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Abstract. Neural networks are vulnerable to adversarial attacks: adding
well-crafted, imperceptible perturbations to their input can modify their
output. Adversarial training is one of the most effective approaches in
training robust models against such attacks. However, it is much slower
than vanilla training of neural networks since it needs to construct adver-
sarial examples for the entire training data at every iteration, hampering
its effectiveness. Recently, Fast Adversarial Training (FAT) was proposed
that can obtain robust models efficiently. However, the reasons behind its
success are not fully understood, and more importantly, it can only train
robust models for ℓ∞-bounded attacks as it uses FGSM during training.
In this paper, by leveraging the theory of coreset selection, we show how
selecting a small subset of training data provides a general, more prin-
cipled approach toward reducing the time complexity of robust training.
Unlike existing methods, our approach can be adapted to a wide vari-
ety of training objectives, including TRADES, ℓp-PGD, and Perceptual
Adversarial Training (PAT). Our experimental results indicate that our
approach speeds up adversarial training by 2-3 times while experiencing
a slight reduction in the clean and robust accuracy.
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1 Introduction

Neural networks have achieved great success in the past decade. Today, they are
one of the primary candidates in solving a wide variety of machine learning tasks,
from object detection and classification [12,42] to photo-realistic image genera-
tion [14,38] and beyond. Despite their impressive performance, neural networks
are vulnerable to adversarial attacks [3,35]: adding well-crafted, imperceptible
perturbations to their input can change their output. This unexpected behavior
of neural networks prevents their widespread deployment in safety-critical appli-
cations, including autonomous driving [8] and medical diagnosis [24]. As such,
training robust neural networks against adversarial attacks is of paramount im-
portance and has gained lots of attention.
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Adversarial training is one of the most successful approaches in defending
neural networks against adversarial attacks.1 This approach first constructs a
perturbed version of the training data. Then, the neural network is optimized
on these perturbed inputs instead of the clean samples. This procedure must
be done iteratively as the perturbations depend on the neural network weights.
Since the weights are optimized during training, the perturbations must also be
adjusted for each data sample in every iteration.

Various adversarial training methods primarily differ in how they define and
find the perturbed version of the input [25,44,22]. However, they all require repet-
itive construction of these perturbations during training which is often cast as
another non-linear optimization problem. As such, the time and computational
complexity of adversarial training is massively higher than vanilla training. In
practice, neural networks require massive amounts of training data [1] and need
to be trained multiple times with various hyper-parameters to get their best per-
formance [16]. Thus, reducing the time/computational complexity of adversarial
training is critical in enabling the environmentally efficient application of robust
neural networks in real-world scenarios [33,34].

Fast Adversarial Training (FAT) [41] is a successful approach proposed for
efficient training of robust neural networks. Contrary to the common belief
that building the perturbed versions of the inputs using Fast Gradient Sign
Method (FGSM) [10] does not help in training arbitrary robust models [36,25],
Wong et al. [41] show that by carefully applying uniformly random initialization
before the FGSM step one can make this training approach work. Using FGSM
to generate the perturbed input in a single step combined with implementation
tricks such as mixed precision and cyclic learning rate, FAT can significantly
reduce the training time of robust neural networks.

Despite its success, FAT may exhibit unexpected behavior in different set-
tings. For instance, it was shown that FAT suffers from catastrophic overfitting
where the robust accuracy during training suddenly drops to 0% [41,2]. A more
fundamental issue with FAT and its variations such as GradAlign [2] is that
they are specifically designed and implemented for ℓ∞ adversarial training. This
is because FGSM, particularly an ℓ∞ perturbation generator, is at the heart of
these methods. As a result, the quest for a unified, systematic approach that can
reduce the time complexity of all types of adversarial training is not over.

