
Multi-Granularity Pruning for Model
Acceleration on Mobile Devices

Tianli Zhao1,2,3,4, Xi Sheryl Zhang2,3, Wentao Zhu5, Jiaxing Wang6 Sen
Yang7, Ji Liu8, and Jian Cheng2,3⋆

1 School of Artificial Intelligence, University of Chinese Academy of Sciences
2 Institute of Automation, Chinese Academy of Sciences

3 AIRIA, 4 Maicro.ai, 5 Amazon Video Prime,
6 JD.com, 7 Snap Inc., 8 Kwai Inc.

Abstract. For practical deep neural network design on mobile devices,
it is essential to consider the constraints incurred by the computational
resources and the inference latency in various applications. Among deep
network acceleration approaches, pruning is a widely adopted practice
to balance the computational resource consumption and the accuracy,
where unimportant connections can be removed either channel-wisely or
randomly with a minimal impact on model accuracy. The coarse-grained
channel pruning instantly results in a significant latency reduction, while
the fine-grained weight pruning is more flexible to retain accuracy. In
this paper, we present a unified framework for the Joint Channel prun-
ing and Weight pruning, named JCW, which achieves a better pruning
proportion between channel and weight pruning. To fully optimize the
trade-off between latency and accuracy, we further develop a tailored
multi-objective evolutionary algorithm in the JCW framework, which
enables one single round search to obtain the accurate candidate ar-
chitectures for various deployment requirements. Extensive experiments
demonstrate that the JCW achieves a better trade-off between the la-
tency and accuracy against previous state-of-the-art pruning methods on
the ImageNet classification dataset.

1 Introduction

Recently, deep learning has prevailed in many machine learning tasks. How-
ever, the substantial computational overhead limits its applications on resource-
constrained platforms, e.g., mobile devices. To design a deep network deployable
to the aforementioned platforms, it is necessary to consider the constraint in-
curred by the available computational resource and reduce the inference latency
while maximizing the accuracy.

Pruning has been one of the predominant approaches to accelerating large
deep neural networks. The pruning methods can be roughly divided into two
categories, channel pruning which removes parameters in a channel-wise man-
ner [20,60,23], and weight pruning which prunes parameters randomly [17,38].

⋆ Corresponding author.

2 Tianli Zhao et al.

Latency

E
rr

or

Latency

E
rr

or

Pruned parameters Remained parameters

Channel Pruning Weight Pruning Joint Pruning

Latency

E
rr

or

Fig. 1: Illustration of JCW (right), channel pruning (left) and weight pruning
(middle). The JCW conducts joint channel and weight pruning, which achieves
a better Pareto-frontier between the accuracy and latency with one single search.

The two mainstream pruning methods mainly focus on accelerating neural net-
works on one single dimension (e.g. either channel wisely or element wisely),
while they may have different impacts on the latency and accuracy. For in-
stance, the results in Table 1 show that the channel pruning method [15] offers
better accuracy than the weight pruning method [10] when the inference latency
is high. In contrast, the weight pruning [10] yields better accuracy than the chan-
nel pruning [15] under a low latency requirement. Inspired by this observation,
this work attempts to unveil an important problem overlooked before, is it pos-
sible to achieve a better latency-accuracy trade-off by designing a subtle network
pruning method that enjoys benefits from both of the two pruning methods?

However, it is non-trivial to determine the channel numbers and layer-wise
weight sparsity in the joint channel and weight pruning because of the expo-
nentially increasing decision space. Besides, simply applying channel width and
weight sparsity search sequentially often leads to a sub-optimal solution because
the two search steps are in fact entangled and it is difficult to determine a bet-
ter balance between channel and weight pruning for a wide range of latency
constraints.

To this end, we build an efficient model acceleration paradigm, named as
JCW (Joint Channel and Weight pruning) which accelerates the models by
applying both channel and weight pruning jointly and finds the a better bal-
ance between channel and weight pruning automatically. Considering both the
latency and accuracy, we formulate the model acceleration into a multi-objective
optimization (MOO) problem. Specifically, given a predefined base model with
L layers, denoting the number of channels of a certain compressed model for
channel pruning by C = {c(l)}Ll=1, and weight sparsity for weight pruning by
S = {s(l)}Ll=1, we search for a sequence of (C, S) lying on the Pareto-frontier
between latency and accuracy:

