainval35k (d) COCO minival

Fig. 2. The Mahalanobis distance of the gradient in the intermediate neck feature
between Res101-Res18 (blue) and Res101-BiRes18 (orange) in various datasets.

than only using object anchor locations of student models or ground truth as in
existing methods [30,35,10]. We further introduce a novel entropy distillation loss
to leverage more comprehensive information than the conventional loss functions.
By doing so, we achieve a powerful information discrepancy-aware distillation
method for 1-bit detectors (IDa-Det). Our contributions are summarized as:

– Unlike existing KD methods, we distill 1-bit detectors by fully considering
the information discrepancy into optimization, which is simple yet effective
for learning 1-bit detectors.

– We propose an entropy distillation loss further to improve the representa-
tion ability of the 1-bit detector and effectively eliminate the information
discrepancy.

– We compare our IDa-Det against state-of-the-art 1-bit detectors and KD
methods on the VOC and large-scale COCO datasets. Extensive results re-
veal that our method outperformas the others by a considerable margin.
For instance, on VOC test2007, the 1-bit Faster-RCNN with ResNet-18
backbone achieved by IDa-Det obtains 76.9% mAP, achieving a new state-
of-the-art.

2 Related Work

1-bit Detectors. By removing the foreground redundancy, BiDet [31] fully ex-
ploits the representational capability of the binarized convolutions. In this way,
the information bottleneck is introduced, which limits the amount of data in
high-level feature maps, while maximizing the mutual information between fea-
ture maps and object detection. The performance of the Faster R-CNN detector
is significantly enhanced by the ASDA-FRCNN [34] which suppresses the shared
amplitude between the real-value and binary kernels. LWS-Det [35] novelly pro-
poses a layer-wise searching approach, minimizing the angular and amplitude
errors for 1-bit detectors. Also, FGFI [30] is used by LWS-Det to distill the
backbone feature map further.
Knowledge Distillation. Knowledge distillation (KD), a significant subset of
model compression methods, aims to transfer knowledge from a well-trained
teacher network to a more compact student model. The student is supervised
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Fig. 3. Overview of the proposed information discrepancy-aware distillation (IDa-Det)
framework. We first select representative proposal pairs based on the information dis-
crepancy. Then we propose the entropy distillation loss to eliminate the information
discrepancy.

using soft labels created by the teacher, as firstly proposed by [1]. Knowledge
distillation is redefined by [14] as training a shallower network after the softmax
layer to approximate the teacher’s output. Object detectors can be compressed
using knowledge distillation, according to numerous recent papers. Chen et al.
[2] distill the student through all backbone features, regression head, and classi-
fication head, but both the imitation of whole feature maps and the distillation
in classification head fail to add attention to the important foreground, poten-
tially resulting in a sub-optimal result. Mimicking [17] distills the features from
sampled region proposals. However, just replicating the aforementioned regions
may lead to misdirection, because the proposals occasionally perform poorly. In
order to distill the student, FGFI [30] introduces a unique attention mask to
create fine-grained features from foreground object areas. DeFeat [10] balances
the background and foreground object regions to efficiently distill the student.

In summary, existing KD frameworks for object detection can only be em-
ployed for real-valued students having similar information as their teachers.
Thus, they are often ineffective in distilling 1-bit detectors. Unlike prior arts,
we identify that the information discrepancy between real-valued teacher and
1-bit students are significant for distillation. We first introduce Mahalanobis
distance to identify the information discrepancy and then accordingly distill the
features. Meanwhile, we propose a novel entropy distillation loss to prompt the
discrimination ability of 1-bit detectors further.

3 The Proposed Method

In this section, we describe our IDa-Det in detail. Firstly, we overview the 1-bit
CNNs. We then describe how we employ the information discrepancy method
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(IDa) to select representative proposals. Finally, we describe the entropy dis-
tillation loss to delicately eliminate the information discrepancy between the
real-valued teachers and the 1-bit students.