Motivated by the limited scope of FAT, in this paper we take an important
step towards finding a general yet principled approach for reducing the time
complexity of adversarial training. We notice that repetitive construction of ad-
versarial examples for each data point is the main bottleneck of robust training.
While this process needs to be done iteratively, we speculate that perhaps we

1 Note that adversarial training in the literature generally refers to a particular ap-
proach proposed by Madry et al. [25]. For the purposes of this paper, we refer to
any method that builds adversarial attacks around the training data and incorpo-
rates them into the training of the neural network as adversarial training. Using this
taxonomy, methods such as TRADES [44], ℓp-PGD [25] or Perceptual Adversarial
Training (PAT) [22] are all considered different versions of adversarial training.
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Fig. 1: Overview of neural network training using coreset selection. (a) Selection
is done every T epochs. During the next episodes, the network is only trained
on this subset. (b) Coreset selection module for vanilla training. (c) Coreset
selection module for adversarial training.

can find a subset of the training data that is more important to robust network
optimization than the rest. Specifically, we ask the following research question:
Can we train an adversarially robust neural network using a subset of the entire
training data without sacrificing clean or robust accuracy?

In this paper, we show that the answer to this question is affirmative: by
selecting a weighted subset of the data based on the neural network state, we
run weighted adversarial training only on this selected subset. We draw an el-
egant connection between adversarial training and adaptive coreset selection
algorithms to achieve this goal. In particular, we use Danskin’s theorem and
demonstrate how the entire training data can effectively be approximated with
an informative weighted subset. To conduct this selection, our study shows that
one needs to build adversarial examples for the entire training data and solve a
respective subset selection objective. Afterward, training can be performed on
this selected subset of the training data. In our approach, shown in Fig. 1, adver-
sarial coreset selection is only required every few epochs, effectively reducing the
training time of robust learning algorithms. We demonstrate how our proposed
method can be used as a general framework in conjunction with different adver-
sarial training objectives, opening the door to a more principled approach for
efficient training of robust neural networks in a general setting. Our experimen-
tal results show that one can reduce the training time of various robust training
objectives by 2-3 times without sacrificing too much clean or robust accuracy.
In summary, we make the following contributions:

– We propose a practical yet principled algorithm for efficient training of ro-
bust neural networks based on adaptive coreset selection. To the best of our
knowledge, we are the first to use coreset selection in adversarial training.

– We show that our approach can be applied to a variety of robust learning
objectives, including TRADES [44], ℓp-PGD [25] and Perceptual [22] Adver-
sarial Training. Our approach encompasses a broader range of robust models
compared to the limited scope of the existing methods.
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– Through extensive experiments, we show that the proposed approach can
result in a 2-3 fold reduction of the training time, with only a slight reduction
in the clean and robust accuracy.

2 Background and Related Work

2.1 Adversarial Training

Let D = {(xi, yi)}ni=1 ⊂ X×C denote a training dataset consisting of n i.i.d. sam-
ples. Each data point contains an input data xi from domain X and an associated
label yi taking one of k possible values C = [k] = {1, 2, . . . , k}. Without loss of
generality, in this paper we focus on the image domain X. Furthermore, assume
that fθ : X → Rk denotes a neural network classifier with parameters θ that
takes x ∈ X as input and maps it to a logit value fθ(x) ∈ Rk. Then, train-
ing a neural network in its most general format can be written as the following
minimization problem:

min
θ

∑
i∈V

Φ (xi, yi; fθ) , (1)

Here, Φ (x, y; fθ) is a function that takes a data point (x, y) and a function fθ
as its inputs, and its output is a measure of discrepancy between the input x
and its ground-truth label y. Also, V = [n] = {1, 2, . . . , n} denotes the entire
training data. By writing the training objective in this format, we can denote
both vanilla and adversarial training using the same notation. Below we show
how various choices of the function Φ amount to different training objectives.

Vanilla Training. In case of vanilla training, the function Φ is a simple evalu-
ation of an appropriate loss function over the neural network output fθ(x) and
the ground-truth label y. For instance, for vanilla training we can have:

Φ (x, y; fθ) = LCE (fθ(x), y) , (2)

where LCE(·, ·) is the cross-entropy loss.

FGSM, ℓp-PGD, and Perceptual Adversarial Training. In these cases,
the training objective is itself an optimization problem:

Φ (x, y; fθ) = max
x̃

LCE (fθ(x̃), y) s.t. d (x̃,x) ≤ ε (3)

where d(·, ·) is an appropriate distance measure over image domain X, and ε
denotes a scalar. The constraint over d(x̃,x) is used to ensure visual similarity
between x̃ and x. Solving Eq. (3) amounts to finding an adversarial example
x̃ for the clean sample x [25]. Different choices of the visual similarity measure
d(·, ·) and solvers for Eq. (3) result in different adversarial training objectives.