(C, S)∗ = argmin
C,S

{T (C, S), E(C, S)} , (1)

where T (C, S) and E(C, S) denote the latency and error rate of the compressed
model, respectively. We further propose a uniform non-dominated sorting se-
lection based on an enhanced evolutionary algorithm, NSGA-II [4], to generate

JCW 3

Method Type Latency Accuracy

Fast Weight Pruning 88.94 ms 72.0%

DMCP Channel Pruning 82.95 ms 72.4%

Fast Weight Pruning 35.89 ms 65.2%

DMCP Channel Pruning 33.50 ms 62.7%

Table 1: Latency & accuracy of MobileNetV2 models accelerated by fast sparse
convolution [10] and DMCP [15]. The best acceleration strategy differs under
various latency budgets.

accurate candidate architectures with a wide range of latency in one single round
search. To alleviate the search cost, we construct an accuracy predictor based
on parameter sharing [42,16], and a latency predictor based on tri-linear inter-
polation.

We conduct extensive experiments to validate the effectiveness of JCW on
the ImageNet dataset [5]. The JCW outperforms previous state-of-the-art model
compression approaches by a large margin. Without loss of accuracy, the JCW
yields 2.74×, 2.42× and 1.93× speedup over ResNet18 [19], MobileNetV1 [24]
and MobileNetV2 [44], respectively.

Our major contributions are summarized as follows,

– We build a general model acceleration framework by the joint channel and
weight pruning, JCW, as shown in the right of Fig. 1, which finds a better
balance between channel and weight pruning automatically and obtains a
much better trade-off between model accuracy and latency on mobile de-
vices. To our best knowledge, we are the first to investigate on achieving the
balance between channel and weight pruning automatically for better model
acceleration.

– We enhance the Pareto multi-objective optimization with a uniform non-
dominated sorting selection. The enhanced search algorithm can find mul-
tiple accurate candidate architectures for various computational budgets
through one single round search.

– Extensive experiments demonstrate the effectiveness of the joint channel
pruning and weight pruning. The JCW outperforms previous state-of-the-
art model compression and acceleration approaches by a large margin on the
ImageNet classification dataset.

2 Methodology

2.1 Motivation

In this section, we review the two categories of existing network pruning methods
– coarse-grained channel pruning and fine-grained weight pruning, and analyze
their pros and cons, which give rise to our joint design method.

Channel pruning reduces the width of feature maps by pruning filters channel-
wisely [15,48]. As a result, the original network is shrunk into a thinner one. The

4 Tianli Zhao et al.

𝑜

𝑖
𝑟

?

Known
points

Point to be
predicted

Trilinear
interpolation

Offline
measurement

Latency estimation

Crossover
mutation

Latency

E
rr

or

S
el

ec
t

ne
xt

 g
en

er
at

io
n

Population

⋯

Iter 1 Iter 2

Accuracy estimation

𝑃 𝑄

Remained/updated parametersRemoved/fixed parameters

Channel pruningWeight pruning

1

2 3
4

Fig. 2: Illustration of the framework of JCW.

channel pruning is well-structured and thus conventionally believed to be more
convenient for model acceleration than random weight pruning [53,20]. However,
a well-known drawback of channel pruning is its difficulty in attaining accuracy
because of its strong structural constraints.

In random weight pruning, each individual element of parameters can be
freely pruned [18,17]. It is more flexible and generally known to be able to
get theoretically smaller models than channel pruning. More recently, Elsken
et al. [10] made it more practical by arguing that despite of its irregular mem-
ory access, it can also be efficiently accelerated on mobile CPUs if implemented
properly. However, the acceleration ratio achieved by pure weight pruning is still
limited because the problem of irregular memory access still exists. For example,
their method can only accelerate the computation by ∼ 3× even when 90% of
parameters are removed.

Based on our analysis, we present JCW, a unified framework that combines
the advantages of both channel pruning and weight pruning for better model
acceleration by applying the two jointly. JCW searches the number of channels
and layer-wise weight sparsity jointly and automatically finds the balance be-
tween channel and weight pruning for a wide range of latency budgets, thus it
is able to achieve a much better accuracy-latency trade-off.

