
Learning to Weight Samples for Dynamic
Early-exiting Networks

Yizeng Han1∗ , Yifan Pu1∗ , Zihang Lai2† , Chaofei Wang1 , Shiji Song1 ,
Junfeng Cao3 , Wenhui Huang3 , Chao Deng3 , and Gao Huang1(�)

1 Tsinghua University, Beijing 100084, China
{hanyz18, pyf20, wangcf18}@mails.tsinghua.edu.cn

{shijis, gaohuang}@tsinghua.edu.cn
2 Carnegie Mellon University, Pennsylvania 15213, United States

zihangl@andrew.cmu.edu
3 China Mobile Research Institute, Beijing 100084, China
{caojunfeng, huangwenhui, dengchao}@chinamobile.com

Abstract. Early exiting is an effective paradigm for improving the infer-
ence efficiency of deep networks. By constructing classifiers with varying
resource demands (the exits), such networks allow easy samples to be out-
put at early exits, removing the need for executing deeper layers. While
existing works mainly focus on the architectural design of multi-exit net-
works, the training strategies for such models are largely left unexplored.
The current state-of-the-art models treat all samples the same during
training. However, the early-exiting behavior during testing has been ig-
nored, leading to a gap between training and testing. In this paper, we
propose to bridge this gap by sample weighting. Intuitively, easy samples,
which generally exit early in the network during inference, should con-
tribute more to training early classifiers. The training of hard samples
(mostly exit from deeper layers), however, should be emphasized by the
late classifiers. Our work proposes to adopt a weight prediction network
to weight the loss of different training samples at each exit. This weight
prediction network and the backbone model are jointly optimized under a
meta-learning framework with a novel optimization objective. By bring-
ing the adaptive behavior during inference into the training phase, we
show that the proposed weighting mechanism consistently improves the
trade-off between classification accuracy and inference efficiency. Code is
available at https://github.com/LeapLabTHU/L2W-DEN.

Keywords: Sample weighting, Dynamic early exiting, Meta-learning

1 Introduction

Although significant improvements have been achieved by deep neural networks
in computer vision [25,39,40,13,18,7,33], the high computational cost of deep

∗ Equal contribution. � Corresponding author.
† Work done during an internship at Tsinghua University.

https://orcid.org/0000-0001-5706-8784
https://orcid.org/0000-0002-0404-1737
https://orcid.org/0000-0002-9872-0756
https://orcid.org/0000-0002-3678-691X
https://orcid.org/0000-0001-7361-9283
https://orcid.org/0000-0002-2101-7974
https://orcid.org/0000-0001-8123-2441
https://orcid.org/0000-0003-4449-5247
https://orcid.org/0000-0002-7251-0988
https://github.com/LeapLabTHU/L2W-DEN

2 Y. Han, Y. Pu et al.

“Easy” Samples “Hard” Samples

Conventional
Training

Our Training

Block...

...

easyLoss hardLoss easyLoss hardLoss

easyLoss hardLoss easyLoss hardLoss

Block

Inference Stage

Classifier Classifier

Fig. 1: Our sample weighting strategy. At test time, the classifiers at varying
depths handle inputs with different complexity (top). However, the conventional
training strategy (middle) treats all the samples equally at multiple exits. In
contrast, our weighting mechanism (bottom) enables each classifier to emphasize
the samples that it is responsible for.

models still prevents them from being applied on resource-constrained platforms,
such as mobile phones and wearable devices. Improving the inference efficiency of
deep learning has become a research trend. Popular solutions include lightweight
architecture design [16,49], network pruning [27,28,34,47], weight quantization
[20,10], and dynamic neural networks [11,36,17,46,31,1,45,43,12].

Dynamic networks have attracted considerable research interests due to their
favorable efficiency and representation power [11]. In particular, they perform
a data-dependent inference procedure, and different network components (e.g.
layers [45] or channels [1]) could be conditionally skipped based on the input
complexity. A typical adaptive inference approach is early exiting [17,46], which
can be achieved by constructing a deep network with multiple intermediate clas-
sifiers (early exits). Once the prediction from an early exit satisfies a certain
criterion (e.g. the classification confidence exceeds some threshold), the forward
propagation is terminated, and the computation of deeper layers will be skipped.
Compared to the conventional static models, such an adaptive inference mech-
anism can significantly improve the computational efficiency without sacrificing
accuracy. When making predictions with shallow classifiers for canonical (easy)
samples, a substantial amount of computation will be saved by skipping the
calculation of deep layers. Moreover, the network is capable of handling the
non-canonical (hard) inputs with deep exits (Fig. 1, Inference Stage).

Existing works on dynamic networks mainly focus on designing more ad-
vanced multi-exit architectures [17,46]. A naive training strategy is generally
adopted by summing up the cross-entropy losses obtained from all classifiers.
More importantly, the loss of both easy and hard samples contributes equally

L2W-DEN 3

to the final optimization objective (Fig. 1, Conventional Training), regardless of
where a sample may actually exit. However, these exits at varying depths have
different capabilities, and they are responsible for recognizing samples of varying
complexity at test time. Such an adaptive inference behavior has been neglected
by the naive training paradigm adopted in previous works [17,29,46].

