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Abstract. While state-of-the-art vision transformer models achieve promis-
ing results in image classification, they are computationally expensive
and require many GFLOPs. Although the GFLOPs of a vision trans-
former can be decreased by reducing the number of tokens in the network,
there is no setting that is optimal for all input images. In this work, we
therefore introduce a differentiable parameter-free Adaptive Token Sam-
pler (ATS) module, which can be plugged into any existing vision trans-
former architecture. ATS empowers vision transformers by scoring and
adaptively sampling significant tokens. As a result, the number of tokens
is not constant anymore and varies for each input image. By integrating
ATS as an additional layer within the current transformer blocks, we can
convert them into much more efficient vision transformers with an adap-
tive number of tokens. Since ATS is a parameter-free module, it can be
added to the off-the-shelf pre-trained vision transformers as a plug and
play module, thus reducing their GFLOPs without any additional train-
ing. Moreover, due to its differentiable design, one can also train a vision
transformer equipped with ATS. We evaluate the efficiency of our mod-
ule in both image and video classification tasks by adding it to multiple
SOTA vision transformers. Our proposed module improves the SOTA by
reducing their computational costs (GFLOPs) by 2×, while preserving
their accuracy on the ImageNet, Kinetics-400, and Kinetics-600 datasets.
The code is available at https://adaptivetokensampling.github.io/.

1 Introduction

Over the last ten years, there has been a tremendous progress on image and
video understanding in the light of new and complex deep learning architectures,
which are based on the variants of 2D [23,34,50] and 3D [10,12,17,18,54,56] Con-
volutional Neural Networks (CNNs). Recently, vision transformers have shown
promising results in image classification [13, 31, 53, 63] and action recognition
[1, 2, 39] compared to CNNs. Although vision transformers have a superior rep-
resentation power, the high computational cost of their transformer blocks make
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Fig. 1. The Adaptive Token Sampler (ATS) can be integrated into the self-attention
layer of any transformer block of a vision transformer model (left). The ATS mod-
ule takes at each stage a set of input tokens I. The first token is considered as the
classification token in each block of the vision transformer. The attention matrix A is
then calculated by the dot product of the queries Q and keys K, scaled by

√
d. We use

the attention weights A1,2, . . . ,A1,N+1 of the classification token as significance scores
S ∈ R

N for pruning the attention matrix A. To reflect the effect of values V on the
output tokens O, we multiply the A1,j by the magnitude of the corresponding value Vj .
We select the significant tokens using inverse transform sampling over the cumulative
distribution function of the scores S. Having selected the significant tokens, we then
sample the corresponding attention weights (rows of the attention matrix A) to get
As. Finally, we softly downsample the input tokens I to output tokens O using the
dot product of As and V.

them unsuitable for many edge devices. The computational cost of a vision trans-
former grows quadratically with respect to the number of tokens it uses. To
reduce the number of tokens and thus the computational cost of a vision trans-
former, DynamicViT [46] proposes a token scoring neural network to predict
which tokens are redundant. The approach then keeps a fixed ratio of tokens at
each stage. Although DynamicViT reduces the GFLOPs of a given network, its
scoring network introduces an additional computational overhead. Furthermore,
the scoring network needs to be trained together with the vision transformer
and it requires to modify the loss function by adding additional loss terms and
hyper-parameters. To alleviate such limitations, EViT [36] employs the attention
weights as the tokens’ importance scores. A further limitation of both EViT and
DynamicViT is that they need to be re-trained if the fixed target ratios need to
be changed (e.g . due to deployment on a different device). This strongly limits
their applications.

In this work, we propose a method to efficiently reduce the number of tokens
in any given vision transformer without the mentioned limitations. Our approach
is motivated by the observation that in image/action classification, all parts of an
input image/video do not contribute equally to the final classification scores and
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some parts contain irrelevant or redundant information. The amount of relevant
information varies depending on the content of an image or video. For instance,
in Fig. 7, we can observe examples in which only a few or many patches are
required for correct classification. The same holds for the number of tokens used
at each stage, as illustrated in Fig. 2. Therefore, we propose an approach that
automatically selects an adequate number of tokens at each stage based on the
image content, i.e. the number of the selected tokens at all network’s stages
varies for different images, as shown in Fig. 6. It is in contrast to [36,46], where
the ratio of the selected tokens needs to be specified for each stage and is constant
after training. However, selecting a static number of tokens will on the one hand
discard important information for challenging images/videos, which leads to a
classification accuracy drop. On the other hand, it will use more tokens than
necessary for the easy cases and thus waste computational resources. In this
work, we address the question of how a transformer can dynamically adapt its
computational resources in a way that not more resources than necessary are
used for each input image/video.