2.2 Problem formulation

Formally, for some compressed model A with L layers, we denote the number of

channels of each layer by CA = {c(l)A }Ll=1, and the weight sparsity1 of each layer

by SA = {s(l)A }Ll=1. In this way, each sub-network A can be represented by a pair
of vectors: A = {CA, SA}. Our goal is to accelerate the inference of networks by

1 We use weight sparsity to denote the ratio of non-zero parameters of remaining
channels across the whole paper.

JCW 5

applying channel pruning and weight pruning simultaneously, while at the same
time minimizing the accuracy loss:

A∗ = argmin
A

{T (CA, SA), E(CA, SA)}, (2)

where T (CA, SA) and E(CA, SA) denote the inference latency and task specific
error of the model, respectively. For simplicity, we will abbreviate them as T (A)
and E(A) in the remaining of this paper under the clear context.

A crucial question for solving the problem in Eq. (2) is: How to determine the
number of channels and weight sparsity for each layer? One alternative way is to
first prune the channels of the original model in an automated way, then prune
the weights of the channel-pruned model for further acceleration. However, this
separated optimization may lead to a sub-optimal solution, because it is difficult
to find the optimal balance between channel pruning and weight pruning by
hand. Concretely speaking, the optimal architecture for channel pruning may be
sub-optimal when further applying weight pruning for acceleration. Therefore,
we instead optimize the number of channels and weight sparsity simultaneously
in one single optimization run and determine the balance of acceleration between
channel pruning and weight pruning automatically.

Another difficulty in solving the problem in Eq. (2) is that there are more
than one objective (the latency and accuracy) to be optimized, yielding a multi-
objective optimization (MOO) problem naturally. It is challenging to design one
model that achieves the best values for both of the two objectives since these two
objectives are generally conflict with each other. Therefore, the optimal solutions
for the problem in Eq. (2) are not unique, and we need to find a sequence of
models lying on the Pareto-frontier between the accuracy and latency2. We solve
this problem based on the multi-objective evolutionary algorithm.

2.3 Unified framework

Before going into the details, we first introduce the overview of the whole frame-
work, which is illustrated in Fig. 2. The JCW works in an iterative way, it
maintains a sequence of well-performing models P = {(Ci, Si)}ni=1 with different
number of channels and weight sparsity, here n is the population size. 1 In each
iteration, a new set of models Q = {(Cnew

i , Snew
i)}ni=1 are generated from P

through crossover and mutation operators. Then, we estimate the accuracy (2)
and latency (3) of all the models in P ∪ Q. 4 Based on the estimations, we
select the models with various latency and relatively low error rates to form the
next generation of P . The proposed components are integrated under the learn-
ing problem of Eq. (2), and the iteration continues until the qualified models are
found. In the sequel, we instantiate different components of the framework, i.e.
the accuracy estimator in Section 2.4, the latency estimator in Section 2.5, and
the uniform non-dominated sorting selection of models in Section 2.6.

2 In MOO, the Pareto-frontier is a set of solutions that for each solution, it is not
possible to further improve some objectives without degrading other objectives.

6 Tianli Zhao et al.

2.4 Accuracy estimation

In JCW, the accuracy prediction is done efficiently by training a super-net with
parameter sharing [16]. Parameter sharing has been widely used in previous
one shot NAS methdos [16,3,59,45]. However, the accuracy predictor in JCW is
different from theirs in that we support not only coarse-grained channel pruning
but also fine-grained weight pruning. More importantly, these methods often
train a super-net containing all the models in the whole search space, the training
target can be formulated by:

min
w

E(x,y)∼D,A∼Ω [L(x|y;WA)], (3)

where Ω is the search space (e.g. in the scenario of joint channel and weight
pruning in this paper, the search space is all the models with different channel
numbers and layer-wise sparsity), D is the training dataset, W is the parameter
of the super-net, and WA are a part of parameters from W to form the model
with architectural configuration A. In this case, the large number of models in
the super-net are largely coupled with each other [48].

Considering that in our framework, we only need to determine the accuracy
rank of a finite number of architectures (i.e. 2 times of the population size)
each time, at the beginning of each evolutionary generation, we reconstruct the
super-net to contain only models to be evaluated and retrain it to determine the
accuracy rank. Formally, denote P̃ = P ∪Q = {(Ci, Si)}2ni=1 to be the sequence
of models whose accuracy rank are to be estimated, we train the super-net with
the following simplified target:

min
W

E(x,y)∼D,A∼P̃ [L(x|y;WA)], (4)

and WA is constructed by selecting the parameters with top channel indices and
then applying norm-based weight pruning. Note that the number of models in
P̃ is far less than the whole search space Ω. In this way, the coupling between
different models in the super-net can be reduced.