In this paper, we propose to bridge the gap between training and testing by
imposing sample-wise weights on the loss of multiple exits. Our motivation is that
every classifier is required to handle a subset of samples in the adaptive inference
scenario. Specifically, the early classifiers only need to recognize some canonical
inputs, while the deep classifiers are usually responsible for those non-canonical
samples. Therefore, an ideal optimization objective should encourage each exit
to emphasize different training samples by weighting their loss. In a nutshell, the
challenge for sample weighting in multi-exit models is two-fold: 1) the exiting
decisions are made during inference, and we have no prior knowledge of where
a specific sample exits; 2) setting proper weights is a non-trivial problem.

To address these challenges, we propose to automatically learn appropriate
weights by leveraging a weight prediction network (WPN). The WPN takes the
training loss from all exits as input, producing the weights imposed on the sam-
ples at every exit. We jointly optimize the backbone model and the WPN in a
meta-learning manner. A novel optimization objective is constructed to guide the
meta-learning procedure. Precisely, we mimic the test-time early-exiting process
to find where the samples will exit during inference. The meta objective for each
classifier is then defined as the loss only on the samples that actually exit at this
classifier. Compared to the conventional training strategy, our specialized meta-
objective encourages every exit to impose proper weights on different samples
for improved performance in dynamic early exiting (Fig. 1, Our Training).

We evaluate our method on image recognition tasks in two settings: a class
balanced setting and a class imbalanced setting. The experiment results on
CIFAR[24], ImageNet [5], and the long-tailed CIFAR [4] demonstrate that the
proposed approach consistently improves the trade-off between accuracy and
inference efficiency for state-of-the-art early-exiting networks.

2 Related works

Dynamic early-exiting networks. Early exiting is an effective dynamic in-
ference paradigm, allowing easy samples to be output at intermediate classi-
fiers. Existing works mainly focus on designing more advanced architectures.
For instance, BranchyNet [41] attaches classifier heads at varying depths in an
AlexNet [25]. An alternative option is cascading multiple CNNs (i.e. AlexNet
[25], GoogleNet [40] and ResNet [13]) to perform early exiting [2]. It is observed
[17] that the classifiers may interfere with each other in these chain-structured
or cascaded models. This issue is alleviated via dense connection and multi-scale
structure [17]. Resolution adaptive network (RANet) [46] further performs early
exiting by conditionally activating high-resolution feature representations.

4 Y. Han, Y. Pu et al.

While considerable efforts have been made on the architecture design, the
training of these models still follows the routines developed for static networks.
The multi-exit structural property and the early-exiting behavior are usually
ignored. Some training techniques are studied to boost the knowledge transfer
among exits, yet still neglecting the adaptive inference paradigm [29]. In this
paper, we put forth a novel optimization objective, encouraging each exit to
focus on the samples that they would probably handle in dynamic inference.
Sample weighting. Different training samples have unequal importance. The
idea of sample weighting could be traced back to dataset resampling [3] or in-
stance reweighting [48]. These traditional approaches evaluate the sample impor-
tance with some prior knowledge. Recent works manage to establish a loss-weight
mapping function [9,35,32,22,26,21]. There are mainly two directions: one tends
to impose larger weights on hard samples to deal with the data imbalance prob-
lem (e.g. focal loss [32]); the other focuses more on easy samples to reduce the
impact brought by noisy labels (e.g. self-paced learning [26,21]).

We study a different case: the test-time data distributions for different exits
are divergent. Such distributions could not be obtained in advance due to the
data-dependent inference procedure. The increased number of classifiers further
raises challenges for designing the sample-weight mapping function. With our
specially designed optimization objective and the meta-learning algorithm, we
effectively produce proper sample weights for training the multi-exit model.
Meta-learning in sample weighting. Due to its remarkable progress, meta-
learning [42,8] has been extensively studied in sample weighting [37,38,50]. Exist-
ing approaches mainly focus on tackling class imbalance or corrupted label prob-
lems. In contrast, our goal is to improve the inference efficiency of early-exiting
networks in a more general setting, without any assumption on the dataset.

3 Method

In this section, we first introduce the preliminaries of dynamic early-exiting
networks and their conventional training strategies. Then the sample weighting
mechanism and our meta-learning algorithm will be presented.

3.1 Preliminaries

Multi-exit networks. A typical approach to setting up a K-exit network is
attaching K−1 intermediate classifiers at varying depths of a deep model [17,46].
For an input sample x, the prediction from the k-th exit can be written as

ŷ(k) = argmax
c

p(k)c = argmax
c

f (k)
c (x;Θ

(k)
f), k = 1, 2, · · · ,K, (1)

where p
(k)
c is the k-th classifier’s output probability for class c, and f (k)(·;Θ(k)

f)

represents the k-th sub-network with parameter Θ
(k)
f . Note that the parameters

of different sub-networks are shared in a nested way except the classifiers. We
denote the whole classification model as f and its parameters as Θf .