3.1 Preliminaries

In a specific convolution layer, w ∈ RCout×Cin×K×K , ain ∈ RCin×Win×Hin , and
aout ∈ RCout×Wout×Hout represent its weights and feature maps, where Cin and
Cout represents the number of channels. (H,W ) are the height and width of the
feature maps, and K denotes the kernel size. We then have

aout = ain ⊗w, (1)

where ⊗ is the convolution operation. We omit the batch normalization (BN)
and activation layers for simplicity. The 1-bit model aims to quantize w and
ain into bw ∈ {−1,+1}Cout×Cin×K×K and bain ∈ {−1,+1}Cin×H×W using the
efficient XNOR and Bit-count operations to replace full-precision operations.
Following [3,4], the forward process of the 1-bit CNN is

aout = α ◦ bain ⊙ bw, (2)

where ⊙ is the XNOR, and bit-count operations and ◦ denotes the channel-wise
multiplication. α = [α1, · · · , αCout ] ∈ R+ is the vector consisting of channel-wise
scale factors. b = sign(·) denotes the binarized variable using the sign function,
which returns 1 if the input is greater than zero, and -1 otherwise. It then enters
several non-linear layers, e.g., BN layer, non-linear activation layer, and max-
pooling layer. We omit these for simplification. And then, the output aout is
binarized to baout via the sign function. The fundamental objective of BNNs is
calculating w. We want it to be as close as possible before and after binarization,
such that the binarization effect is minimized. Then, we define the reconstruction
error as

LR(w,α) = w −α ◦ bw. (3)

3.2 Select proposals with Information Discrepancy

To eliminate the large magnitude scale difference between the real-valued teacher
and the 1-bit student, we introduce a channel-wise transformation for the propos-
als1 of the intermediate neck. We first apply a transformation φ(·) on a proposal
R̃n ∈ RC×W×H and have

Rn;c(x, y) = φ(R̃n;c(x, y)) =
exp(

R̃n;c(x,y)
T )∑

(x′,y′)∈(W,H) exp(
R̃n;c(x′y′)

T )
, (4)

1 In this paper, the proposal denotes the neck/backbone feature map patched by the
region proposal of detectors.
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Fig. 4. Illustration for the gen-
eration of the proposal pairs.
Each single proposal in one
model generates a counterpart
feature map patch in the same
location of the other model.

where (x, y) ∈ (W,H) denote a specific spatial
location (x, y) in spatial range (W,H), and c ∈
{1, · · · , C} is the channel index. n ∈ {1, · · · , N}
is the proposal index. N denotes the number of
proposals. T denotes a hyper-parameter control-
ling the statistical attributions of the channel-
wise alignment operation2. After the transfor-
mation, features in each channel of a proposal
projected into the same feature space [29] and
follow a Gaussian distribution as

p(Rn;c) ∼ N (µn;c, σ
2
n;c). (5)

We further evaluate the information discrepancy
between the proposals of the teacher and the stu-
dent. As shown in Fig. 4, the teacher and student
have NT and NS proposals, respectively. Each
single proposal in one model generates a coun-
terpart feature map patch in the same location
of the other model, thus total NT +NS proposal pairs are considered. To evalu-
ate the information discrepancy, we introduce the Mahalanobis distance of each
channel-wise proposal feature and measure the discrepancy as

εn =

C∑
c=1

||(Rt
n;c −Rs

n;c)
TΣ−1

n;c(R
t
n;c −Rs

n;c)||2, (6)

where Σn;c denotes the covariance matrix of the teacher and student in the c-th
channel of the n-th proposal pair. The Mahalanobis distance takes both the pixel-
level distance between proposals and the statistical characteristics differences in
proposal pairs into account.

To select representative proposals with maximum information discrepancy,
we first define a binary distillation mask mn as

mn =

{
1, if pair (Rt

n, R
s
n) is selected

0, otherwise
(7)

where mn = 1 denotes distillation will be applied on such proposal pair, other-
wise remain unchanged. For each proposal pair, only when their distribution is
quite different, the student model can learn from the teacher counterpart, where
a distillation process is needed.

