
Multi-Granularity Pruning for Model
Acceleration on Mobile Devices

Tianli Zhao1,2,3,4, Xi Sheryl Zhang2,3, Wentao Zhu5, Jiaxing Wang6 Sen
Yang7, Ji Liu8, and Jian Cheng2,3⋆

1 School of Artificial Intelligence, University of Chinese Academy of Sciences
2 Institute of Automation, Chinese Academy of Sciences

3 AIRIA, 4 Maicro.ai, 5 Amazon Video Prime,
6 JD.com, 7 Snap Inc., 8 Kwai Inc.

A Details of evolutionary search

A.1 Feature design

In this section, we introduce the feature design used during evolutionary search.

Denote Cmax = {c(l)max}Ll=1 as the maximum number of channels for each layer.
Then for architecture (C, S) with number of channels C (for channel pruning)
and layer-wise weight sparsity (for weight pruning), the feature of (C, S) can be
denoted by:

f(C, S) = (
C

Cmax
, S) (1)

In this way, all the dimensions of features are normalized to [0, 1]. It is straight
forward to re-generate architectures from features:

f (−1)(C̃, S) = (⌊C̃ × Cmax⌉, S) (2)

A.2 Crossover and mutation

In this section, we introduce details about the crossover and mutation operations
used in our method.

Crossover. For crossover operation, we use the popular Simulated Binary
Crossover operation (SBX). We start with the crossover operation between two
scalar numbers α, β. After the crossover operation, two new individuals are gen-
erated:

αnew = 0.5× [(1 + u)α+ (1− u)β]

βnew = 0.5× [(1− u)α+ (1 + u)β]
(3)

where:

u =

{
(2p)

1
µc+1 p ≤ 0.5

(1
2(1−p))

1
µc+c otherwise

(4)

⋆ Corresponding author.

2 Tianli Zhao et al.

Algorithm 1 Crossover

Input: The population P with size n.
Output: The population Q with size n.
1: Q = ∅
2: while |Q| < n do
3: Randomly sample two individuals p1, p2 from P .
4: Q = Q ∪ SBX(p1, p2)
5: end while
6: return Q

where p is a random number sampled from [0, 1], and µc is a hyper-parameter
that makes a trade-off between exploration and exploitation. For two n − dim

vectors α = {αi}ni=1 and β = {βi}(n)i=1, the crossover operation between α and β
can be implemented by applying the crossover operation on each dimension of
the two vectors:

αnew = {αnew
i }ni=1

βnew = {βnew
i }ni=1

(5)

where αnew
i and βnew

i are the output of crossover operations between αi and βi.
For ease of explanation, we denote:

{αnew,βnew} = SBX(α, β) (6)

With the above operation, the crossover operation on a population P can be
implemented with Algorithm 1.

Mutation. For mutation operation, we use the popular PoLynomial Muta-
tion operation (PLM) for MOO genetic algorithms. We denote ui, li as the upper
bound and lower bound of the ith dimension of individuals. The algorithm for
mutation are summarized in Algorithm 2, where µm is a hyper-parameter.

Crossover mutation in our method. Having introduced the crossover
and mutation operations, we are able to introduce the final crossover-mutation
operations used in our method. The algorithm is summarized in Algorithm 3. In
all of our algorithm, we set µc = 0.5, µm = 15, and the probability for mutation
to 0.1.

B Model retraining

After searching, we get the optimal layer-wise channel width as well as the weight
sparsity. The generated models are retrained on the whole train set of ImageNet
and validated on validation set. We follow the conventional pretrain + prune +
fine tune process for model retraining. Specifically, for an architecture (C, S),
we first train a dense network with number of channels C. We then conduct the
weight pruning with ADMM. By introducing an auxiliary variable and using the

JCW 3

Algorithm 2 Mutation

Input: A population P with size n, and feature dimension d for each individual. The
mutation probability p.

Output: A mutated population Q.
1: Q = ∅
2: for each individual p ∈ P do
3: q = p
4: for each dimension i ∈ 1 → d do
5: µ = randomly sample from [0, 1].
6: if µ < p then
7: d1 = pi−li

ui−li
, d2 = ui−pi

ui−li

8: r = randomly sample from [0, 1].