L2W-DEN 5

meta-datatrain data

1. Pseudo update (Eq. (7)) 2. Update (Eq. (8)) 3. Update (Eq. (9))

Pseudo-updated
backbone network

train data

Fig. 2: Our training pipeline in iteration t. It consists of 3 steps: 1) the

backbone network f t is pseudo-updated to f̂ t using training samples; 2) a meta

objective is computed using f̂ t on meta samples. This objective guides the update
of the WPN gt; 3) f t is updated using the new weights predicted by gt+1.

Dynamic early exiting. Extensive efforts have been made to perform early
exiting based on multi-exit models. A typical approach is terminating the for-

ward propagation once the classification confidence (maxc p
(k)
c) at a certain exit

exceeds a given threshold (ϵk). The final prediction is obtained by

ŷ = ŷ(k), if max
c

p(k)c ≥ ϵk, and max
c

p(j)c < ϵj ,∀j ≤ k, k ≤ K − 1. (2)

The predictions ŷ(k)(k= 1, 2, · · · ,K) are obtained sequentially before satisfying
the criterion in Eq. (2) or reaching the last exit. The threshold for exit-k (ϵk)
can be decided on a validation set according to the computational budget.
Conventional training methods. A naive training strategy adopted by ex-
isting works [17,46] is directly minimizing a cumulative loss function:

L =
∑K

k=1

1

N

∑N

i=1
l
(k)
i ≜

∑K

k=1

1

N

∑N

i=1
CE(f (k)(xi;Θ

(k)
f), yi), (3)

where CE is the cross-entropy loss, and N is the number of training samples.

3.2 Sample-weighting for early-exiting networks

In this subsection, we first formulate our sample weighting mechanism, and then
introduce the proposed meta-learning objective. The optimization method is
further presented. See Fig. 2 for an overview of the training pipeline.
Sample weighting with weight prediction network. We can observe from
Eq. (2) that test samples are adaptively allocated to multiple exits according to
their prediction confidence during inference. Sub-networks with varying depths
are responsible for handling different subsets of samples. Therefore, it is subop-
timal to set the same optimization objective for these exits as in Eq. (3). To this
end, we propose to ameliorate the training objective by sample weighting:

L =
∑K

k=1

1

N

∑N

i=1
w

(k)
i l

(k)
i . (4)

Weight prediction network. Since we have no prior knowledge of where a specific
sample exits, and the function mapping from input to weight is hard to establish,

6 Y. Han, Y. Pu et al.

3. Pseudo Update
f tBackbone Network ̂f tBackbone Network

Exit 1 Exit 2 Exit K…

weight

Exit 1 Exit 2 Exit K…

0.94

0.86

0.81

0.76

-

-

0.90

0.46 0.66

X(1)
meta

X(2)
meta

X(K)
meta

M
et

a
da

ta
 a

llo
ca

tio
n

1. Forward

2. Backward

4. Forward

5. Backward

Forward
propagation

Gradient
flow of f

Gradient
flow of a

0.94
Prediction
confidence

-
Selected by

previous exits

WPN

Weighted Loss Meta Objective

×

Classification Loss -

-

-
…

…

… …… …

Fig. 3: Updates of the backbone model f and the WPN g in detail. First,
we compute the weighted classification loss (Eq. (5)), which guides the pseudo
update on the backbone network f t (Steps 1, 2, and 3). The meta objective
(Eq. (6)) is then computed to update the WPN gt (Steps 4 and 5).

we propose to automatically learn the weight w
(k)
i from the input xi by a weight

prediction network (WPN, denoted by g): wi=[w
(1)
i , w

(2)
i , · · · , w(K)

i]=g(li;Θg),

where li = [l
(1)
i , l

(2)
i , · · · , l(K)

i] is the training loss for sample xi at K exits. The
WPN g is established as an MLP with one hidden layer, andΘg is the parameters
of the WPN. We learn the backbone parameters Θf and the WPN parameters
Θg in a meta-learning manner. Note that the WPN is only used for training,
and no extra computation will be brought during the inference stage.
The meta-learning objective. We construct a novel optimization objective
to bring the test-time adaptive behavior into training.
Weighted classification loss. With our weighting scheme (given Θg), the opti-
mization objective of the backbone model parameter Θf can be written as

Θ⋆
f (Θg) = argmin

Θf

Ltr(Θf ,Θg)

≜ argmin
Θf

K∑
k=1

1

N

∑
i:xi∈Xtr

g(k)(li;Θg) · l(k)i (Θf), (5)

where Xtr is the training set. Following [30], we scale the output of our WPN
with 0 < δ < 1 to obtain a perturbation w̃ ∈ [−δ, δ]B×K , where B is the batch
size. We further normalize the perturbation w̃ to ensure the summation of its
elements is 0. The final weight imposed on the loss is produced via w = 1 + w̃.
Meta data allocation. The goal of our weighting mechanism is improving the
model performance in the dynamic inference scenario. To construct the opti-
mization objective for the WPN g, we first mimic the early exiting procedure
on a meta set Xmeta, and obtain the meta samples exiting at different exits

X
(k)
meta, k=1,2,· · ·,K. Specifically, we define a budget controlling variable q to de-

L2W-DEN 7

cide the number of samples that exit at each exit: Nk=
qk∑K

k=1 qk
×Nmeta, q > 0,

where Nmeta is the sample number in the meta setXmeta. When q=1, the output
numbers for different exits are equal, and q>1 means more samples being output
by deeper exits, together with more computation. In training, we generally tune
the variable q on the validation set and fix it in the meta optimization procedure;
in testing, we vary q from 0 to 2 to cover a wide range of computational budgets,
and plot the curves of accuracy-computation in Sec. 4 (e.g. Fig. 5).