Based on the derivation above, discrepant proposal pairs will be optimized
through distillation. For distilling the selected pairs, we resort to maximize con-
ditional probability p(Rs

n|Rt
n). That is to say, after distillation or optimization,

feature distributions of teacher proposal and student counterpart become similar

2 In this paper, we set T = 4.
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with each other. To this end, we define p(Rs
n|Rt

n) with mn, n ∈ {1, · · · , NT +NS}
in consideration as

p(Rs
n|Rt

n;mn) ∼ mnN (µt
n, σ

t
n
2
) + (1−mn)N (µs

n, σ
s
n
2). (8)

Subsequently, we introduce a bi-level optimization formulation to solve the dis-
tillation problem as

max
Rs

n

p(Rs
n|Rt

n;m
∗), ∀ n ∈ {0, · · · , NT +NS},

s.t. m∗ = argmax
m

NT+NS∑
n=1

mnεn,
(9)

where m = [m1, · · · ,mNT+NS
] and ||m||0 = γ · (NT + NS). γ is a hyper-

parameter. In this way, we select γ · (NT + NS) pairs of proposals containing
the most representative information discrepancy for distillation. γ controls the
proportion of discrepant proposal pairs, further validated in Sec. 4.2.

For each iteration, we first solve the inner-level optimization, i.e., proposal
selection, via exhaustive sorting [32]; and then solve the upper-level optimization,
distilling the selected pair, based on entropy distillation loss discussed in Sec.
3.3. Considering that there are not too many proposals involved, the process is
relatively efficient for the inner-level optimization.

3.3 Entropy distillation loss

After selecting a specific number of proposals, we crop the feature based on the
proposals we obtained. Most of the SOTA detection models are based on Feature
Pyramid Networks (FPN) [19], which can significantly improve the robustness of
multi-scale detection. For the Faster-RCNN framework in this paper, we resize
the proposals and crop the features from each stage of the neck feature maps. We
generate the proposals from the regression layer of the SSD framework and crop
the features from the feature map of maximum spatial size. Then we formulate
the entropy distillation process as

max
Rs

n

p(Rs
n|Rt

n). (10)

Here is the upper level of the bi-level optimization, where m is solved and
therefore omitted. We rewrite Equ. 10 and further achieve our entropy distillation
loss as

LP (w,α; γ) = (Rs
n−Rt

n)+Cov(Rs
n, R

t
n)

−1(Rs
n−Rt

n)
2+log(Cov(Rs

n, R
t
n)), (11)

where Cov(Rs
n, R

t
n) = E(Rs

nR
t
n)− E(Rs

n)E(Rt
n) denotes the covariance matrix.

Hence, we trained the 1-bit student model end-to-end, the total loss for dis-
tilling the student model is defined as

L = LGT (w,α) + λLP (w,α; γ) + µLR(w,α), (12)

where LGT is the detection loss derived from the ground truth label and LR is
defined in Equ. 3.
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4 Experiments

On two mainstream object detection datasets, i.e, PASCAL VOC [6] and COCO
[20], extensive experiments are undertaken to test our proposed method. First,
we go through the implementation specifics of our IDa-Det. Then, in the ablation
studies, we set different hyper-parameters and validate the effectiveness of the
components as well as the convergence of our method. Moreover, we illustrate
the superiority of our IDa-Det by comparing it to previous state-of-the-art 1-
bit CNNs and other KD approaches on 1-bit detectors. Finally, we analyze the
deploy efficiency of our IDa-Det on hardware.

4.1 Datasets and Implementation Details

PASCAL VOC. Natural images from 20 different classes are included in the
VOC datasets. We use the VOC trainval2012 and VOC trainval2007 sets
to train our model, which contain around 16k images, and the VOC test2007

set to evaluate our IDa-Det, which contains 4952 images. We utilize the mean
average precision (mAP) as the evaluation matrices, as suggested by [6].

COCO. All our experiments on COCO dataset are conducted on the COCO
2014 [20] object detection track in the training stage, which contains the com-
bination of 80k images and 80 different categories from the COCO train2014

and 35k images sampled from COCO val2014, i.e., COCO trainval35k. Then
we evaluate our method on the remaining 5k images from the COCO minival.
We list the average precision (AP) for IoUs∈ [0.5 : 0.05 : 0.95], designated as
mAP@[.5, .95], using COCO’s standard evaluation metric. For further analyzing
our method, we also list AP50, AP75, APs, APm, and APl.