To this end, we introduce a novel Adaptive Token Sampler (ATS) module.
ATS is a differentiable parameter-free module that adaptively down-samples in-
put tokens. To do so, we first assign significance scores to the input tokens by
employing the attention weights of the classification token in the self-attention
layer and then select a subset of tokens using inverse transform sampling over the
scores. Finally, we softly down-sample the output tokens to remove redundant
information with the least amount of information loss. In contrast to [46], our ap-
proach does not add any additional learnable parameters to the network. While
the ATS module can be added to any off-the-shelf pre-trained vision transformer
without any further training, the network equipped with the differentiable ATS
module can also be further fine-tuned. Moreover, one may train a model only
once and then adjust a maximum limit for the ATS module to adapt it to the
resources of different edge devices at the inference time. This eliminates the need
of training separate models for different levels of computational resources.

We demonstrate the efficiency of our proposed adaptive token sampler for im-
age classification by integrating it into the current state-of-the-art vision trans-
formers such as DeiT [53], CvT [63], and PS-ViT [68]. As shown in Fig. 4, our
approach significantly reduces the GFLOPs of vision transformers of various
sizes without significant loss of accuracy. We evaluate the effectiveness of our
method by comparing it with other methods designed for reducing the number
of tokens, including DynamicViT [46], EViT [36], and Hierarchical Pooling [42].
Extensive experiments on the ImageNet dataset show that our method outper-
forms existing approaches and provides the best trade-off between computational
cost and classification accuracy. We also demonstrate the efficiency of our pro-
posed module for action recognition by adding it to the state-of-the-art video
vision transformers such as XViT [2] and TimeSformer [1]. Extensive exper-
iments on the Kinetics-400 and Kinetics-600 datasets show that our method
surpasses the performance of existing approaches and leads to the best compu-
tational cost/accuracy trade-off. In a nutshell, the adaptive token sampler can
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significantly scale down the off-the-shelf vision transformers’ computational costs
and it is therefore very useful for real-world vision-based applications.

2 Related Work
The transformer architecture, which was initially introduced in the NLP commu-
nity [57], has demonstrated promising performance on various computer vision
tasks [3, 6, 13, 39, 47, 53, 66, 69–71]. ViT [13] follows the standard transformer
architecture to tailor a network that is applicable to images. It splits an input
image into a set of non-overlapping patches and produces patch embeddings of
lower dimensionality. The network then adds positional embeddings to the patch
embeddings and passes them through a number of transformer blocks. An extra
learnable class embedding is also added to the patch embeddings to perform
classification. Although ViT has shown promising results in image classification,
it requires an extensive amount of data to generalize well. DeiT [53] addressed
this issue by introducing a distillation token designed to learn from a teacher net-
work. Additionally, it surpassed the performance of ViT. LV-ViT [31] proposed a
new objective function for training vision transformers and achieved better per-
formance. TimeSformer [1] proposed a new architecture for video understanding
by extending the self-attention mechanism of the standard transformer models
to video. The complexity of the TimeSformer’s self-attention is O(T 2S + TS2)
where T and S represent temporal and spatial locations respectively. X-ViT [2]
reduced this complexity to O(TS2) by proposing an efficient video transformer.

Besides the accuracy of neural networks, their efficiency plays an important
role in deploying them on edge devices. A wide range of techniques have been
proposed to speed up the inference of these models. To obtain deep networks that
can be deployed on different edge devices, works like [52] proposed more efficient
architectures by carefully scaling the depth, width, and resolution of a baseline
network based on different resource constraints. [26] aims to meet such resource
requirements by introducing hyper-parameters, which can be tuned to build
efficient light-weight models. The works [19,59] have adopted quantization tech-
niques to compress and accelerate deep models. Besides quantization techniques,
other approaches such as channel pruning [24], run-time neural pruning [45], low-
rank matrix decomposition [27,65], and knowledge distillation [25,38] have been
used as well to speed up deep networks.

In addition to the works that aim to accelerate the inference of convolutional
neural networks, other works aim to improve the efficiency of transformer-based
models. In the NLP area, Star-Transformer [21] reduced the number of con-
nections from n2 to 2n by changing the fully-connected topology into a star-
shaped structure. TinyBERT [32] improved the network’s efficiency by distilling
the knowledge of a large teacher BERT into a tiny student network. PoWER-
BERT [20] reduced the inference time of the BERT model by identifying and re-
moving redundant and less-informative tokens based on their importance scores
estimated from the self-attention weights of the transformer blocks. To reduce
the number of FLOPs in character-level language modeling, a new self-attention
mechanism with adaptive attention span is proposed in [51]. To enable fast per-
formance in unbatched decoding and improve the scalability of the standard
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transformers, Scaling Transformers [28] are introduced. These novel transformer
architectures are equipped with sparse variants of standard transformer layers.