Given q, Fig. 3 (right) illustrates the procedure of obtaining X
(k)
meta: each exit

selects its most confident Nk samples which have not been output at previous

classifiers. Note that for the last exit, X
(K)
meta contains all the unselected samples.

Meta objective for dynamic early exiting. Instead of correctly recognizing all
meta samples with diverse complexity, the meta objective for a specific exit is
the classification loss on the samples that actually exit at this exit. The overall
meta objective is obtained by aggregating the meta objectives from K exits:

Θ⋆
g = argmin

Θg

Lmeta(Θ
⋆
f (Θg))

≜ argmin
Θg

∑K

k=1

1

Nk

∑
j:xj∈X

(k)
meta

l(k)(xj , yj ;Θ
⋆
f (Θg)).

(6)

The optimization method. We jointly optimize the backbone parameter Θf

(Eq. (5)) and the WPN parameter Θg (Eq. (6)) with an online strategy (see
Fig. 2 for an overview of the optimization pipeline). Existing meta-learning
methods for loss weighting typically require a standalone meta-set, which con-
sists of class-balanced data or clean labels [37,38]. In contrast, we simply reuse
the training data as our meta data. Precisely, at iteration t, we first split the
input mini-batch into a training batch Xtr and a meta batch Xmeta. The training
batch Xtr is used to construct the classification loss (Eq. (5)) and optimize the
model parameters Θf . Next, the meta batch Xmeta is leveraged to compute the
meta objective (Eq. (6)) and train the WPN parameters Θg.
Pseudo update of the backbone network is conducted using Xtr:

Θ̂t
f (Θg) = Θt

f − α
∂Ltr(Θf ,Θg)

∂Θf

∣∣∣∣∣
Θt

f

, (7)

where α is the learning rate. Note that Θ̂t
f is a function of Θg, and this pseudo

update is performed to construct the computational graph for later optimization
of Θg. See Fig. 3 (gray dashed lines) for the gradient flow of this pseudo update.
Update of the weight prediction network is performed using our meta objective
calculated on Xmeta. Concretely, we mimic the early exiting procedure on Xmeta,

and split it into K subsets without intersection Xmeta={X(1)
meta ∪X

(2)
meta ∪ · · · ∪

X
(K)
meta}, whereX(k)

meta contains the meta samples which should be output at exit-k
according to the criterion in Eq. (2). See also Fig. 3 (right) for the procedure.

Receiving the partition of the meta-data based on the pseudo updated back-
bone network, the parameters of our weight prediction model can be updated:

8 Y. Han, Y. Pu et al.

Θt+1
g = Θt

g − β
∂Lmeta(Θ̂

t
f (Θg))

∂Θg

∣∣∣∣∣
Θt

g

, (8)

where Lmeta(Θ̂
t(Θg)) is the aggregation of the classification loss from each exit

on its allocated meta data (Eq. (6)), and β is the learning rate. The gradient
flow for updating Θg is illustrated in Fig. 3 (the golden dashed lines).

Algorithm 1 The meta-learning Algorithm

Require: Training data D, batch size B, iteration T , interval I, budget controller q.
Ensure: Backbone network parameters Θf .

for t = 0 to T − 1 do
{X,y} ← SampleMiniBatch(D, B).
Split {X,y} into {Xtr,Xmeta,ytr,ymeta}.
if t mod I = 0 then

Perform a pseudo update for Θ̂t
f by Eq. (7).

Perform meta data allocation based on q.
Update Θt+1

g by Eq. (8).
end if
Update Θt+1

f by Eq. (9).
end for

Update of the backbone network is finally realized based on the updated Θt+1
g :

Θt+1
f = Θt

f − α
∂Ltr(Θf ,Θ

t+1
g)

∂Θf

∣∣∣∣∣
Θt

f

. (9)

We summarize the learning algorithm in Algorithm 1. By mimicking the
adaptive inference procedure, our novel objective in Eq. (6) encourages each
exit to correctly classify the samples which are most probably allocated to it in
the early exiting scenario (blue text in Eq. (6)). For example, early exits at
shallow layers may focus more on those easy samples (see also our visualization
results in Sec. 4, Fig. 8). More empirical analysis is presented in Sec. 4.

4 Experiments

In this section, we first conduct ablation studies to validate the design choices
made in our weighting mechanism (Sec. 4.1). The main results on CIFAR [24]
and ImageNet [5] are then presented in Sec. 4.2 and Sec. 4.3 respectively. Finally,
we evaluate our method on the long-tailed CIFAR [4] in a class imbalance setting
(Sec. 4.4). A network’s performance is measured in terms of the trade-off between
the accuracy and the Mul-Adds (multiply-add operations). We apply our training
algorithm to two representative dynamic early-exiting architectures, i.e. multi-
scale dense network (MSDNet) [17] and resolution adaptive network (RANet)
[46]. The experimental setup is provided in the supplementary material.