9: qi =

{
[2r + (1− 2r)(1− d1)

µm+1]
1

µm+1 r ≤ 0.5

1− [2(1− r) + 2(r − 0.5)(1− d2)
µm+1]

1
µm+1

10: end if
11: end for
12: Q = Q ∪ {q}.
13: end for
14: return Q

Algorithm 3 Crossover and mutation

Input: A set of architectures P = {(Ci, Si)}ni=1 with population size n.
Output: A set of architectures Q generated from P .

P̃ = {f(Ci, Si)}ni=1

Q̃ = crossover between individuals in P with Algorithm 1.
Clip the values of Q̃ to [0, 1].
Q̃ = mutate Q̃ with Algorithm 2.
Clip the values of Q̃ to [0, 1].
Q = {f (−1)(C̃i, Si)}(C̃i,Si)∈Q̃

return Q

4 Tianli Zhao et al.

1.24 1.26 1.28 1.30 1.32
Loss

150

175

200

225

250

275

300

325

La
te

nc
y

Generation 5
Generation 10
Generation 50

Fig. 1: Trends of frontier during evolution.

duality theorem, the primal parameters W , auxiliary variable U and the dual
variable Z are updated alternatively:

Wt+1 = argmin
W

L(W) +
ρ

2
∥W − Ut + Zt∥2

Ut+1 = argmin
U

∥Wt+1 − U + Zt∥2 s.t. ∥U (l)∥0 = s(l)

Zt+1 = Zt + (Wt+1 − Ut+1)

(7)

where L(W) is task specified loss function. U and Z are all of the same size
as W , and U (l) is the auxiliary variable corresponding to parameters of the lth

layer. After ADMM steps, we fine tune the compressed model for 60 epochs.
Detailed hyper parameters for model retraining are listed in Table 1, and the
final algorithm of JCW is summarized in Algorithm 4.

C Linearity of latency w.r.t. sparsity

In figure 2 we plot the latency v.s. the number of input channels, the number of
output channels and the weight sparsity for weight pruning. The data points are
collected from 4 of the convolution layers of MobileNetV2. We can see that the
latency of each layer is locally linear to the layer width and weight sparsity, this
motivates us to approximate the latency of networks with tri-linear interpolation.
Derivation of tri-linear interpolation. We further derive the tri-linear in-
terpolation of equation (9) in Section 2.5 of the paper.
1-d linear interpolation. We start from 1-d linear interpolation, which is
illustrated in the left of Figure 3. Assume that we hope to approximate some
function f(·) with an array of known data points {xi, fi}ni=0, where:

xi =
i

n
xn, fi = f(xi),

and xn is the maximum value of x. Denote f̂(·) to be the approximation to
f(·) with linear interpolation in the sequence of known data points. Given any

JCW 5

Algorithm 4 JCW algorithm

Input: A supernet N , the number of generations NG, the population size n.
Output: A set of architectures P = {(C1, S1), · · · , (Cn, Sn)} with various latency and

accuracy.
1: P = Randomly sample n architectures with various number of channels and weight

sparsity for each layer.
2: for g ∈ 1 → NG do
3: Q = crossover mutation(P) with Algorithm 3
4: Reconstruct and reinitialize the super-net N to contain only models in P ∪Q.
5: Train the super-net N with parameter sharing to estimate the accuracy rank of

models in P ∪Q.
6: Estimate the latency of models in P ∪Q with trilinear interpolation as described

in Section 2.5.
7: Update P with uniform non-dominated sorting selection as described in Section

2.6.
8: end for
9: Train the models with architectural configurations in P with ADMM.

Stage Hyper parameter Resnet18 MobileNetV1 MobileNetV2

Pretrain

batch size 512 512 512
epochs 120 120 250

lr 0.256 0.512 0.256
lr annealing cosine cosine cosine
weight decay 1e-4 4e-5 4e-5

ADMM

batch size 512 512 512
epochs 60 60 60

lr 0.005 0.005 0.005
lr annealing constant constant constant
weight decay 1e-4 4e-5 4e-5

ρ 0.01 0.01 0.01

Fine tune

batch size 512 512 512
epochs 60 60 60

lr 0.005 0.005 0.005
lr annealing cosine cosine cosine
weight decay 0 0 0

Table 1: Hyper-parameters for model re-training.

position x in the interval [xi, xi+1], the approximated function f̂(x) is the straight
line between the pair of data points (xi, fi) and (xi+1, fi+1), we then have:

fi+1 − fi
xi+1 − xi

=
f̂(x)− fi
x− xi

.