Implementation Details. Our IDa-Det is trained with two mainstream object
detectors, i.e., two-stage Faster-RCNN3 [27] and one-stage SSD [21]. In Faster-
RCNN, we utilize ResNet-18 and ResNet-34 [12] as backbones. And we utilize
VGG-16 [28] as the backbone of SSD framework. PyTorch [25] is used for imple-
menting IDa-Det. We run the experiments on 4 NVIDIA GTX 2080Ti GPUs with
11 GB memory and 128 GB of RAM. We use ImageNet ILSVRC12 to pre-train
the backbone of a 1-bit student, following [23]. The SGD optimizer is utilized
and the batch size is set as 24 for SSD and 4 for Faster-RCNN, respectively.

We keep the shortcut, first layer, and the last layer (the 1×1 convolution
layer of RPN and a FC layer of the bbox head) in the detectors as real-valued
on Faster-RCNN framework after implementing 1-bit CNNs following [23]. Fol-
lowing BiDet [31], the extra layer is likewise retained as real-valued for the SSD
framework. Following [31] and [9], we modify the network of ResNet-18/34 with
an extra shortcut and PReLU [11].

The architecture of VGG-16 is modified with extra residual connections,
following [31]. The lateral connection of the FPN [19] neck is replaced with 3×3
1-bit convolution for improving performance. This adjustment is implemented in

3 In this paper, Faster-RCNN denotes the Faster-RCNN implemented with FPN neck.



IDa-Det 9

82

1e 5 1e 5 1e 4 1e 3 1e 3 1e 3 1e 2 1e 1 1e 1
68

70

72

74

76

78

m
AP

ResNet101-BiResNet18
R101(teacher)
R18 (real-valued)
Raw BiR18
Hint BiR18
FGFI BiR18
IDa-Det BiR18

(a) Effect of µ.
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Fig. 5. On VOC, we (a) select µ on raw de-
tector and different KD methods including
Hint [2], FGFI [30], and IDa-Det; (b) select
λ and γ on IDa-Det with µ set as 1e−4.

all of the Faster-RCNN experiments.
For Faster-RCNN, we train the model
with two stages. Only the backbone
is binarized at the first stage. Then
we binarize all layers in the second
stage. Each stage counts 12 epochs.
The learning rate is set as 0.004 and
decays by multiplying 0.1 in the 9-th
and 11-th epochs. We use a loss coef-
ficient set as 5 and multi-scale train-
ing method. For fair comparison, all
the methods in this paper are imple-
mented with the same training setup.
The real-valued counterparts in this paper are also trained for 24 epochs for fair
comparison. For SSD, the model is trained for 24 epochs with a learning rate of
0.01, which decays to 0.1 at the 16-th and 22-nd epochs by multiplying 0.1.

We select real-valued Faster-RCNN with ResNet101 backbone (81.9% mAP
on VOC and 39.8% mAP on COCO) and real-valued SSD300 with VGG16 back-
bone (74.5% mAP on VOC and 25.0% mAP on COCO) as teacher network.

4.2 Ablation Study

Selecting the hyper-parameter.As mentioned above, we select hyper-parame
ters λ, γ, and µ in this part. We first select the µ, which controls the binarization
process. As plotted in Fig. 5 (a), we first fine-tune the hyper-parameter µ con-
trolling the binarization process in four situations: raw BiRes18, and BiRes18
distilled via Hint [2], FGFI [30], and our IDa-Det, respectively. Overall, the per-
formances increase first and then decrease when increasing the value of µ. On
raw BiRes18 and IDa-Det BiRes18, the 1-bit student achieves the best perfor-
mance when µ is set as 1e-4. And µ valued 1e-3 is better for the Hint, and the
FGFI distilled 1-bit student. Thus, we set µ as 1e-4 for an extended ablation
study. Fig. 5 (b) shows that the performances increase first and then decrease
with the increase of λ from left to right. In general, the IDa-Det obtains better
performances with λ set as 0.4 and 0.6. With varying value of γ, we find {λ, γ}
= {0.4, 0.6} boost the performance of IDa-Det most, achieving 76.9% mAP on
VOC test2007. Based on the ablative study above, we set hyper-parameters λ,
γ, and µ as 0.4, 0.6, and 1e-4 for the experiments in this paper.