L2W-DEN 9

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Average budget (in MUL-ADD)×107

67

69

71

73
A

cc
u

ra
cy

(%
)

Comparison of different weighting methods

Baseline

Vanilla Selection

Increasing Weights

Decreasing Weights

Fixed WPN

Ours

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Average budget (in MUL-ADD)×107

67

69

71

73

A
cc

u
ra

cy
(%

)

Comparison of different meta objective

Baseline

Vanilla Objective

Our Objective

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Average budget (in MUL-ADD)×107

67

69

71

73

A
cc

u
ra

cy
(%

)

Comparison of different WPN input

Baseline

Confidence

Loss (Ours)

Both

Fig. 4: Ablation studies on CIFAR-100. Left: our meta-learning based ap-
proach v.s. heuristic weighting mechanisms. Middle: the effectiveness of the pro-
posed meta objective. Right: comparison of different WPN inputs.

4.1 Ablation studies

We perform ablation studies with a 5-exit MSDNet on CIFAR-100 to validate
the effectiveness of different settings and variants in our method.
Meta-learning algorithm. We first verify the necessity of our meta-learning
algorithm by comparing it with three variants: 1) the first replaces the weighting
scheme with a vanilla selection scheme: the data allocation (Fig. 3) is applied
directly to the training data, and the loss of each exit is only calculated on its
allocated samples; 2) the second hand-designs a weighting mechanism with fixed
weights increasing/decreasing with the exit index; 3) the third uses a frozen
convergent WPN to weight the samples. For the second variant, the weights
are set from 0.6 to 1.4 (or inverse) with uniform steps. Evaluation results on
CIFAR-100 are shown in Fig. 4 (left). Several observations can be made:

– The vanilla sample selection strategy results in a drastic drop in accuracy,
suggesting the necessity of our sample weighting mechanism;

– The gain of hand-crafted weight values is limited, indicating the advantage
of our learning-based weighting approach;

– Interestingly, our joint optimization outperforms weighting with a frozen
WPN. This suggests that it is essential to dynamically adjust the weights
imposed on the loss at different training stages.

Meta-learning objective. Our designed meta loss in Eq. (6) encourages every
exit to correctly recognize the data subset that is most likely handled by the exit
in dynamic inference. To clarify the effectiveness of this meta objective, we keep
the learning procedure unchanged and substitute Eq. (6) with the classification
loss on the whole meta set for each exit. The results are shown in Fig. 4 (middle).
While this variant (line Vanilla Objective) outperforms the baseline when the
computation is relatively low, our objective achieves higher accuracy when larger
computational budget is available. This suggests that emphasizing hard samples
for deep classifiers is crucial to improving their performance.
The input of WPN. In addition to the classification loss, the confidence value
can also be leveraged to produce the weight perturbations due to its role in mak-
ing early exiting decisions. We test three types of input: 1) loss only; 2) confidence

10 Y. Han, Y. Pu et al.

1 2 3 4 5 6

Average budget (in MUL-ADD) ×107

91

92

93

94

95

A
cc

u
ra

cy
(%

)
×2.0 Speedup

+1.0 Acc

Budgeted batch classification on CIFAR-10

DynConv

ResNets

DenseNets

SAR

SSS

TAS

MSDNet

Ours

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Average budget (in MUL-ADD) ×108

66

68

70

72

74

76

A
cc

u
ra

cy
(%

)

+1.3 Acc

+1.1 Acc

×1.6 Speedup

Budgeted batch classification on CIFAR-100

ResNets

DenseNets

SAR

SSS

TAS

SDN

MSDNet

Ours

Fig. 5: Dynamic inference results on CIFAR-10 (left) and CIFAR-100 (right)

Table 1: Anytime prediction results of a 7-exit MSDNet on CIFAR-100
Exit index 1 2 3 4 5 6 7

Params (×106) 0.30 0.65 1.11 1.73 2.38 3.05 4.00
Mul-Add (×106) 6.86 14.35 27.29 48.45 76.43 108.90 137.30

Accuracy

MSDNet [17] 61.07 64.55 67.00 69.97 72.55 74.01 74.50
Ours 62.47 (↑1.30) 66.32 (↑1.77) 68.10 (↑1.10) 71.29 (↑1.32) 73.21 (↑0.66) 74.87 (↑0.86) 75.81 (↑1.31)

IMTA [29] 60.29 64.86 69.09 72.71 74.47 75.60 75.19
Ours + IMTA [29] 62.26 (↑1.97) 67.18 (↑2.32) 70.53 (↑1.44) 73.10 (↑0.39) 74.80 (↑0.33) 76.05 (↑0.45) 76.31 (↑1.12)

only; 3) the concatenation of loss and confidence. The accuracy-computation
curves are shown in Fig. 4 (right). It can be found that the adoption of loss is
essential for our method, and the inclusion of confidence could be harmful. We
hypothesize that by reflecting the information of both network prediction and
ground truth, the loss serves as a better candidate for WPN input. The ablation
study of the WPN design is presented in the supplementary material.