To improve the efficiency of vision transformers, sparse factorization of the
dense attention matrix has been proposed [7], which reduces its complexity to
O(n

√
n) for the autoregressive image generation task. [48] tackled this problem

by proposing an approach to sparsify the attention matrix. They first cluster all
the keys and queries and only consider the similarities of the keys and queries
that belong to the same cluster. DynamicViT [46] proposed an additional predic-
tion module that predicts the importance of tokens and discards uninformative
tokens for the image classification task. Hierarchical Visual Transformer (HVT)
[42] employs token pooling, which is similar to feature map down-sampling in
convolutional neural networks, to remove redundant tokens. PS-ViT [68] incorpo-
rates a progressive sampling module that iteratively learns to sample distinctive
input tokens instead of uniformly sampling input tokens from all over the image.
The sampled tokens are then fed into a vision transformer module with fewer
transformer encoder layers compared to ViT. TokenLearner [49] introduces a
learnable tokenization module that can reduce the computational cost by learn-
ing few important tokens conditioned on the input. They have demonstrated that
their approach can be applied to both image and video understanding tasks. To-
ken Pooling [40] down-samples tokens by grouping them into a set of clusters
and returning the cluster centers. A concurrent work [36] introduces a token
reorganization method that first identifies top-k important tokens by computing
token attentiveness between the tokens and the classification token and then
fuses less informative tokens. IA-RED2 [41] proposes an interpretability-aware
redundancy reduction framework for vision transformers that discards less in-
formative patches in the input data. Most of the mentioned approaches improve
the efficiency of vision transformers by introducing architectural changes to the
original models or by adding modules that add extra learnable parameters to
the networks, while our parameter-free adaptive module can be incorporated into
off-the-shelf architectures and reduces their computational complexity without
significant accuracy drop and even without requiring any further training.

3 Adaptive Token Sampler

State-of-the-art vision transformers are computationally expensive since their
computational costs grow quadratically with respect to the number of tokens,
which is static at all stages of the network and corresponds to the number of
input patches. Convolutional neural networks deal with the computational cost
by reducing the resolution within the network using various pooling operations.
It means that the spatial or temporal resolution decreases at the later stages of
the network. However, applying such simple strategies, i.e. pooling operations
with fixed kernels, to vision transformers is not straightforward since the tokens
are permutation invariant. Moreover, such static down-sampling approaches are
not optimal. On the one hand, a fixed down-sampling method discards important
information at some locations of the image or video, like details of the object. On
the other hand, it still includes many redundant features that do not contribute
to the classification accuracy, for instance, when dealing with an image with a
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homogeneous background. Therefore, we propose an approach that dynamically
adapts the number of tokens at each stage of the network based on the input
data such that important information is not discarded and no computational
resources are wasted for processing redundant information.

To this end, we propose our novel Adaptive Token Sampler (ATS) module.
ATS is a parameter-free differentiable module to sample significant tokens over
the input tokens. In our ATS module, we first assign significance scores to the N
input tokens and then select a subset of these tokens based on their scores. The
upper bound of GFLOPs can be set by defining a maximum limit for the number
of tokens sampled, denoted by K. Since the sampling procedure can sample some
input tokens several times, we only keep one instance of a token. The number of
sampled tokens K ′ is thus usually lower than K and varies among input images
or videos (Fig. 6). Fig. 1 gives an overview of our proposed approach.

3.1 Token Scoring

Let I ∈ R
(N+1)×d be the input tokens of a self-attention layer with N + 1

tokens. Before forwarding the input tokens through the model, ViT concatenates
a classification token to the input tokens. The corresponding output token at
the final transformer block is then fed to the classification head to get the class
probabilities. Practically, this token is placed as the first token in each block
and it is considered as a classification token. While we keep the classification
token, our goal is to reduce the output tokens O ∈ R

(K′+1)×d such that K ′ is
dynamically adapted based on the input image or video and K ′ ≤ K ≤ N , where
K is a parameter that controls the maximum number of sampled tokens. Fig. 6
shows how the number of sampled tokens K ′ varies for different input data and
stages of a network. We first describe how each token is scored.