6 Tianli Zhao et al.

0.0 0.2 0.4 0.6 0.8 1.0
3

4

5

La
te

nc
y

(m
s) ic = 16, oc = 96

5 10 15

2

3

4

5 ratio = 1.0, oc = 96

20 40 60 80 100
2

3

4

5 ratio = 1.0, ic = 16

0.0 0.2 0.4 0.6 0.8 1.0

1.75

2.00

2.25

2.50

La
te

nc
y

(m
s) ic = 24, oc = 144

5 10 15 20 25

1.5

2.0

2.5 ratio = 1.0, oc = 144

25 50 75 100 125 150

1.0

1.5

2.0

2.5 ratio = 1.0, ic = 24

0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.30

0.35

0.40

La
te

nc
y

(m
s) ic = 144, oc = 32

25 50 75 100 125 150

0.1

0.2

0.3

0.4 ratio = 1.0, oc = 32

10 20 30

0.25

0.30

0.35

0.40 ratio = 1.0, ic = 144

0.0 0.2 0.4 0.6 0.8 1.0
ratio

1.0

1.2

1.4

1.6

1.8

La
te

nc
y

(m
s) ic = 192, oc = 32

50 100 150 200
ic

0.5

1.0

1.5
ratio = 1.0, oc = 32

10 20 30
oc

1.2

1.4

1.6

1.8 ratio = 1.0, ic = 192

Fig. 2: Linearity of latency w.r.t. density ratio (left), input channels (middle)
and output channels (right).

𝑥௜ 𝑥௜ାଵ

𝑓௜

𝑓௜ାଵ

𝑥

𝑓መ(𝑥)

𝑥௜ 𝑥௜ାଵ

𝑦௝

𝑦௝ାଵ

(𝑥, 𝑦)

(𝑥, 𝑦௝)

(𝑥, 𝑦௝ାଵ)

Known points Predicted points Auxiliary points

Fig. 3: An illustration of left: 1-d linear interpolation and right: 2-d bi-linear
interpolation.

Solving the above linear equation, we have:

f̂(x) = fi ×
(
1− |x− xi

△x
|
)

+ fi+1 ×
(
1− |x− xi+1

△x
|
), (8)

JCW 7

200 300 400 500
MFLOPS

64

65

66

67

68

69

70

71
To

p-
1

ac
c.

JCW (OURS)
AutoSlim*
USNet
AMC
MetaPruning
MobileNetV1

100 150 200 250 300
MFLOPS

64

66

68

70

72

To
p-

1
ac

c. JCW (OURS)
BCNet
GroupFisher
NPPM
DMCP
APS
MetaPrune
MobileNetV2

600 800 1000 1200 1400
MFLOPS

68.0

68.5

69.0

69.5

70.0

To
p
-1

 a
cc

.

JCW (OURS)
DMCP
APS
TAS
FPGM
Resnet18

Fig. 4: FLOPS comparison for MobileNetV1 (left), MobileNetV2 (middle), and
Resnet18 (right) on the ImageNet dataset. ∗ denotes the results with knowledge
distillation, which is not used in our JCW method. For BCNet [8] and DMCP
[3], we report their results without knowledge distillation.

where:

△x = xi+1 − xi =
xn

n
.

Note that for any j < i, we have:

|x− xj | = (x− xi) + (xi − xj) ≥ △x,

similarly, for any j > i+ 1, we also have:

|x− xj | ≥ △x.

Thus, equation 8 can be further reorgnized by:

f̂(x) =

n∑
i=0

τ(
x− xi

△x
)fi

=

n∑
i=0

τ(n
x

xn
− i)fi

,

where:

τ(x) = max(0, 1− |x|).