4.2 CIFAR results

In this subsection, we report the results on CIFAR in both dynamic inference and
anytime prediction settings following previous works [17,29,46]. We first apply
our approach to MSDNet [17], and then compare it with the training techniques
in [29]. The method is further validated on the RANet architecture [46].
Dynamic inference results. We apply our training strategy on MSDNet with
5 and 7 exits and compare with three groups of competitive baseline methods:
classic networks (ResNet[13], DenseNet [18]), pruning-based approaches (Sparse
Structure Selection (SSS) [19], Transformable Architecture Search (TAS) [6]),
and dynamic networks (Shallow-Deep Networks (SDN) [23], Dynamic Convolu-
tions (DynConv) [43], and Spatially Adaptive Feature Refinement (SAR) [12]).

In the dynamic inference scenario, we present the accuracy-computation
(measured by Mul-Adds) curve in Fig. 5 (left: CIFAR-10, right: CIFAR-100).
From the results, we can observe that the proposed weighting method consis-
tently improves the performance of MSDNet at various computational budgets.

L2W-DEN 11

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Average budget (in MUL-ADD) ×107

70

71

72

73

74

75

76

A
cc

u
ra

cy
(%

)
+1.2 Acc

×1.4 Speedup

Comparison and compatibility with IMTA

MSDNet

IMTA

Ours

Ours + IMTA

2 4 6 8

Average budget (in MUL-ADD) ×107

68

70

72

74

76

A
cc

u
ra

cy
(%

)

+1.4 Acc

+1.1 Acc

Results of RANet on CIFAR-100

DenseNets

SAR

SSS

TAS

RANet

Ours

Fig. 6: Dynamic inference results on CIFAR-100. Left: comparison with
IMTA [29]. Right: results with two different sized RANets.

Table 2: Anytime prediction results of a 6-exit RANet on CIFAR-100

Exit index 1 2 3 4 5 6

Params (×106) 0.36 0.90 1.30 1.80 2.19 2.62
Mul-Add (×106) 8.37 21.79 32.88 41.57 53.28 58.99

Accuracy
RANet [46] 63.41 67.36 69.62 70.21 71.00 71.78

Ours 65.33 (↑1.92) 68.69 (↑1.30) 70.36 (↑0.74) 70.80 (↑0.59) 72.57 (↑1.57) 72.45 (↑0.67)

When applied to the 5-exit model, our weighting mechanism obtains significant
boosts with the CIFAR-100 Top-1 accuracy increased by about 1.3% when evok-
ing around 15M Mul-Adds. For the 7-exit MSDNet, our model only uses half of
the original budget to achieve ∼94.0% Top-1 accuracy on CIFAR-10.
Anytime prediction results. We also report the accuracy of each exit on the
whole test set in the anytime prediction setting. From the results in Tab. 1 (a
7-exit MSDNet [17]) and Tab. 2 (a 6-exit RANet [46]), we surprisingly find that
although our meta objective encourages each exit to focus on only a subset of
samples, the performance on the whole test set is consistently increased by a
large margin. This phenomenon could bring some insights into the optimization
of deep networks: 1) for the shallow exits, emphasizing a small subset of easy
samples with high confidence benefits their generalization performance on the
whole dataset [44]; 2) for the deeper exits, our objective forces them to focus on
the hard samples, which cannot be confidently predicted by previous classifiers.
Such a “challenging” goal could further improve their capability of approximat-
ing more complex classification boundaries. This coincides with the observation
in our ablation studies (Fig. 4 middle): encouraging each exit to correctly classify
a well-selected subset of training samples is preferable.
Comparison and compatibility with IMTA. Improved techniques for train-
ing adaptive networks (IMTA) [29] are proposed to stabilize training and fa-
cilitate the collaboration among exits. These techniques are developed for the
optimization procedure and ignore the adaptive inference behavior. In contrast,

12 Y. Han, Y. Pu et al.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Average budget (in MUL-ADD) ×109

69

71

73

75

77

A
cc

u
ra

cy
(%

)

Budgeted batch classification on ImageNet

DynConv

SkipNet

ResNet18-BAS

ResNet34-BAS

ResNet50-BAS

Channel selection

SSS

TAS

MSDNet

Ours

40 60 80 100 120 140 160

Latency (ms)

71

72

73

74

75

76

77

A
cc

u
ra

cy
(%

)

×1.2 Speedup

×2.1 Speedup

×1.4 Speedup

×1.8 Speedup

Speed test results on Intel i5 mobile CPU

ResNets

DenseNets

MSDNet

Ours

5 10 15 20 25 30

Latency (ms)

71

72

73

74

75

76

77

A
cc

u
ra

cy
(%

)

×1.2 Speedup

×2.1 Speedup

×1.4 Speedup

×1.6 Speedup

Speed test results on Nvidia Jetson TX2

ResNets

DenseNets

MSDNet

Ours

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Latency (ms)

71

72

73

74

75

76

77

A
cc

u
ra

cy
(%

)

×1.5 Speedup

×1.4 Speedup

×1.3 Speedup

×2.1 Speedup

Speed test results on TITAN Xp GPU

ResNets

DenseNets

MSDNet

Ours

Fig. 7: ImageNet results. Top left: accuracy-computation curves. Others:
accuracy-latency curves on different hardware platforms.

our meta-learning based method improves the objective optimization and takes
the inference behavior into account. We empirically compare our approach to
IMTA [29], and further combine them to evaluate the compatibility.