2.5 Latency estimation

Previously, latency prediction is conducted by constructing a look up Table [55,49,50]
or training an estimation model [54,2]. The former one is limited to a small num-
ber of candidates, while the latter one requires a large number of architecture-
latency pairs to train the estimation model, which is laborious to collect. In
contrast, in the JCW, we propose to estimate the latency of models with trilin-
ear interpolation. The latency of one model can be represented by the summation
of the latency of each layer:

T (C, S) =

L∑
l=1

T (l)(C, S), (5)

JCW 7

where T (l)(C, S) is the latency of the l-th layer of the model represented by
{C, S}. In the context of joint channel pruning and weight pruning, the latency
of each layer depends on the number of input/output channels and the weight
sparsity of that layer:

T (l)(C, S) = T̂ (l)(c(l−1), c(l), s(l)). (6)

For efficient latency estimation, we build a layer-wise latency predictor T̂ (l)(·)
with trilinear interpolation. This is based on the observation that the latency is
locally linear with respect to the layer width and weight sparsity3. Specifically,

we denote Cmax = {c(l)max}Ll=1 as the maximum number of channels of each

layer. For layer l with maximum input channels of c
(l−1)
max and maximum output

channels of c
(l)
max, we first measure the real runtime on the target device with

channel width 0, 1
N , 2

N , · · · , 1.0 of both input and output channels, and weight
sparsity of 0, 1

M , 2
M , · · · , 1.0, respectively, generating a 3-D array of architecture-

latency samples. We denote T
(l)
ijk to be the latency of the lth layer’s convolution

with input, output channels and weight sparsity of i
N c

(l−1)
max , j

N c
(l)
max, and k

M ,
respectively, and define:

c
(l)
i = N

c(l)

c
(l)
max

− i, s
(l)
i = Ms(l) − i (7)

to be the normalized array index. Given any input/output channels and weight
sparsity, we can easily approximate the latency through trilinear interpolation
of the 3-D array 4:

T̂ (l)(c(l−1), c(l), s(l)) =
∑
i,j,k

τ(c
(l−1)
i)τ(c

(l)
j)τ(s

(l)
k)T

(l)
ijk, (8)

where:
τ(x) = max(0, 1− |x|).
In practice, we find that M = 10, N = 8 is sufficient for approximat-

ing latency with high efficiency and accuracy as illustrated in Fig. 5. Com-
pared to other latency estimation methods [55,2] requiring tens of thousands
of architecture-latency pairs, the proposed trilinear interpolation-based latency
predictor can be efficiently constructed with as less as 700 data points.

2.6 Uniform non-dominated sorting selection

An important role of individual selection is to search for well-performed mod-
els while keeping model diversity in terms of latency. However, this cannot be
fulfilled by the standard selection scheme used in previous multi-objective evolu-
tionary algorithms [4] because in JCW, the accuracy estimation with parameter

3 Please refer to the Appendix for more results about this observation.
4 More detailed derivation is given in Appendix.

8 Tianli Zhao et al.

sharing is not as accurate as latency estimation. As a result, the evolver will
put too much emphasis on the latency minimization, and large models will be
gradually and incorrectly removed during evolution as shown in the left of Fig. 7.

To handle this obstacle, we propose a uniform non-dominated sorting se-
lection to generate diverse architectures of various latency. We first uniformly
sample N points from the interval [Tmin, Tmax]:

Ti = Tmin + i× Tmax − Tmin

N − 1
, i = 0, 1, 2, · · · , N − 1, (9)

where Tmin, Tmax are the minimal and maximal latency, respectively. For each
Ti, we sort the individuals in the merged population P ∪ Q with objectives
{|Ti − T |, E} with non-dominated sort [4], where T and E are latency and error
rate of the network architecture.

Let Fi = {F (s)
i }ni−1

s=0 be frontier stages after sorting architectures with objec-

tives {|Ti−T |, E}. We select candidates stage by stage in the order F
(0)
0 , F

(0)
1 , · · ·

until the number of selected candidates reaches the evolutionary population size.
When we select individuals from Fi, architectures with latency close to Ti and
relatively low error rate will be selected. In the right of Fig. 7, it demonstrates
that our uniform non-dominated sorting selection generates diverse architectures
of various latency.

3 Experimental Results

To validate the efficiency of our joint channel and weight pruning (JCW), we con-
duct extensive experiments, including ablation studies, based on ResNet18 [19],
MobileNetV1 [24], and MobileNetV2 [44] on the ImageNet classification dataset [5].