– FGSM [10] assumes that d(x̃,x) = ∥x̃− x∥∞. Using this ℓ∞ assumption,
the solution to Eq. (3) is computed using one iteration of gradient ascent.
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– ℓp-PGD [25] utilizes ℓp norms as a proxy for visual similarity d(·, ·). Then,
several steps of projected gradient ascent is taken to solve Eq. (3).

– Perceptual Adversarial Training (PAT) [22] replaces d(·, ·) with Learned Per-
ceptual Image Patch Similarity (LPIPS) distance [45]. Then, Laidlaw et
al. [22] propose to solve this maximization objective using either projected
gradient ascent or Lagrangian relaxation.

TRADES Adversarial Training. This approach uses a combination of Eqs. (2)
and (3). The intuition behind TRADES [44] is to create a trade-off between clean
and robust accuracy. In particular, the objective is written as:

Φ (x, y; fθ) = LCE (fθ(x), y) + max
x̃

LCE (fθ(x̃), fθ(x)) /λ, (4)

such that d(x̃,x) ≤ ε. Here, λ is a coefficient that controls the trade-off.

2.2 Coreset Selection

Adaptive data subset selection, and coreset selection in general, is concerned with
finding a weighted subset of the data that can approximate specific attributes
of the entire population [9]. Traditionally, coreset selection has been used for
different machine learning tasks such as k-means and k-medians [11], Näıve Bayes
and nearest neighbor classifiers [39], and Bayesian inference [4].

Recently, coreset selection algorithms are being developed for neural network
training [27,28,17,16]. The main idea behind such methods is to approximate
the full gradient using a weighted subset of the training data. These algorithms
start with computing the gradient of the loss function with respect to the neural
network weights. This gradient is computed for every data sample in the training
set. Then, a selection criterion is formed. This criterion aims to find a weighted
subset of the training data that can approximate the full gradient. In Sec. 3 we
provide a detailed account of these methods.

Existing coreset selection algorithms can only be used for the vanilla training
of neural networks. As such, they still suffer from adversarial vulnerability. This
paper extends coreset selection algorithms to robust neural network training and
shows how they can be adopted to various robust training objectives.

3 Proposed Method

As discussed in Sec. 1, the main bottleneck in the time/computational complex-
ity of adversarial training stems from constructing adversarial examples for the
entire training set at each epoch. FAT [41] tries to eliminate this issue by using
FGSM as its adversarial example generator. However, this simplification 1) may
lead to catastrophic overfitting [41,2], and 2) is not easy to generalize to all types
of adversarial training as FGSM is designed explicitly for ℓ∞ attacks.

Instead of using a faster adversarial example generator, here we take a dif-
ferent, orthogonal path and try to reduce the training set size effectively. This
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way, the original adversarial training algorithm can still be used on this smaller
subset of training data. This approach can reduce the training time while op-
timizing a similar objective as the original training. In this sense, it leads to a
more unified method that can be used along with various types of adversarial
training objectives, including the ones that already exist and the ones that will
be proposed in the future.

The main hurdle in materializing this idea is the following question: How
should we select this subset of the training data without hurting either the clean
or robust accuracy? To answer this question, we propose to use coreset selection
on the training data to reduce the sample size and improve training efficiency.

3.1 Problem Statement

Using our general notation from Sec. 2.1, we write both vanilla and adversarial
training using the same objective:

min
θ

∑
i∈V

Φ (xi, yi; fθ) , (5)

where V denotes the entire training data, and depending on the training task,
Φ (xi, yi; fθ) takes any of the Eqs. (2) to (4) forms. We adopt this notation to
make our analysis more accessible.

As discussed in Sec. 2.2, coreset selection can be seen as a two-step process.
First, the gradient of the loss function with respect to the neural network weights
is computed for each training sample. Then, based on the gradients obtained in
step one, a weighted subset (a.k.a. the coreset) of the training data is formed (see
Fig. 1b). This subset is obtained such that the weighted gradients of the samples
inside the coreset can provide a good approximation of the full gradient.