The results are presented in Fig. 6 (right, for dynamic inference) and Tab. 1
(row 6 & 7, for anytime prediction). These results validate that 1) our weighting
strategy achieves higher performance, especially at low computational budges;
2) combining our method with IMTA further improves the performance. In par-
ticular, note that the accuracy of deep exits can be boosted by a large margin.

Results on RANet. To evaluate the generality of our method, we conduct
experiments on another representative multi-exit structure, RANet [46]. The
anytime prediction performance of a 6-exit RANet is shown in Tab. 2, and the
dynamic inference results of two different-sized RANets are illustrated in Fig. 6
(right). These results suggest that the proposed approach consistently improves
the trade-off between accuracy and computational cost of RANet. Notably, when
the Mul-Add is around 15M, our model improves the Top-1 accuracy significantly
(∼ 1.4%). The strong performance on MSDNet and RANet indicates that our
weighting algorithm is sufficiently general and effective.

L2W-DEN 13

Fig. 8: Visualization results of the weight-loss relationship on ImageNet

4.3 ImageNet results

Next, we evaluate our method on the large-scale ImageNet dataset [5]. We test
three different sized MSDNets following [17] and compare them with competitive
baselines, including pruning-based approaches (the aforementioned SSS [19] and
TAS [6], and Filter Pruning via Geometric Median (Geom) [14]) and dynamic
networks (SkipNet [45], Batch-Shaping (BAS) [1], Channel Selection [15] and
DynConv [43]). We report the results in the dynamic inference setting here.
Anytime prediction results can be found in the supplementary material.
Accuracy-computation result. We present the accurracy-computation re-
sults on ImageNet in Fig. 7 (top left). The plot shows that the weighting mech-
anism consistently improves the accuracy-computation trade-off of MSDNets.
Even though some competing models surpass the baseline MSDNet trained with-
out sample weighting, our method successfully outperforms these competitors.
Accuracy-latency result. We benchmark the efficiency of our models on three
types of computing devices: Intel i5-1038NG7 mobile CPU, Nvidia Jetson TX2
(a resource-constrained embedded AI computing device) and TITAN Xp GPU.
The testing batch sizes are set as 64 for the first two devices and 512 for the
last. The testing images have resolutions of 224×224 pixels. The accuracy-latency
curves plotted in Fig. 7 demonstrate the significant improvement of our method
across all computing platforms. For instance, our model only takes 70% of the
original MSDNet’s computation time to achieve 75.4% accuracy (1.4×speed-up).
Visualization. We visualize the weights predicted by WPN toward the end
of training in Fig. 8 4. The left plot presents the weight-loss relationship at
exit-1 and exit-3. The right plot shows the weights of the samples selected/not
selected by exit-1 in meta-data allocation (Sec. 3.2). Several observations can be
made: 1) Since more samples are allocated to early exits, the weights at exit-1
are generally larger than those at exit-3. This result suggests that the proposed
method successfully learns the relationship between exits; 2) Both exits tend to
emphasize the samples with a smaller loss. This coincides with the observation

4 We set q=0.5 in training, and therefore the proportion of output samples at 5 exits
follows an exponential distribution of [0.52, 0.26, 0.13, 0.06, 0.03].

14 Y. Han, Y. Pu et al.

0.2 0.4
Avg. MUL-ADD (×108)

30

31

32

33

34

A
cc

u
ra

cy
(%

)

Imbalance factor=200

MSDNet

Ours

0.2 0.4
Avg. MUL-ADD (×108)

35

36

37

38

Imbalance factor=100

MSDNet

Ours

0.2 0.4
Avg. MUL-ADD (×108)

39

40

41

42

43

44

Imbalance factor=50

MSDNet

Ours

0.2 0.4
Avg. MUL-ADD (×108)

46

47

48

49

50

51

52

Imbalance factor=20

MSDNet

Ours

Fig. 9: Results on long-tailed CIFAR-100 with different imbalance factors

in [51] which explains the importance of the well-classified (easy) samples in the
optimization of deep models; 3) From weights at exit-1, we can observe that
the samples with high prediction confidence (which would be selected by exit-1
in meta-data allocation) generally have weights larger than samples with lower
confidence (which would be allocated to deeper classifiers). This suggests that
the proposed method learns to recognize the samples’ exit at different classifiers.

4.4 Class imbalance results

The proposed method is finally evaluated in the class imbalance setting. On
the long-tailed CIFAR-100 [4] dataset, we test with four imbalance factors (200,
100, 50, and 20), where the imbalance factor is defined as the number of train-
ing samples in the largest class divided by the smallest. The budgeted batch
classification performance illustrated in Fig. 9 shows that our weighting method
consistently outperforms the conventional training scheme by a large margin.