In a standard self-attention layer [57], the queries Q ∈ R
(N+1)×d, keys K ∈

R
(N+1)×d, and values V ∈ R

(N+1)×d are computed from the input tokens I ∈
R

(N+1)×d. The attention matrix A is then calculated by the dot product of the
queries and keys, scaled by

√
d:

A = Softmax
(

QKT /
√
d
)

. (1)

Due to the Softmax function, each row of A ∈ R
(N+1)×(N+1) sums up to 1. The

output tokens are then calculated using a combination of the values weighted by
the attention weights:

O = AV. (2)

Each row of A contains the attention weights of an output token. The weights
indicate the contributions of all input tokens to the output token. Since A1,:

contains the attention weights of the classification token, A1,j represents the
importance of the input token j for the output classification token. Thus, we
use the weights A1,2, . . . ,A1,N+1 as significance scores for pruning the attention
matrix A, as illustrated in Fig. 1. Note that A1,1 is not used since we keep the
classification token. As the output tokens O depend on both A and V (2), we also
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take into account the norm of Vj for calculating the jth token’s significance score.
The motivation is that values having a norm close to zero have a low impact and
their corresponding tokens are thus less significant. In our experiments, we show
that multiplying A1,j with the norm of Vj improves the results. The significance
score of a token j is thus given by

Sj =
A1,j × ||Vj ||

∑

i=2 A1,i × ||Vi||
(3)

where i, j ∈ {2 . . . N}. For a multi-head attention layer, we calculate the scores
for each head and then sum the scores over all heads.

3.2 Token Sampling

Having computed the significance scores of all tokens, we can prune their cor-
responding rows from the attention matrix A. To do so, a naive approach is to
select K tokens with the highest significance scores (top-K selection). However,
this approach does not perform well, as we show in our experiments and it can
not adaptively select K ′ ≤ K tokens. The reason why the top-K selection does
not work well is that it discards all tokens with lower scores. Some of these to-
kens, however, can be useful in particular at the earlier stages when the features
are less discriminative. For instance, having multiple tokens with similar keys,
which may occur in the early stages, will lower their corresponding attention
weights due to the Softmax function. Although one of these tokens would be
beneficial at the later stages, taking the top-K tokens might discard all of them.
Therefore, we suggest sampling tokens based on their significance scores. In this
case, the probability of sampling one of the several similar tokens is equal to
the sum of their scores. We also observe that the proposed sampling procedure
selects more tokens at the earlier stages than the later stages as shown in Fig. 2.

For the sampling step, we suggest using inverse transform sampling to sample
tokens based on their significance scores S (3). Since the scores are normalized,
they can be interpreted as probabilities and we can calculate the cumulative
distribution function (CDF) of S:

CDFi =

j=i
∑

j=2

Sj . (4)

Note that we start with the second token since we keep the first token. Having
the cumulative distribution function, we obtain the sampling function by taking
the inverse of the CDF:

Ψ(k) = CDF−1(k) (5)

where k ∈ [0, 1]. In other words, the significance scores are used to calculate the
mapping function between the indices of the original tokens and the sampled
tokens. To obtain K samples, we can sample K-times from the uniform distri-
bution U [0, 1]. While such randomization might be desirable for some applica-
tions, deterministic inference is in most cases preferred. Therefore, we use a fixed
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sampling scheme for training and inference by choosing k = { 1
2K , 3

2K . . . , 2K−1
2K }.

Since Ψ(.) ∈ R, we consider the indices of the tokens with the nearest significant
scores as the sampling indices.

If a token is sampled more than once, we only keep one instance. As a con-
sequence, the number of unique indices K ′ is often lower than K as shown in
Fig. 6. In fact, K ′ < K if there is at least one token with a score Sj ≥ 2/K. In
the two extreme cases, either only one dominant token is selected and K ′ = 1 or
K ′ = K if the scores are more or less balanced. Interestingly, more tokens are
selected at the earlier stages, where the features are less discriminative and the
attention weights are more balanced, and less at the later stages, as shown in
Fig. 2. The number and locations of tokens also vary for different input images,
as shown in Fig. 7. For images with a homogeneous background that covers a
large part of the image, only a few tokens are sampled. In this case, the tokens
cover the object in the foreground and are sparsely but uniformly sampled from
the background. In cluttered images, many tokens are required. It illustrates the
importance of making the token sampling procedure adaptive.

Having indices of the sampled tokens, we refine the attention matrix A ∈
R

(N+1)×(N+1) by selecting the rows that correspond to the sampled K ′ + 1
tokens. We denote the refined attention matrix by As ∈ R

(K′+1)×(N+1). To
obtain the output tokens O ∈ R

(K′+1)×d, we thus replace the attention matrix
A by the refined one As in (2) such that:

O = AsV. (6)

These output tokens are then taken as input for the next stage. In our experi-
mental evaluation, we demonstrate the efficiency of the proposed adaptive token
sampler, which can be added to any vision transformer.