Multi dimensional linear interpolation. The linear interpolation in higher-
dimensional spaces can be done by conducting linear interpolation along each
dimension separately. In the right of Figure 3, we show a simple example for
2-d linear interpolation, or bi-linear interpolation. Specifically, in 2-d case, our
goal is to approximate the values of some function f : R2 → R with bi-linear
interpolation given a grid of known data points {(xi, yj , fij); i = 0, 1 · · ·n, j =
0, 1 · · ·m}, where:

xi =
i

n
xn, yj =

j

m
ym, fij = f(xi, yj).

8 Tianli Zhao et al.

Given any point (x, y) such that:

x ∈ [xi, xi+1], y ∈ [yj , yj+1],

the function value f(x, y) can be then approximated in two steps. First, conduct
the 1-d linear interpolation along the x-dimension, which gives:

f̂(x, yj) =
∑
i

τ(n
x

xn
− i)fij ,

and then conduct the 1-d linear interpolation along the y-dimension, which fur-
ther gives:

f̂(x, y) =
∑
j

τ(m
y

ym
− j)f̂(x, yj)

=
∑
i,j

τ(n
x

xn
− i)τ(m

y

ym
− j)fij

.

The above derivation can be easily generalized to higher dimensional spaces.
Particularly, in 3-d case, the tri-linear interpolation has the form as illustrated
in equation 9 of our paper.

D Additional results

In our paper, we have provided extensive comparison of JCW with the very
state of the art methods in terms of latency and accuracy. Here we provide
more results of the comparison in terms of FLOPS and accuracy. The compared
methods include BCNet [8], GroupFisher [6], NPPM [2], DMCP [3], APS [9],
MetaPruning [7], AutoSlim [10], USNet [11], AMC [5], TAS [1] and FPGM [4].
Results are shown in Fig. 4.

From the figure, we see that although targeting latency, JCW still achieves
overall better FLOPS-accuracy trade-off, especially in the low FLOPS region.
This is reasonable because we include weight pruning in our framework, which
is more flexible to achieve a high compression ratio.

Another observation in the figure is the advantage of JCW in terms of FLOPS
and latency is more obvious on Resnet18. This is because that compared to
compact models like MobileNetV1 and MobileNetV2, Resnet18 contains more
parametric redundancies and thus is more insensitive to weight pruning. We
believe that JCW will achieve much better FLOPS-accuracy trade-off on larger
models, while that is not our goal. We focus on latency reduction in this paper.

JCW 9

References

1. Dong, X., Yang, Y.: Network pruning via transformable architecture search. In:
Advances in Neural Information Processing Systems. pp. 760–771 (2019)

2. Gao, S., Huang, F., Cai, W., Huang, H.: Network pruning via performance max-
imization. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2021)

3. Guo, S., Wang, Y., Li, Q., Yan, J.: Dmcp: Differentiable markov channel pruning
for neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1539–1547 (2020)

4. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: IEEE Conference on Computer
Vision and Pattern Recognition, (CVPR) (2019)

5. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. In: in Proceedings of the European
Conference on Computer Vision (ECCV) (September 2018)

6. Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J., Wang, X., Chen, Y., Yang, W.,
Liao, Q., Zhang, W.: Group fisher pruning for practical network compression. In:
International Conference on Machine Learning, (ICML) (2021)

7. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: Metapruning:
Meta learning for automatic neural network channel pruning. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 3296–3305 (2019)

8. Su, X., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: Bcnet: Searching for network
width with bilaterally coupled network. In: IEEE Conference on Computer Vision
and Pattern Recognition, (CVPR) (2021)

9. Wang, J., Bai, H., Wu, J., Shi, X., Huang, J., King, I., Lyu, M., Cheng, J.: Revis-
iting parameter sharing for automatic neural channel number search. Advances in
Neural Information Processing Systems 33 (2020)

10. Yu, J., Huang, T.S.: Autoslim: Towards one-shot architecture search for channel
numbers. CoRR abs/1903.11728 (2019), http://arxiv.org/abs/1903.11728

11. Yu, J., Huang, T.S.: Universally slimmable networks and improved training tech-
niques. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 1803–1811 (2019)

http://arxiv.org/abs/1903.11728

	Multi-Granularity Pruning for Model Acceleration on Mobile Devices