Specifically, using our universal notation in Eq. (5), we write coreset selection
for both vanilla and adversarial training as:

min
S⊆V ,γ

∥∥∥∥∥∥
∑
i∈V

∇θΦ (xi, yi; fθ)−
∑
j∈S

γj∇θΦ (xj , yj ; fθ)

∥∥∥∥∥∥ , (6)

where S ⊆ V is the coreset, and γj ’s are the weights of each sample in the coreset.
Once the coreset S is found, instead of training the neural network using Eq. (5),
we can optimize its parameters using a weighted objective over the coreset:

min
θ

∑
j∈S

γjΦ (xj , yj ; fθ) . (7)

It can be shown that solving Eq. (6) is NP-hard [27,28]. Roughly, various
coreset selection methods differ in how they approximate the solution of the
aforementioned objective. For instance, Craig [27] casts this objective as a
submodular set cover problem and uses existing greedy solvers to get an ap-
proximate solution. As another example, GradMatch [16] analyzes the con-
vergence of stochastic gradient descent using adaptive data subset selection.
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Based on this study, Killamsetty et al. [16] propose to use Orthogonal Matching
Pursuit (OMP) [31,7] as a greedy solver of the data selection objective. More
information about these methods is provided in Appendix A.

The issue with the aforementioned coreset selection methods is that they are
designed explicitly for vanilla training of neural networks (see Fig. 1b), and they
do not reflect the requirements of adversarial training. As such, we should modify
these methods to make them suitable for our purpose of robust neural network
training. Meanwhile, we should also consider the fact that the field of coreset
selection is still evolving. Thus, we aim to find a general modification that can
later be used alongside newer versions of greedy coreset selection algorithms.

We notice that various coreset selection methods proposed for vanilla neu-
ral network training only differ in their choice of greedy solvers. Therefore, we
narrow down the changes we want to make to the first step of coreset selection:
gradient computation. Then, existing greedy solvers can be used to find the sub-
set of training data that we are looking for. To this end, we draw a connection
between coreset selection methods and adversarial training using Danskin’s the-
orem, as outlined next. Our analysis shows that for adversarial coreset selection,
one needs to add a pre-processing step where adversarial attacks for the raw
training data need to be computed (see Fig. 1c).

3.2 Coreset Selection for Efficient Adversarial Training

As discussed above, to construct the Eq. (6) objective, we need to compute the
loss gradient with respect to the neural network weights. Once done, we can use
existing greedy solvers to find the solution. The gradient computation needs to
be performed for the entire training set. In particular, using our notation from
Sec. 2.1, this step can be written as:

∇θΦ (xi, yi; fθ) ∀ i ∈ V, (8)

where V denotes the training set.

For vanilla neural network training (see Sec. 2.1) the above gradient is simply
equal to ∇θLCE (fθ(xi), yi) which can be computed using standard backpropa-
gation. In contrast, for the adversarial training objectives in Eqs. (3) and (4),
this gradient requires taking partial derivative of a maximization objective. To
this end, we use the famous Dasnkin’s theorem [6] as stated below.

Theorem 1 (Theorem A.1 [25]). Let S be a nonempty compact topological
space, ℓ : Rm × S → R be such that ℓ(·, δ) is differentiable for every δ ∈ S, and
∇θℓ(θ, δ) is continuous on Rm ×S. Also, let δ∗(θ) = {δ ∈ argmaxδ∈S ℓ(θ, δ)}.
Then, the corresponding max-function ϕ(θ) = maxδ∈S ℓ(θ, δ) is locally Lipschitz
continuous, directionally differentiable, and its directional derivatives along vec-
tor h satisfy:

ϕ′(θ,h) = sup
δ∈δ∗(θ)

h⊤∇θℓ(θ, δ).
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In particular, if for some θ ∈ Rm the set δ∗(θ) = {δ∗θ} is a singleton, then the
max-function is differentiable at θ and

∇ϕ(θ) = ∇θℓ (θ, δ
∗
θ) .

In summary, Theorem 1 indicates how to take the gradient of a max-function.
To this end, it suffices to 1) find the maximizer, and 2) evaluate the normal
gradient at this point.

Now that we have stated Danskin’s theorem, we are ready to show how it
can provide the connection between coreset selection and the adversarial training
objectives of Eqs. (3) and (4). We do this for the two cases of adversarial training
and TRADES as outlined next.