4 Experiments
In this section, we analyze the performance of our ATS module by adding it
to different backbone models and evaluating them on ImageNet [9], Kinetics-
400 [33], and Kinetics-600 [4], which are large-scale image and video classification
datasets, respectively. In addition, we perform several ablation studies to better
analyze our method. For the image classification task, we evaluate our proposed
method on the ImageNet [9] dataset with 1.3M images and 1K classes. For the
action classification task, we evaluate our approach on the Kinetics-400 [33] and
Kinetics-600 [4] datasets with 400 and 600 human action classes, respectively. We
use the standard training/testing splits and protocols provided by the ImageNet
and Kinetics datasets. If not otherwise stated, the number of output tokens of
the ATS module are limited by the number of its input tokens. For example,
we set K = 197 in case of DeiT-S [53]. For the image classification task, we
follow the fine-tuning setup of [46] if not mentioned otherwise. The fine-tuned
models are initialized by their backbones’ pre-trained weights and trained for
30 epochs using PyTorch AdamW optimizer (lr= 5e−4, batch size = 8 × 96).
We use the cosine scheduler for training the networks. For more implementation
details and also information regarding action classification models, please refer
to the supplementary materials.
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Fig. 2. Visualization of the gradual token sampling procedure in the multi-stage DeiT-
S+ATS model. As it can be seen, at each stage, those tokens that are considered to
be less significant to the classification are masked and the ones that have contributed
the most to the model’s prediction are sampled. We also visualize the token sampling
results with Top-K selection to have a better comparison to our Inverse Transform
Sampling.

4.1 Ablation Experiments

First, we analyze different setups for our ATS module. Then, we investigate the
efficiency and effects of our ATS module when incorporated in different models.
If not otherwise stated, we use the pre-trained DeiT-S [53] model as the backbone
and we do not fine-tune the model after adding the ATS module. We integrate
the ATS module into stage 3 of the DeiT-S [53] model. We report the results on
the ImageNet-1K validation set in all of our ablation studies.

Significance Scores As mentioned in Sec. 3.1, we use the attention weights of
the classification token as significance scores for selecting our candidate tokens.
In this experiment, we evaluate different approaches for calculating significance
scores. Instead of directly using the attention weights of the classification token,
we sum over the attention weights of all tokens (rows of the attention matrix) to
find tokens with highest significance over other tokens. We show the results of
this method in Fig. 3 labeled as Self-Attention score. As it can be seen, using the
attention weights of the classification token performs better specially in lower
FLOPs regimes. The results show that the attention weights of the classification
token are a much stronger signal for selecting the candidate tokens. The reason
for this is that the classification token will later be used to predict the class
probabilities in the final stage of the model. Thus, its corresponding attention
weights show which tokens have more impact on the output classification token.
Whereas summing over all attention weights only shows us the tokens with
highest attention from all other tokens, which may not necessarily be useful for
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Fig. 3. Impact of different score as-
signment methods. To achieve different
GFLOPs levels, we bound the value of
K from above such that the average
GFLOPs of our adaptive models over the
ImageNet validation set reaches the de-
sired level. For more details, please refer
to the supplementary material.

Fig. 4. Performance comparison on
the ImageNet validation set. Our pro-
posed adaptive token sampling method
achieves a state-of-the-art trade-off be-
tween accuracy and GFLOPs. We can
reduce the GFLOPs of DeiT-S by 37%
while almost maintaining the accuracy.

the classification token. To better investigate this observation, we also randomly
select another token rather than the classification token and use its attention
weights for the score assignment. As shown, this approach performs much worse
than the other ones both in high and low FLOPs regimes. We also investigate
the impact of using the L2 norm of the values in (3). As it can be seen in Fig. 3,
it improves the results by about 0.2%.

(a) Sampling Methods (b) Fine-tuning (c) Multi vs. Single Stage

Fig. 5. For the model with Top-K selection (fixed-rate sampling) (5a), we set K such
that the model operates at a desired GFLOPs level. In all three plots, we control
the GFLOPs level of our adaptive models as in Fig. 3. We use DeiT-S [53] for these
experiments. For more details, please refer to the supplementary material.