5 Conclusion

In this paper, we propose a meta-learning based sample weighting mechanism
for training dynamic early-exiting networks. Our approach aims to bring the
test-time adaptive behavior into the training phase by sample weighting. We
weight the losses of different samples at each exit by a weight prediction net-
work. This network is jointly optimized with the backbone network guided by a
novel meta-learning objective. The proposed weighting scheme can consistently
boost the performance of multi-exit models in both anytime prediction and bud-
geted classification settings. Experiment results validate the effectiveness of our
method on the long-tailed image classification task.
Acknowledgement. This work is supported in part by National Key R&D
Program of China (2020AAA0105200), the National Natural Science Foundation
of China under Grants 62022048, Guoqiang Institute of Tsinghua University
and Beijing Academy of Artificial Intelligence. We also appreciate the generous
donation of computing resources by High-Flyer AI.

L2W-DEN 15

References

1. Bejnordi, B.E., Blankevoort, T., Welling, M.: Batch-shaping for learning condi-
tional channel gated networks. In: ICLR (2020)

2. Bolukbasi, T., Wang, J., Dekel, O., Saligrama, V.: Adaptive neural networks for
efficient inference. In: ICML (2017)

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic mi-
nority over-sampling technique. JAIR (2002)

4. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: CVPR (2019)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

6. Dong, X., Yang, Y.: Network pruning via transformable architecture search.
NeurIPS (2019)

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
ICLR (2021)

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. JCSS (1997)

10. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding (2016)

11. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural
networks: A survey. TPAMI (2021)

12. Han, Y., Huang, G., Song, S., Yang, L., Zhang, Y., Jiang, H.: Spatially adaptive
feature refinement for efficient inference. TIP (2021)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

14. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: CVPR (2019)

15. Herrmann, C., Bowen, R.S., Zabih, R.: Channel selection using gumbel softmax.
In: ECCV (2020)

16. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

17. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-
scale dense networks for resource efficient image classification. In: ICLR (2018)

18. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

19. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural net-
works. In: ECCV (2018)

20. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: NeurIPS (2016)

21. Jiang, L., Meng, D., Mitamura, T., Hauptmann, A.G.: Easy samples first: Self-
paced reranking for zero-example multimedia search. In: ACM MM (2014)

22. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance.
Journal of Big Data (2019)

16 Y. Han, Y. Pu et al.

23. Kaya, Y., Hong, S., Dumitras, T.: Shallow-deep networks: Understanding and mit-
igating network overthinking. In: ICML (2019)

24. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NeurIPS (2012)

26. Kumar, M., Packer, B., Koller, D.: Self-paced learning for latent variable models.
In: NeurIPS (2010)

27. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: NeurIPS (1990)
28. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient

convnets. In: ICLR (2017)
29. Li, H., Zhang, H., Qi, X., Yang, R., Huang, G.: Improved techniques for training

adaptive deep networks. In: ICCV (2019)
30. Li, S., Ma, W., Zhang, J., Liu, C.H., Liang, J., Wang, G.: Meta-reweighted regu-

larization for unsupervised domain adaptation. TKDE (2021)
31. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: NeurIPS (2017)
32. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object

detection. In: ICCV (2017)
33. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-

former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)
34. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-

tional networks through network slimming. In: ICCV (2017)
35. Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-svms for object

detection and beyond. In: ICCV (2011)
36. Panda, P., Sengupta, A., Roy, K.: Conditional deep learning for energy-efficient

and enhanced pattern recognition. In: DATE (2016)
37. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for

robust deep learning. In: ICML (2018)
38. Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., Meng, D.: Meta-weight-net:

Learning an explicit mapping for sample weighting. In: NeurIPS (2019)
39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICLR (2015)
40. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)
41. Teerapittayanon, S., McDanel, B., Kung, H.T.: Branchynet: Fast inference via early

exiting from deep neural networks. In: ICPR (2016)
42. THospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural

networks: A survey. TPAMI (2021)
43. Verelst, T., Tuytelaars, T.: Dynamic convolutions: Exploiting Spatial Sparsity for

Faster Inference. In: CVPR (2020)
44. Wang, X., Chen, Y., Zhu, W.: A survey on curriculum learning. TPAMI (2021)
45. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: Skipnet: Learning dy-

namic routing in convolutional networks. In: ECCV (2018)
46. Yang, L., Han, Y., Chen, X., Song, S., Dai, J., Huang, G.: Resolution Adaptive

Networks for Efficient Inference. In: CVPR (2020)
47. Yang, L., Jiang, H., Cai, R., Wang, Y., Song, S., Huang, G., Tian, Q.: Condensenet

v2: Sparse feature reactivation for deep networks. In: CVPR (2021)
48. Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In:

ICML (2004)
49. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-

tional neural network for mobile devices. In: CVPR (2018)

L2W-DEN 17

50. Zhang, Z., Pfister, T.: Learning fast sample re-weighting without reward data. In:
ICCV (2021)

51. Zhao, G., Yang, W., Ren, X., Li, L., Sun, X.: Well-classified examples are under-
estimated in classification with deep neural networks. In: AAAI (2022)

	Learning to Weight Samples for Dynamic Early-exiting Networks