Effectiveness of components. We first compare our information discrepancy-
aware (IDa) proposal selecting method with other methods to select proposals:
Hint [2] (using the neck feature without region mask) and FGFI [30]. We show
the effectiveness of IDa on two-stage Faster-RCNN in Tab. 1. On the Faster-
RCNN, the introducing of IDa achieves improvements of the mAP by 2.5%,
2.4%, and 1.8% compared to non-distillation, Hint, and FGFI, under the same
student-teacher framework. Then we evaluate the proposed entropy distillation
loss against the conventional ℓ2 loss, inner-product loss, and cosine similarity
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Model
Proposal
selection

Distillation
method

mAP

Res18 % % 78.6

BiRes18 % % 74.0

Res101-BiRes18 Hint ℓ2 74.1
Res101-BiRes18 Hint Entropy loss 74.5
Res101-BiRes18 FGFI ℓ2 74.7
Res101-BiRes18 FGFI Entropy loss 75.0

Res101-BiRes18 IDa Inner-product 74.8
Res101-BiRes18 IDa Consine similarity 76.4
Res101-BiRes18 IDa ℓ2 76.5

Res101-BiRes18 IDa Entropy loss 76.9
Table 1. The effects of different components in IDa-Det with Faster-RCNN model on
PASCAL VOC dataset. Hint [2] and FGFI[30] are used to compare with our informa-
tion discrepancy-aware proposal selection (IDa). IDa and Entropy loss denote main
components of the proposed IDa-Det.

loss. As depicted in Tab. 1, our entropy distillation loss improves the distilla-
tion performance by 0.4%, 0.3%, and 0.4% with Hint, FGFI, and IDa method
compared with ℓ2 loss. Compared with inner-product and cosine similarity loss,
entropy loss outperforms them by 2.1% and 0.5% in mAP on our framework,
which further reflects the effectiveness of our method.

4.3 Results on PASCAL VOC

With the same student framework, we compare our IDa-Det with the state-of-
the-art 1-bit ReActNet [23] and other KD methods, such as FGFI [30], DeFeat
[10], and LWS-Det [35], in the task of object detection with the VOC datasets.
The detection results of the multi-bit quantization method DoReFa-Net [37] is
also reported. We use the input resolution following [35], i.e. 1000 × 600 for
Faster-RCNN and 300× 300 for SSD.

Tab. 2 lists the comparison of several quantization approaches and detection
frameworks in terms of computing complexity, storage cost, and the mAP. Our
IDa-Det significantly accelerates computation and reduces storage requirements
for various detectors. We follow XNOR-Net [26] to calculate memory usage,
which is estimated by adding 32× the number of full-precision kernels and 1×
the number of binary kernels in the networks. The number of float operations
(FLOPs) is calculated in the same way as Bi-Real-Net [22]. The current CPUs
can handle both bit-wise XNOR and bit-count operations in parallel. The num-
ber of real-valued FLOPs plus 1

64 of the number of 1-bit multiplications equals
the OPs following [22].
Faster-RCNN. We summarize the experimental results on VOC test2007 of
1-bit Faster-RCNNs from lines 2 to 17 in Tab. 2. Compared with raw ReAct-
Net [23], our baseline binarization method achieves 4.4%, and 2.7% mAP im-
provement with ResNet-18/34 backbone respectively. Compared with other KD
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Framework Backbone
Quantization

Method
KD

Method
W/A

Memory Usage
(MB)

OPs
(×109)

mAP

Faster-RCNN

ResNet-18

Real-valued % 32/32 112.88 96.40 78.8

DoReFa-Net % 4/4 21.59 27.15 73.3

ReActNet %

1/1 16.61 18.49

69.6

Ours % 74.0
LWS-Det 73.2

Ours FGFI 74.7
Ours DeFeat 74.9
IDa-Det 76.9

ResNet-34

Real-valued % 32/32 145.12 118.80 80.0

DoReFa-Net % 4/4 29.65 32.31 75.6

ReActNet %

1/1 24.68 21.49

72.3

Ours % 75.0
Ours FGFI 75.4
Ours DeFeat 75.7

LWS-Det 75.8
IDa-Det 78.0

SSD VGG-16

Real-valued % 32/32 105.16 31.44 74.3

DoReFa-Net % 4/4 29.58 6.67 69.2

ReActNet %

1/1 21.88 2.13

68.4

Ours % 69.5
LWS-Det 69.5

Ours FGFI 70.0
Ours DeFeat 71.4
IDa-Det 72.5

Table 2. We report memory usage, FLOPs, and mAP (%) with state-of-the-art 1-bit
detectors, other KD methods on VOC test2007. The best results are bold.

methods on the 1-bit detector with the same train and test settings, our IDa-
Det surpasses FGFI and DeFeat distillation method in a clear margin of 2.2%,
2.0% with ResNet-18 backbone, and 2.6%, 2.3% with ResNet-34 backbone. Our
IDa-Det significantly surpasses the prior state-of-the-art, LWS-Det, by 3.7% in
ResNet-18 backbone, and 2.2% in ResNet-34 backbone with the same FLOPs
and memory usage. All of the improvements have impacts on object detection.