Candidate Tokens Selection As mentioned in Sec. 3.2, we employ the inverse
transform sampling approach to softly downsample the input tokens. To better
investigate this approach, we also evaluate the model’s performance when picking
the top K tokens with highest significance scores S. As it can be seen in Fig. 5a,
our inverse transform sampling approach outperforms the Top-K selection both
in high and low GFLOPs regimes. As discussed earlier, our inverse transform
sampling approach based on the CDF of the scores does not hardly discard all
tokens with lower significance scores and hence provides a more diverse set of
tokens for the following layers. Since earlier transformer blocks are more prone
to predict noisier attention weights for the classification token, such a diversified
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set of tokens can better contribute to the output classification token of the
final transformer block. Moreover, the Top-K selection method will result in
a fixed token selection rate at every stage that limits the performance of the
backbone model. This is shown by the examples in Fig. 2. For a cluttered image
(bottom), inverse transform sampling keeps a higher number of tokens across
all transformer blocks compared to the Top-K selection and hence preserves the
accuracy. On the other hand, for a less detailed image (top), inverse transform
sampling will retain less tokens, which results in less computation cost.

Model Scaling Another common approach for changing the GFLOPs/accuracy
trade-off of networks is to change the channel dimension. To demonstrate the
efficiency of our adaptive token sampling method, we thus vary the dimension-
ality. To this end, we first train several DeiT models with different embedding
dimensions. Then, we integrate our ATS module into the stages 3 to 11 of these
DeiT backbones and fine-tune the networks. In Fig. 4, we can observe that our
approach can reduce GFLOPs by 37% while maintaining the DeiT-S backbone’s
accuracy. We can also observe that the GFLOPs reduction rate gets higher as
we increase the embedding dimensions from 192 (DeiT-Ti) to 384 (DeiT-S). The
results show that our ATS module can reduce the computation cost of the mod-
els with larger embedding dimensions to their variants with smaller embedding
dimensions.

Visualizations To better understand the way our ATS module operates, we
visualize our token sampling procedure (Inverse Transform Sampling) in Fig. 2.
We have incorporated our ATS module in the stages 3 to 11 of the DeiT-S
network. The tokens that are discarded at each stage are represented as a mask
over the input image. We observe that our DeiT-S+ATS model has gradually
removed irrelevant tokens and sampled those tokens which are more significant
to the model’s prediction. In both examples, our method identified the tokens
that are related to the target objects as the most informative tokens.

Adaptive Sampling In this experiment, we investigate the adaptivity of our
token sampling approach. We evaluate our multi-stage DeiT-S+ATS model on
the ImageNet validation set. In Fig. 6, we visualize histograms of the number of
sampled tokens at each ATS stage. We can observe that the number of selected
tokens varies at all stages and for all images. We also qualitatively analyze this
nice property of our ATS module in Figs. 2 and 7. We can observe that our
ATS module selects a higher number of tokens when it deals with detailed and
complex images while it selects a lower number of tokens for less detailed images.

Fine-tuning To explore the influence of fine-tuning on the performance of our
approach, we fine-tune a DeiT-S+ATS model on the ImageNet training set. We
compare the model with and without fine-tuning. As shown in Fig. 5b, fine-
tuning can improve the accuracy of the model. In this experiment, we fine-tune
the model with K = 197 but test it with different K values to reach the desired
GFLOPs levels.

ATS Stages In this experiment, we explore the effect of single-stage and multi-
stage integration of the ATS block into vision transformer models. In the single-
stage model, we integrate our ATS module into the stage 3 of DeiT-S. In the
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Fig. 6. Histogram of the number of sam-
pled tokens at each ATS stage of our
multi-stage DeiT-S+ATS model on the
ImageNet validation set. The y-axis cor-
responds to the number of images and the
x-axis to the number of sampled tokens.

Fig. 7. ATS samples less tokens for
images with fewer details (top), and a
higher number of tokens for more de-
tailed images (bottom). We show the
token downsampling results after all
ATS stages. For this experiment, we
use a multi-stage Deit-S+ATS model.

multi-stage model, we integrate our ATS module into the stages 3 to 11 of DeiT-
S. As it can be seen in Fig. 5c, the multi-stage DeiT-S+ATS performs better
than the single-stage DeiT-S+ATS. This is due to the fact that a multi-stage
DeiT-S+ATS model can gradually decrease the GFLOPs by discarding fewer
tokens in earlier stages, while a single-stage DeiT-S+ATS model has to discard
more tokens in earlier stages to reach the same GFLOPs level.