Case 1. (ℓp-PGD and Perceptual Adversarial Training) Going back to
Eq. (8), we know that to perform coreset selection, we need to compute this
gradient term for our objective in Eq. (3). In other words, we need to compute:

∇θΦ (x, y; fθ) = ∇θ max
x̃

LCE (fθ(x̃), y) (9)

under the constraint d (x̃,x) ≤ ε for every training sample. Based on Danskin’s
theorem, we can deduce:

∇θΦ (x, y; fθ) = ∇θLCE (fθ(x
∗), y) , (10)

where x∗ is the solution to:

argmax
x̃

LCE (fθ(x̃), y) s.t. d (x̃,x) ≤ ε. (11)

The conditions under which Danskin’s theorem hold might not be satisfied for
neural networks in general. This is due to the presence of functions with dis-
continuous gradients, such as ReLU activation, in neural networks. More impor-
tantly, finding the exact solution of Eq. (11) is not straightforward as neural
networks are highly non-convex. Usually, the exact solution x∗ is replaced with
its approximation, which is an adversarial example generated under the Eq. (11)
objective [18]. Based on this approximation, we can re-write Eq. (10) as:

∇θΦ (x, y; fθ) ≈ ∇θLCE (fθ(xadv), y) . (12)

In other words, to perform coreset selection for ℓp-PGD [25] and Perceptual [22]
Adversarial Training, one needs to add a pre-processing step to the gradient
computation. At this step, adversarial examples for the entire training set must
be constructed. Then, the coresets can be built as in vanilla neural networks.

Case 2. (TRADES Adversarial Training) For TRADES [44], the gradient
computation is slightly different as the objective in Eq. (4) consists of two terms.
In this case, the gradient can be written as:

∇θΦ (x, y; fθ) = ∇θLCE (fθ(x), y) +∇θ max
x̃

LCE (fθ(x̃), fθ(x)) /λ, (13)



ℓ∞-Robustness and Beyond: Unleashing Efficient Adversarial Training 9

where d(x̃,x) ≤ ε. The first term is the normal gradient of the neural network.
For the second term, we apply Danskin’s theorem to obtain:

∇θΦ (x, y; fθ) ≈ ∇θLCE (fθ(x), y) +∇θLCE (fθ(xadv), fθ(x)) /λ, (14)

where xadv is an approximate solution to:

argmax
x̃

LCE (fθ(x̃), fθ(x)) /λ s.t. d (x̃,x) ≤ ε. (15)

Having found the loss gradients ∇θΦ (xi, yi; fθ) for ℓp-PGD, PAT (Case 1),
and TRADES (Case 2), we can construct Eq. (6) and use existing greedy solvers
like Craig [27] or GradMatch [16] to find the coreset. As we saw, adver-
sarial coreset selection requires adding a pre-processing step where we need to
build perturbed versions of the training data using their respective objectives in
Eqs. (11) and (15). Then, the gradients are computed using Eqs. (12) and (14).
Afterward, greedy subset selection algorithms are used to construct the core-
sets based on the value of the gradients. Finally, having selected the coreset
data, one can run weighted adversarial training only on the data that remains
in the coreset. As can be seen, we are not changing the essence of the training
objective in this process. We are just reducing the dataset size to enhance our
proposed solution’s computational efficiency; as such, we can use it along with
any adversarial training objective.

3.3 Practical Considerations

Since coreset selection depends on the current values of the neural network
weights, it is important to update the coresets as the training evolves. Prior
work [17,16] has shown that this selection needs to be done every T epochs,
where T is usually greater than 15. Also, we employ small yet crucial practical
changes while using coreset selection to increase efficiency. We summarize these
practical tweaks below. Further detail can be found in [16,27].

Gradient Approximation. As we saw, both Eqs. (12) and (14) require compu-
tation of the loss gradient with respect to the neural network weights. This
is equal to backpropagation through the entire neural network, which is not
very efficient. Instead, it is common to replace the exact gradients in Eqs. (12)
and (14) with their last-layer approximation [15,27,16]. In other words, instead
of backpropagating through the entire network, one can backpropagate up un-
til the penultimate layer. This estimate has an approximate complexity equal to
forwardpropagation, and it has been shown to work well in practice [27,28,17,16].