3.1 Implementation details

We use a similar technique as fast sparse ConvNets [10] for efficient computa-
tion of sparse convolution, with two slight improvements. (i) For weight pruning,
we group the parameters along the output channels and remove the parame-
ters group-wisely. Specifically, four parameters at the same location of adjacent
output channels are grouped together, and parameters in the same group are
removed or retained simultaneously. The grouping strategy is beneficial for ef-
ficient data reuse [10]. In all of our experiments, the group size is set to 4. (ii)
We extend their computation algorithm to support not only matrix multiplica-
tion but also regular convolution. We implement an efficient algorithm for the
computation of sparse convolution and utilize it to measure the latency of our
searched sparse models.

For evolutionary search, we set the population size to 64 and the number
of search steps to 128. We sample a subset of the ImageNet dataset for the
supernet training. Specifically, we randomly sample 100 classes from ImageNet,
500 images per class to construct the train set, and randomly sample 50 images
from the rest images per class to construct the validation set. We train the

JCW 9

Fig. 3: Comparison of JCW with state of the art model compression/acceleration
methods. Top: the results on MobileNetV2. Bottom: the results on MobileNetV1.
Left: the comparison of FLOPS. Middle: the comparison of latency on one single
Cortex-A72 CPU. Right: the comparison on one single Cortex-A53 CPU.

supernet for 30 epochs with batch size of 256, where the first 10 epochs are used
for parameter sharing warming up. The learning rate and weight decay are set to
0.1 and 0.00004 in all the experiments, respectively. For each model in supernet,
the batch normalization (BN) statistics are recalculated with 1, 280 images.

After we complete the search stage, the generated architectures are re-trained
on the whole training set and validated on the validation set of the ImageNet
dataset. We train the compressed models with ADMM, details about the hyper-
parameters of different models are given in Appendix.

If not specified, the latency of all the models are measured on one single
ARM Cortex-A72 CPU. The latency of models for channel pruning methods
is measured with TFLite [14], which is a commonly used mobile-oriented deep
learning inference framework for dense deep neural networks. The latency of
models with weight sparsity is measured with our implemented high-performance
sparse convolution algorithm. We run each model for 20 times and report the
average of the runtime.

3.2 Comparison with state-of-the-art methods

We compare JCW with multiple state-of-the-art model compression and accel-
eration methods, including BCNet [45], NPPM [13], GroupFisher [34], CC [1],
DMCP [15], APS [48], AMC [23], AutoSlim [57], USNet [58], and Fast [10] in
terms of model FLOPS, accuracy, and latency on multiple types of devices.
The main results are shown in Figure 3 and Table 2, and more detailed re-
sults are shown in Appendix. The middle of the column shows the comparison
in terms of accuracy and latency on a single ARM Cortex-A72 CPU. We see

10 Tianli Zhao et al.

Fig. 4: Comparison in terms of accuracy and latency on 4× Cortex-A53 CPUs.

from the figure that JCW outperforms all the baseline methods by a large
margin. This proves that JCW achieves a better latency-accuracy trade-off.

Method
Latency

A72
Latency

A53
Latency
A53×4

Acc@1

Uniform 1× 537ms 1167ms 402ms 69.8%
DMCP 341ms 893ms 291ms 69.7%
APS 363ms 921ms 322ms 70.2%

JCW(OURS)
194ms
224ms

518ms
694ms

158ms
179ms

69.7%
70.2%

Table 2: Experimental results on the
Resnet18 model.

Generalization to other deployment
platforms. The latency of models can
be largely depended on deployment plat-
forms. Thus a common problem about
JCW may be: Whether it can general-
ize well to other deployment platforms?
To resolve this, we directly deploy the
searched models on Cortex-A53 CPUs.
The latency-accuracy comparisons are

shown in the right column of the Figure 3, we see from the figure that, al-
though not targeting Cortex-A53 during the search, JCW still achieves excellent
latency-accuracy trade-off on this platform, outperforming all the other meth-
ods by a large margin. In Figure 4, we further show the comparison of accuracy
and latency on multi-device platforms. The latency is further measured on 4×
Cortex-A53 CPUs. JCW still outperforms all the other baselines in most cases,
except on MobileNetV2 under the latency constraint of 50 ms, where JCW per-
forms very similar to Fast [10].
Generalization to other metrics. Besides latency, FLOPs is also an impor-
tant evaluation index when deploying deep learning models to mobile devices.
We thus further compare JCW with other methods in terms of FLOPs and ac-
curacy in the left column of Figure 3. We see that although targeting latency,
JCW still achieves competitive trade-off between FLOPs and accuracy. This is
not surprising because JCW includes flexible weight pruning.