4.2 Comparison with state-of-the-art

We compare the performances of our adaptive models, which are equipped with
the ATS module, with state-of-the-art vision transformers for image and video
classification on the ImageNet-1K [9] and Kinetics [4, 33] datasets, respectively.
Tables 1-3 show the results of this comparison. For the image classification task,
we incorporate our ATS module into the stages 3 to 11 of the DeiT-S [53] model.
We also integrate our ATS module into the 1st to 9th blocks of the 3rd stage of
CvT-13 [63] and CvT-21 [63], and into stages 1-9 of the transformer module of
PS-ViT [68]. We fine-tune the models on the ImageNet-1K training set. We also
evaluate our ATS module for action recognition. To this end, we add our module
to the XViT [2] and TimeSformer [1] video vision transformers. For more details,
please refer to the supplementary materials.
Image Classification As it can be seen in Table 1, our ATS module decreases
the GFLOPs of all vision transformer models without adding any extra pa-
rameters to the backbone models. For the DeiT-S+ATS model, we observe a
37% GFLOPs reduction with only 0.1% reduction of the top-1 accuracy. For
the CvT+ATS models, we can also observe a GFLOPs reduction of about 30%
with 0.1 − 0.2% reduction of the top-1 accuracy. More details on the efficiency
of our ATS module can be found in the supplementary materials (e.g . through-
put). Comparing ATS to DynamicViT [46] and HVT [42], which add additional
parameters to the model, our approach achieves a better trade-off between accu-
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racy and GFLOPs. Our method also outperforms the EViT-DeiT-S [36] model
trained for 30 epochs without adding any extra trainable parameters to the
model. We note that the EViT-DeiT-S model can improve its top-1 accuracy by
around 0.3% when it is trained for much more training epochs (e.g . 100 epochs).
For a fair comparison, we have considered the 30 epochs training setup used
by Dynamic-ViT [46]. We have also added our ATS module to the PS-ViT net-
work [68]. As it can be seen in Table 1, although PS-ViT has drastically lower
GFLOPs compared to its counterparts, its GFLOPs can be further decreased by
incorporating ATS in it.
Action Recognition As it can be seen in Tables 2 and 3, our ATS module dras-
tically decreases the GFLOPs of all video vision transformers without adding
any extra parameters to the backbone models. For the XViT+ATS model, we
observe a 39% GFLOPs reduction with only 0.2% reduction of the top-1 ac-
curacy on Kinetics-400 and a 38.7% GFLOPs reduction with only 0.1% drop
of the top-1 accuracy on Kinetics-600. We observe that XViT+ATS achieves
a similar accuracy as TokenLearner [49] on Kinetics-600 while requiring 17.6×
less GFLOPs. For TimeSformer-L+ATS, we can observe 50.8% GFLOPs reduc-
tion with only 0.2% drop of the top-1 accuracy on Kinetics-400. These results
demonstrate the generality of our approach that can be applied to both image
and video representations.

5 Conclusion
Designing computationally efficient vision transformer models for image and
video recognition is a challenging task. In this work, we proposed a novel dif-
ferentiable parameter-free module called Adaptive Token Sampler (ATS) to in-
crease the efficiency of vision transformers for image and video classification.
The new ATS module selects the most informative and distinctive tokens within
the stages of a vision transformer model such that as much tokens as needed but
not more than necessary are used for each input image or video clip. By inte-
grating our ATS module into the attention layers of current vision transformers,
which use a static number of tokens, we can convert them into much more ef-
ficient vision transformers with an adaptive number of tokens. We showed that
our ATS module can be added to off-the-shelf pre-trained vision transformers
as a plug and play module, thus reducing their GFLOPs without any additional
training, but it is also possible to train a vision transformer equipped with the
ATS module thanks to its differentiable design. We evaluated our approach on
the ImageNet-1K image recognition dataset and incorporated our ATS module
into three different state-of-the-art vision transformers. We also demonstrated
the generality of our approach by incorporating it into different state-of-the-art
video vision transformers and evaluating them on the Kinetics-400 and Kinetics-
600 datasets. The results show that the ATS module decreases the computation
cost (GFLOPs) between 27% and 50.8% with a negligible accuracy drop. Al-
though our experiments are focused on image and video vision transformers, we
believe that our approach can also work in other domains such as audio.
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Table 1. Comparison of the multi-stage
ATS models with state-of-the-art im-
age classification models with comparable
GFLOPs on the ImageNet validation set.
We equip DeiT-S [53], PS-ViT [68], and
variants of CvT [63] with our ATS mod-
ule and fine-tune them on the ImageNet
training set.