Batch-wise Coreset Selection. As discussed in Sec. 3.2, data selection is usually
done in a sample-wise fashion where each data sample is separately considered to
be selected. This way, one must find the data candidates from the entire training
set. To increase efficiency, Killamsetty et al. [16] proposed the batch-wise variant.
In this type of coreset selection, the data is first split into several batches. Then,
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the algorithm makes a selection out of these batches. Intuitively, this change
increases efficiency as the sample size is reduced from the number of data points
to the number of batches.

Warm-start with the Entire Data. Finally, we warm-start the training using
the entire dataset. Afterward, coreset selection is activated, and training is only
performed using the data in the coreset.

Final Algorithm Fig. 1 and Alg. 1 in Appendix B.1 summarize our core-
set selection approach for adversarial training. As can be seen, our proposed
method is a generic and principled approach in contrast to existing methods
such as FAT [41]. In particular, our approach provides the following advantages
compared to existing methods:

1. The proposed approach does not involve algorithmic level manipulations
and dependency on specific training attributes such as ℓ∞ bound or cyclic
learning rate. Also, it controls the training speed through coreset size, which
can be specified solely based on available computational resources.

2. The simplicity of our method makes it compatible with any existing/future
adversarial training objectives. Furthermore, as we will see in Sec. 4, our
approach can be combined with any greedy coreset selection algorithms to
deliver robust neural networks.

These characteristics increase the likelihood of applying our proposed method for
robust neural network training no matter the training objective. This contrasts
with existing methods that solely focus on a particular training objective.

4 Experimental Results

In this section, we present our experimental results.2 We show how our proposed
approach can efficiently reduce the training time of various robust objectives in
different settings. To this end, we train neural networks using TRADES [44],
ℓp-PGD [25] and PAT [22] on CIFAR-10 [19], SVHN [30], and a subset of Ima-
geNet [32] with 12 classes. For TRADES and ℓp-PGD training, we use ResNet-
18 [12] classifiers, while for PAT we use ResNet-50 architectures.

4.1 TRADES and ℓp-PGD Robust Training

In our first experiments, we train ResNet-18 classifiers on CIFAR-10 and SVHN
datasets using TRADES, ℓ∞ and ℓ2-PGD adversarial training objectives. In each
case, we set the training hyper-parameters such as the learning rate, the number
of epochs, and attack parameters. Then, we train the network using the entire
training data and our adversarial coreset selection approach. For our approach,
we use batch-wise versions of Craig [27] andGradMatch [16] with warm-start.

2 Our implementation can be found in this repository.

https://github.com/hmdolatabadi/ACS
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Table 1: Clean (ACC) and robust (RACC) accuracy, and total training time (T)
of different adversarial training methods. For each objective, all the hyper-
parameters were kept the same as full training. For our proposed approach, the
difference with full training is shown in parentheses. The results are averaged
over 5 runs. More detail can be found in Appendix C.
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Training Method
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↑ ACC (%) ↑ RACC (%) ↓ T (mins)

T
R

A
D

E
S
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F
A

R
-
1
0 Adv. Craig (Ours) 83.03 (−2.38) 41.45 (−2.74) 179.20 (−165.09)

Adv. GradMatch (Ours) 83.07 (−2.34) 41.52 (−2.67) 178.73 (−165.56)

Full Adv. Training 85.41 44.19 344.29

ℓ
∞

-
P

G
D

C
I
F
A

R
-
1
0 Adv. Craig (Ours) 80.37 (−2.77) 45.07 (+3.68) 148.01 (−144.86)

Adv. GradMatch (Ours) 80.67 (−2.47) 45.23 (+3.84) 148.03 (−144.84)

Full Adv. Training 83.14 41.39 292.87

ℓ
2
-
P

G
D

S
V

H
N

Adv. Craig (Ours) 95.42 (+0.10) 49.68 (−3.34) 130.04 (−259.42)

Adv. GradMatch (Ours) 95.57 (+0.25) 50.41 (−2.61) 125.53 (−263.93)

Full Adv. Training 95.32 53.02 389.46

We set the coreset size (the percentage of training data to be selected) to 50%
for CIFAR-10 and 30% for SVHN to get a reasonable balance between accuracy
and training time. We report the clean and robust accuracy (in %) as well as the
total training time (in minutes) in Tab. 1. For our approach, we also report the
difference with full training in parentheses. In each case, we evaluate the robust
accuracy using an attack with similar attributes as the training objective (for
more information, see Appendix C).

