Table 1: Details of teacher models. The head dimensions of all the models are
set to 64. ‘ks’ means kernel size. ‘st’ means stride. ‘oc’ means output channel
number.

Teacher |Student|Resolution|Depth|Heads Patch Stem
(ks, st, oc)

(3x3, 2x2, 40)

Our . . 2 (3x3, 2x2, 80)
LyvoviTori| ST 224 14 5 |(3x3, 2x2, 160)
(3x3, 2x2, 320)

(3x3, 2x2, 48)

Our |SiT-XS ) (3x3, 2x2, 96)
IV-ViT-S | siT-s | 224 1616 133, 2x2, 192)
(33, 2x2, 384)

(3x3, 2x2, 64)

Our . 9 (3x3, 2x2, 128)
pv-viTm | SITM | 224 20018 1 (3x3, 2x2, 256)
(3x3, 2x2, 512)

(3x3, 2x2, 96)

(3x3, 1x1, 96)

Our . 9 (3x3, 1x1, 96)
pv-viT.p, | STk | 288 20112 303, 22, 192)
(3x3, 2x2, 384)

(3x3, 2x2, T68)

Table 2: Robustness analysis based on our LV-ViT-S.

Ratio Liogits+Lioken Lhard
1 83.3 83.3
0.75 83.2 83.0
0.5 82.6 82.2
0.25 80.9 80.0

A More details about teacher models

Table 1 shows more details about our teacher models. We elaborately design
different patch stems for our LV-ViT [1] models.

B More robustness analysis.

We conduct more analysis based on our LV-ViT-S in Table 2. It shows that
our self-slimmed learning is also robust to different FLOPs ratios on LV-ViT-
S. Moreover, our method still performs better than CNN distillation on larger
model.



Table 3: More results on DeiT. “DeiT p” indicates the original DeiT and “DeiT¢”
refers to the variant with lightweight convolutional patch embedding stacked by
four 3x3 convolutions (2x2 stride) and one point-wise convolution.

FLOPs FLOPs| Liogits Throughput ImageNet

Model ratio  (G) —&—Elti;;n Lhara (imagge/z) Top—gl(%)
1.1 6413(3.9x) 71.6(-8.2)

095 L1 v 6413(3.9x) 75.9(-3.9)

1.1 V' |6286(3.8x) 72.9(-6.9)

1.1 v V' |6286(3.8x) 75.3(-4.5)

2.3 3308(2.0x) 78.6(—1.3)

DeiTp-S| 0.5 2.3 v 3308(2.0x) 79.4(—0.4)
2.3 v |3262(2.0x) 78.8(—1.0)

2.3 v v [3262(2.0x) 79.8(+0.0)

1 4.6 1637 79.8

1.1 5898(3.7x) 76.1(-3.9)

095 L1 v 5808(3.7x) 78.4(-1.6)

1.1 V' |5830(3.7x) 77.5(-2.5)

1.1 v v |5830(3.7x) 78.8(-1.2)

2.3 3150(2.0x) 79.1(—0.9)

DeiTe-S| 05 23 v 3150(2.0x) 79.9(—0.1)
2.3 v’ |3106(1.9%) 80.3(+0.3)

2.3 4 v’ [3106(1.9x) 80.6(+0.6)

1 4.6 1597 80.0

C More experiments on DeiT

We also verify the effectiveness of our self-slimmed learning on DeiT as illustrated
in Table 3. For the FLOPs ratio of 0.5 and 0.25, the stage numbers are {3,4,3,2}
and {1,1,1,9} respectively. Specifically, we conduct the experiments on the orig-
inal DeiT [4] and its variant with lightweight convolutional patch embedding.
Both models achieve similar accuracy with the same computational costs. How-
ever, we observe the performance of their students is quite different especially at
a small FLOPs ratio. DeiT p suffers severe performance deterioration when 75%
computation is reduced, while DeiT¢ only drops the accuracy by 2.5%. More
importantly, DeiT¢ generally obtain higher accuracies than DeiTp at a rela-
tively higher FLOPs ratio. It demonstrates that the models with convolutional
patch embedding are more redundant and friendly to slimming. In addition, we
also compare our DKD with the CNN distillation under different settings. The
layer-to-layer dense knowledge distillation consistently brings more performance
gains than CNN distillation. It is worth mentioning that, self-slimmed learning is
also complementary to the extra CNN distillation. Surprisingly, the best student
model of DeiT¢ even outperforms the teacher by 0.6% top-1 accuracy while run-
ning 2x faster under the joint supervision. These results prove the effectiveness
and generalization ability of our self-slimmed learning.