Model Params (M) GFLOPs Resolution Top-1

ViT-Base/16 [13] 86.6 17.6 224 77.9

HVT-S-1 [42] 22.09 2.4 224 78.0
IA-RED2 [41] - 2.9 224 78.6
DynamicViT-DeiT-S (30 Epochs) [46] 22.77 2.9 224 79.3
EViT-DeiT-S (30 epochs) [36] 22.1 3.0 224 79.5
DeiT-S+ATS (Ours) 22.05 2.9 224 79.7
DeiT-S [53] 22.05 4.6 224 79.8

PVT-Small [60] 24.5 3.8 224 79.8
CoaT Mini [64] 10.0 6.8 224 80.8
CrossViT-S [5] 26.7 5.6 224 81.0
PVT-Medium [60] 44.2 6.7 224 81.2
Swin-T [39] 29.0 4.5 766 81.3
T2T-ViT-14 [67] 22.0 5.2 224 81.5
CPVT-Small-GAP [8] 23.0 4.6 817 81.5

CvT-13 [63] 20.0 4.5 224 81.6
CvT-13+ATS (Ours) 20.0 3.2 224 81.4

PS-ViT-B/14 [68] 21.3 5.4 224 81.7
PS-ViT-B/14+ATS (Ours) 21.3 3.7 224 81.5

RegNetY-8G [44] 39.0 8.0 224 81.7
DeiT-Base/16 [53] 86.6 17.6 224 81.8
CoaT-Lite Small [64] 20.0 4.0 224 81.9
T2T-ViT-19 [67] 39.2 8.9 224 81.9
CrossViT-B [5] 104.7 21.2 224 82.2
T2T-ViT-24 [67] 64.1 14.1 224 82.3

PS-ViT-B/18 [68] 21.3 8.8 224 82.3
PS-ViT-B/18+ATS (Ours) 21.3 5.6 224 82.2

CvT-21 [63] 32.0 7.1 224 82.5
CvT-21+ATS (Ours) 32.0 5.1 224 82.3

TNT-B [22] 66.0 14.1 224 82.8
RegNetY-16G [44] 84.0 16.0 224 82.9
Swin-S [39] 50.0 8.7 224 83.0

CvT-13384 [63] 20.0 16.3 384 83.0
CvT-13384+ATS (Ours) 20.0 11.7 384 82.9

Swin-B [39] 88.0 15.4 224 83.3
LV-ViT-S [30] 26.2 6.6 224 83.3

CvT-21384 [63] 32.0 24.9 384 83.3
CvT-21384+ATS (Ours) 32.0 17.4 384 83.1

Table 2. Comparison with state-of-
the-art on Kinetics-400.

Model Top-1 Top-5 Views GFLOPs

STC [10] 68.7 88.5 112 -
bLVNet [15] 73.5 91.2 3×3 840
STM [37] 73.7 91.6 - -
TEA [35] 76.1 92.5 10×3 2,100
TSM R50 [29] 74.7 - 10×3 650
I3D NL [62] 77.7 93.3 10×3 10,800
CorrNet-101 [58] 79.2 - 10×3 6,700
ip-CSN-152 [55] 79.2 93.8 10×3 3,270
HATNet [11] 79.3 - - -
SlowFast 16×8 R101+NL [18] 79.8 93.9 10×3 7,020
X3D-XXL [17] 80.4 94.6 10×3 5,823

TimeSformer-L [1] 80.7 94.7 1×3 7,140
TimeSformer-L+ATS (Ours) 80.5 94.6 1×3 3,510

ViViT-L/16x2 [1] 80.6 94.7 4×3 17,352
MViT-B, 64×3 [14] 81.2 95.1 3×3 4,095

X-ViT (16×) [2] 80.2 94.7 1×3 425
X-ViT+ATS (16×) (Ours) 80.0 94.6 1×3 259

TokenLearner 16at12 (L/16) [49] 82.1 - 4×3 4,596

Table 3. Comparison with state-of-
the-art on Kinetics-600.

Model Top-1 Top-5 Views GFLOPs

AttentionNAS [61] 79.8 94.4 - 1,034
LGD-3D R101 [43] 81.5 95.6 10×3 -
HATNET [11] 81.6 - - -
SlowFast R101+NL [18] 81.8 95.1 10×3 3,480
X3D-XL [17] 81.9 95.5 10×3 1,452
X3D-XL+ATFR [16] 82.1 95.6 10×3 768

TimeSformer-HR [1] 82.4 96 1×3 5,110
TimeSformer-HR+ATS (Ours) 82.2 96 1×3 3,103

ViViT-L/16x2 [1] 82.5 95.6 4×3 17,352
Swin-B [39] 84.0 96.5 4×3 3,384
MViT-B-24, 32×3 [14] 84.1 96.5 1×5 7,080
TokenLearner 16at12(L/16) [49] 84.4 96.0 4×3 9,192

X-ViT (16×) [2] 84.5 96.3 1×3 850
X-ViT+ATS (16×) (Ours) 84.4 96.2 1×3 521
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