As seen, in all cases, we reduce the training time by more than a factor
of two while keeping the clean and robust accuracy almost intact. Note that
in these experiments, all the training attributes such as the hyper-parameters,
learning rate scheduler, etc. are the same among different training schemes. This
is important since we want to clearly show the relative boost in performance
that one can achieve just by using coreset selection. Nonetheless, it is likely that
by tweaking the hyper-parameters of our approach, one can obtain even better
results in terms of clean and robust accuracy.

4.2 Perceptual Adversarial Training vs. Unseen Attacks

As discussed in Sec. 2, PAT [22] replaces the visual similarity measure d(·, ·) in
Eq. (3) with LPIPS [45] distance. The logic behind this choice is that ℓp norms
can only capture a small portion of images similar to the clean one, limiting the
search space of adversarial attacks. Motivated by this reason, Laidlaw et al. [22]
propose two different ways of finding the solution to Eq. (3) when d(·, ·) is the
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Table 2: Clean (ACC) and robust (RACC) accuracy and total training time (T)
of Perceptual Adversarial Training for CIFAR-10 and ImageNet-12 datasets.
At inference, the networks are evaluated against five attacks that were not seen
during training (Unseen RACC) and different versions of Perceptual Adversarial
Attack (Seen RACC). In each case, the average is reported. For more information
and details about the experiment, please see the Appendices C and D.

D
a
t
a

Training Method ↑ ACC (%)
↑ RACC (%)

↓ T (mins)

Unseen Seen

C
IF

A
R
-1

0

Adv. Craig (Ours) 83.21 (−2.81) 46.55 (−1.49) 13.49 (−1.83) 767.34 (−915.60)

Adv. GradMatch (Ours) 83.14 (−2.88) 46.11 (−1.93) 13.74 (−1.54) 787.26 (−895.68)

Full PAT (Fast-LPA) 86.02 48.04 15.32 1682.94

Im
a
g
e
N

e
t

Adv. Craig (Ours) 86.99 (−4.23) 53.05 (−0.18) 22.56 (−0.77) 2817.06 (−2796.06)

Adv. GradMatch (Ours) 87.08 (−4.14) 53.17 (−0.06) 20.74 (−2.59) 2865.72 (−2747.40)

Full PAT (Fast-LPA) 91.22 53.23 23.33 5613.12

LPIPS distance. The first version uses PGD, and the second is a relaxation of
the original problem using the Lagrangian form. We refer to these two versions
as PPGD (Perceptual PGD) and LPA (Lagrangian Perceptual Attack), respec-
tively. Then, Laidlaw et al. [22] proposed to utilize a fast version of LPA to
enable its efficient usage in adversarial training.

For our next set of experiments, we show how our approach can be adapted
to this unusual training objective. This is done to showcase the compatibility of
our proposed method with different training objectives as opposed to existing
methods that are carefully tuned for a particular training objective. To this
end, we train ResNet-50 classifiers using Fast-LPA. We train the classifiers on
CIFAR-10 and ImageNet-12 datasets. Like our previous experiments, we set the
hyper-parameters of the training to be fixed and then train the models using
the entire training data and our adversarial coreset selection method. For our
method, we use batch-wise versions of Craig [27] and GradMatch [16] with
warm-start. The coreset size for CIFAR-10 and ImageNet-12 were set to 40% and
50%, respectively. We measure the performance of the trained models against
unseen attacks during training and the two variants of perceptual attacks as
in [22]. The unseen attacks for each dataset were selected similarly to [22]. We
also record the total training time taken by each method.

Tab. 2 summarizes our results on PAT using Fast-LPA (full results can be
found in Appendix D). As seen, our adversarial coreset selection approach can
deliver a competitive performance in terms of clean and average unseen attack
accuracy while reducing the training time by at least a factor of two. These
results indicate the flexibility of our adversarial coreset selection that can be
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Table 3: Clean (ACC) and robust (RACC) accuracy, and average training
speed (Savg) of Fast Adversarial Training [41] without and with our adversar-
ial coreset selection on CIFAR-10. The difference with full training is shown in
parentheses for our proposed approach.