Compared with the raw real-valued detectors, the proposed IDa-Det sur-
passes real-valued Faster-RCNN with ResNet-18/34 backbone ({76.9%, 78.0%}
vs.{76.4%, 77.8%}) by obviously computation acceleration and storage savings
by 5.21×/5.53× and 6.80×/5.88×. The above results are of great significance in
the real-time inference of object detection.

SSD. On the SSD300 framework with a VGG-16 backbone, our IDa-Det can
accelerate computation and save storage by 14.76× and 4.81× faster than real-
valued counterparts, respectively, as illustrated in the bottom section of Tab. 2.
The drop in the performance is relatively minor (72.5% vs. 74.3%). Also, our
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(a) False positives (b) Missed detection

Fig. 6. Qualitative results on the gain from information discrepancy-aware distilling.
The top row shows IDa-Det student’s output. The bottom row images are raw student
model’s output without information discrepancy-aware distilling.

method surpasses other 1-bit networks and KD methods by a sizable margin.
Compared to 1-bit ReActNet, our raw 1-bit model can achieve 1.1% higher mAP
with the same computation. Compared with FGFI, DeFeat, and LWS-Det, our
IDa-Det exceeds them by 3.0%, 2.5%, and 1.1%, respectively.

As shown in Fig. 6, BiRes18 achieved by IDa-Det effectively eliminates the
false positives and missed detections compared with raw BiRes18. In summary,
we achieve new state-of-the-art performance on PASCAL VOC compared to
previous 1-bit detectors and KD methods on various frameworks and backbones.
We also achieve competitive results, demonstrating the IDa-Det’s superiority.

4.4 Results on COCO

Because of its diversity and scale, the COCO dataset presents a greater challenge
in the object detection task, compared with PASCAL VOC. On COCO, we
compare our proposed IDa-Det with the state-of-the-art 1-bit ReActNet [23], as
well as the KD techniques FGFI [30], DeFeat [10], and LWS-Det [35]. We also
report the detection result of the 4-bit quantization method FQN [18] and the
DoReFa-Net [37] for reference. Following [35], the input images are scaled to
1333× 800 for Faster-RCNN and 300× 300 for SSD.

The mAP, AP with different IoU thresholds, and AP of objects with varying
scales are all reported in Tab. 3. Due to the constraints in the width of page, we
do not report the FLOPs and memory use in Tab. 3. We conduct experiments
on Faster-RCNN and SSD detectors, the results of which are presented in the
folllowing two parts.

Faster-RCNN. Comparing to the state-of-the-art 1-bit ReActNet, our base-
line binarized model achieves a 5.7% improvement on mAP@[.5, .95] with the
ResNet-18 backbone. Compared to state-of-the-art LWS-Det, FGFI, and DeFeat,
our IDa-Det prompts the mAP@[.5, .95] by 2.4%, 1.8%, and 1.4%, respectively.
With the ResNet-34 backbone, the proposed IDa-Det surpasses FGFI, DeFeat,
and LWS-Det by 1.1%, 0.7%, and 0.6%, respectively. IDa-Det, nevertheless, has
substantially reduced FLOPs and memory use.
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Framework Backbone
Quantization

Method
KD

Method
W/A

mAP
@[.5, .95]

AP50AP75 APs APm AP1

Faster-RCNN

ResNet-18

Real-valued % 32/32 32.2 53.8 34.0 18.0 34.7 41.9

FQN % 4/4 28.1 48.4 29.3 14.5 30.4 38.1

ReActNet %

1/1

21.1 38.5 20.5 9.7 23.5 32.1

Ours % 26.8 46.1 27.9 14.7 28.4 36.0
LWS-Det 26.9 44.9 27.7 12.9 28.7 38.3

Ours FGFI 27.5 46.5 28.8 15.2 28.7 37.5
Ours DeFeat 27.9 46.9 29.3 15.8 29.0 38.2
IDa-Det 29.3 48.7 30.9 16.720.839.9