Table 4: Comparisons between DynamicViT and our SiT on DeiT.

DynamicViT SiT

Model FrI;Ct)iSS #F(IéO)PS Throughput ImageNet | Throughput ImageNet
(image/s) Top-1(%) | (image/s) Top-1(%)
DeiT p-g|_0-25 1.1 |6254(3.8x) 65.6(-14.2)[6413(3.9x) 75.9(—3.9)
0.5 2.3 3248(2.0x) 78.4(-1.4) |{3308(2.0x) 79.4(—0.4)

1 4.6 1637 79.8 1637 79.8
DeiTe-S 0.25 1.1 5689(83.6x) 73.4(-6.6) |5898(3.7x) 78.4(—1.6)
0.5 2.3 3092(1.9x) 79.2(-0.8) {3150(2.0x) 79.9(—0.1)

1 4.6 1597 80.0 1597 80.0

As described in Table 4, we further compare our self-slimmed learning with
the recent method, i.e., DynamicViT. We observe that our SiT runs slightly
faster than DynamicViT with the same FLOPs, which reveals our TSM presents
better inference efficiency than the prediction module of DynamicViT. More
importantly, thanks to the soft-slimming designs, SiT outperforms DynamicViT
by a large margin (5.3%-10.0%) at the FLOPs ratio of 0.25. For the large FLOPs
ratio, our SiT still obtains at least 0.7% higher accuracy than DynamicViT,
proving the soft slimming triumphs the hard dropping manner.

D More experiments on Swin Transformer

Model Baseline Baseline+SiT
Throughput Top-1 Throughput Top-1

Swin-T 1023 81.2 1183 (4+15.6%) 81.2

Swin-S 652 83.0 855 (+31.1%) 83.0

Table 5: SiT for hierarchical networks.

Note that the recent slimming methods [3] only works for vanilla ViTs. Since the
hierarchical ViTs generally introduce structured operations like convolution and
relative position bias, it’s not suitable for arbitrary token dropping. To verify the
generality of our SiT, we adapt the typical hierarchical network (i.e., Swin) with
SiT, modifying some of the structured operations. Table 5 shows that arming
Swin with SiT, we can also improve its throughput without accuracy drop. We
will focus on more elegant token slimming method in the future.

E More visualizations

Qualitative token slimming visualization. We present more visualizations
of our progressive token slimming in Figure 2.
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Fig.1: Cross CKA heatmap between different student models and the
teacher models. We adopt LV-ViT-S [I] as student. Transfering knowledge
densely from same structure yields the largest similarity.

Qualitative FRD visualization. In Fig. 1, we compute the CKA [2] heatmap
by comparing all layers of the student models (LV-ViT-S) with all layers of
their teacher models. It shows that the CKA similarities between the similar
structures are generally higher than those between different structures (0.75/0.85
vs. 0.33/0.38). Interestingly, we find the pre-trained weights inherited by the
student force itself to be similar to its teacher. Besides, for similar structures,
the CKA similarities in the shallow layers are higher than those in deep layers.
It is mainly because we slim a large number of tokens after the third layer,
leading to an inevitable information loss. As for different structures, the CKA
similarities in the deep layers are higher than those in shallow layers, which
is mainly because the logits distillation provides direct supervision for features
in the deeper layers. Note that the above observations are consistent with the
results in our experiments, which reveals that teachers with similar structures
can transfer structure knowledge better for higher performance.
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Fig. 2: More visualizations of our SiT.