Training Method
Performance Measures

↑ ACC (%) ↑ RACC (%) ↓ Savg (min/epoch) ↓ T (min)

Fast Adv. Training 86.20 47.54 0.5178 31.068

+ Adv. Craig (Ours) 82.56 (−3.64) 47.77 (+0.23) 0.2783 16.695 (−14.373)

+ Adv. GradMatch (Ours) 82.53 (−3.67) 47.88 (+0.34) 0.2737 16.419 (−14.649)

combined with various objectives. This is due to the orthogonality of the pro-
posed approach with the existing efficient adversarial training methods. In this
case, we see that we can make Fast-LPA even faster using our approach.

4.3 Compatibility with Existing Methods

To showcase that our adversarial coreset selection approach is complementary
to existing methods, we integrate it with a stable version of Fast Adversarial
Training (FAT) [41] that does not use a cyclic learning rate. Specifically, we train
a neural network using FAT [41], and then add adversarial coreset selection to
this approach and record the training time and clean/robust accuracy. We run
the experiments on the CIFAR-10 dataset and train a ResNet-18 for each case.
We set the coreset size to 50% for our methods. The results are shown in Tab. 3.
As can be seen, our approach can be easily combined with existing methods to
deliver faster training. This is due to the orthogonality of our approach that we
discussed previously.

Moreover, we show that adversarial coreset selection gives a better approxi-
mation to ℓ∞-PGD adversarial training compared to using FGSM [10] as done in
FAT [41]. To this end, we use our adversarial GradMatch to train neural net-
works with the original ℓ∞-PGD objective. We also train these networks using
FAT [41] that uses FGSM. We train neural networks with a perturbation norm of
∥ε∥∞ ≤ 8. Then, we evaluate the trained networks against PGD-50 adversarial
attacks with different attack strengths to see how each network generalizes to
unseen perturbations. As seen in Fig. 2, adversarial coreset selection is a closer
approximation to ℓ∞-PGD compared to FAT [41]. This indicates the success of
the proposed approach in retaining the characteristics of the original objective
as opposed to existing methods.

4.4 Ablation Studies

In this section, we perform a few ablation studies to examine the effectiveness
of our adversarial coreset selection method. First, we compare a random data
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Fig. 2: Robust accuracy as a
function of ℓ∞ attack norm.
We train neural networks
with a perturbation norm of
∥ε∥∞ ≤ 8 on CIFAR-10. At in-
ference, we evaluate the robust
accuracy against PGD-50 with
various attack strengths.
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Fig. 3: Relative robust error vs. speed up for
TRADES. We compare our adversarial coreset
selection (GradMatch) for a given subset size
against random data selection. Furthermore,
we show our results for a selection of different
warm-start settings.

selection with adversarial GradMatch. Fig. 3 shows that for any given coreset
size, our adversarial coreset selection method results in a lower robust error.
Furthermore, we modify the warm-start epochs for a fixed coreset size of 50%.
As seen, the proposed method is not very sensitive to the number of warm-start
epochs, although a longer warm-start is generally beneficial. More experiments
on the accuracy vs. speed-up trade-off and the importance of warm-start and
batch-wise adversarial coreset selection can be found in Appendix D.

5 Conclusion

In this paper, we proposed a general yet principled approach for efficient ad-
versarial training based on the theory of coreset selection. We discussed how
repetitive computation of adversarial attacks for the entire training data could
impede the training speed. Unlike previous methods that try to solve this is-
sue by making the adversarial attack more straightforward, here, we took an
orthogonal path to reduce the training set size without modifying the attacker.
We drew a connection between greedy coreset selection algorithms and adver-
sarial training using Danskin’s theorem. We then showed the flexibility of our
adversarial coreset selection method by utilizing it for TRADES, ℓp-PGD, and
Perceptual Adversarial Training. Our experimental results indicate that adver-
sarial coreset selection can reduce the training time by more than 2-3 times with
only a slight reduction in the clean and robust accuracy.
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