ResNet-34

Real-valued % 32/32 35.8 57.6 38.4 21.1 39.0 46.1

FQN % 4/4 31.8 52.9 33.9 17.6 34.4 42.2

ReActNet %

1/1

23.4 43.3 24.4 10.7 25.9 35.5

Ours % 29.0 47.7 30.9 16.6 30.5 39.0
Ours FGFI 29.4 48.4 30.3 17.1 30.7 39.7
Ours DeFeat 29.8 48.7 30.9 17.6 31.4 40.5
LWS-Det 29.9 49.2 30.1 15.1 32.140.9
IDa-Det 30.5 49.2 31.8 17.7 31.3 40.6

SSD VGG-16

Real-valued % 32/32 23.2 41.2 23.4 5.3 23.2 39.6

DoReFa-Net % 4/4 19.5 35.0 19.6 5.1 20.5 32.8

ReActNet %

1/1

15.3 30.0 13.2 5.4 16.3 25.0

Ours % 17.2 31.5 16.8 3.2 18.2 31.3
LWS-Det 17.1 32.9 16.1 5.5 17.4 26.7

Ours FGFI 17.7 32.3 17.3 3.3 18.9 31.8
Ours DeFeat 18.1 32.8 17.9 3.3 19.4 32.6
IDa-Det 19.4 34.5 19.3 3.7 21.135.0

Table 3. Comparison with state-of-the-art 1-bit detectors and KD methods on COCO
minival. Optimal results are bold.

SSD. On the SSD300 framework, our IDa-Det achieves 19.4% mAP@[.5, .95]
with the VGG-16 backbone, surpassing LWS-Det, FGFI, and DeFeat by 2.3%,
1.7%, and 1.3% mAP, respectively.

To summarize, our method outperforms baseline quantization methods and
other KD methods in terms of the AP with various IoU thresholds and the
AP for objects of varied sizes on COCO, indicating IDa-Det’s superiority and
generality in many application settings.

4.5 Deployment Efficiency

We implement the 1-bit models achieved by our IDa-Det on ODROID C4, which
has a 2.016 GHz 64-bit quad-core ARM Cortex-A55. With evaluating its real
speed in practice, the efficiency of our IDa-Det is proved when deployed into
real-world mobile devices. We use the SIMD instruction SSHL on ARM NEON,
for making inference framework BOLT [7] compatible with our IDa-Det. We
compare our IDa-Det to the real-valued backbones in Tab. 4. We utilize VOC
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Framework Network Method W/A Latency (ms) Acceleration

Faster-RCNN
ResNet-18

Real-valued 32/32 12043.8 -
IDa-Det 1/1 2474.4 4.87×

ResNet-34
Real-valued 32/32 14550.2 -
IDa-Det 1/1 2971.3 4.72×

SSD VGG-16
Real-valued 32/32 2788.7 -
IDa-Det 1/1 200.5 13.91×

Table 4. Comparison of time cost of real-valued and 1-bit models (Faster-RCNN and
SSD) on hardware (single thread).

dataset for testing the model. For Faster-RCNN, the input images were scaled
to 1000 × 600 and 300 × 300 for SSD. We can plainly see that IDa-Det’s infer-
ence speed is substantially faster with the highly efficient BOLT framework. For
example, the acceleration rate achieves about 4.7× on Faster-RCNN, which is
slightly lower than the theoretical acceleration rate discussed in Sec. 4.3. Further-
more, IDa-Det achieves 13.91× acceleration with SSD. All deployment results in
the object detection are significant on real-world edge devices.

5 Conclusion

This paper presents a novel method for training 1-bit detectors with knowledge
distillation to minimize the information discrepancy. IDa-Det employs a maxi-
mum entropy model to select the proposals with maximum information discrep-
ancy and proposes a novel entropy distillation loss to supervise the information
discrepancy. As a result, our IDa-Det significantly boosts the performance of 1-
bit detectors. Extensive experiments show that IDa-Det surpasses state-of-the-
art 1-bit detectors and other knowledge distillation methods in object detection.
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