To sum up, the proposed JCW can achieve excellent trade-off between latency
and accuracy, and generalizes well to other deployment platforms and metrics.

3.3 Ablation study

Accuracy of latency estimation. To evaluate the accuracy of the proposed
latency estimation, we compare the real latency and predicted latency of 100

JCW 11

randomly generated MobileNetV1 models with various number of channels and
weight sparsity. Specifically, we run each model for 20 times, calculate the aver-
age runtime and compare it with the predicted runtime. Results are shown in the
left of Fig. 5. From the figure, we can observe that with trilinear interpolation,
the predicted latency is highly correlated to the real latency of deep networks.
The right of Figure 5 shows the latency and the number of arithmetic operations
of different deep networks. We can see that the number of arithmetic operations
(MFLOPS) is positively correlated with latency generally, while the latency does
not monotonically increase with the number of operations (MFLOPS). This is
mainly because that the model’s latency on real hardware platform can be im-
pacted by both computation intensity and other factors such as memory ac-
cess time. This phenomenon motivates us to design deep networks based on
latency instead of FLOPs for model pruning. When deploying a deep network
into a practical hardware, we consider the latency of runtime, not the FLOPs.

15 20 25 30 35 40
Real runtime/ms

15

20

25

30

35

40

Pr
ed

ict
ed

 ru
nt

im
e/

m
s

15 20 25 30 35 40
Real runtime/ms

40
60
80

100
120
140
160
180

M
FL

OP
S

Fig. 5: Left: the real runtime & the
predicted runtime with proposed
trilinear interpolation. Right: the
real runtime & FLOPs of models.

Correlation of accuracy predictor. In
JCW, the accuracy predictor is designed
to support both channel and weight prun-
ing, which has not been studied before.
Recall in Sec. 2.4 that in each training, the
super-net will be re-initialized and only
contains a finite number of architectures.
We further evaluate the correlation be-
tween predicted accuracy and true accu-
racy. It is time consuming to train a num-
ber of models on the large-scale ImageNet
dataset, so we evaluate it on the CIFAR-

10 dataset. We train a super-net containing 128 ResNet20 models with various
channel widths and weight sparsity, and all the hyper-parameters are the same
as described in Sec. 3.1. Fig. 6 shows a high correlation between predicted and
true accuracy.

Method CP WP Optim. Latency Accuracy

WSO ✗ ✓ -
161.72 ms 68.45%
196.82 ms 69.54%

CWO ✓ ✗ -
161.14 ms 66.78%
205.03 ms 67.75%

SCW ✓ ✓ Seq.
197.62 ms 69.29%
221.65 ms 69.58%

160.37 ms 69.16%
196.44 ms 69.90%JCW ✓ ✓ Joint
223.73 ms 70.19%

Table 3: Comparisons among different vari-
ants of JCW for accelerating ResNet18 on
ImageNet. JCW consistently outperforms
all of its variants.

84 85 86 87 88 89 90
True Accuracy

72

74

76

78

80

82

Pr
ed

ict
ed

 A
cc

ur
ac

y

= 0.80

Fig. 6: Correlation between pre-
dicted accuracy and true ac-
curacy of ResNet20 models on
CIFAR-10 dataset.

12 Tianli Zhao et al.

150 225 300
Latency (ms)

0

10

20

30

40

#m
od

el
s

150 225 300
Latency (ms)

0

2

4

6

8

10

12

14

Fig. 7: Left: latency distribution after 50 evolutionary steps with standard non-
dominated sorting selection. Right: latency distribution after 50 evolutionary
steps with uniform non-dominated sorting selection. The searches are conducted
with ResNet18 on ImageNet. The proposed selection generates models of various
latency, while the standard selection gives priority to models of low latency.

Effect of joint channel and weight pruning.

The core idea of JCW is to apply joint channel and weight pruning jointly for
better latency-accuracy trade-off. To prove its effectiveness, we compare JCW
with three of its variants, i.e. (i) WSO which only searches for the layer-wise
weight sparsity, while the number of channels for each layer remains the max-
imum value; (ii) CWO which only searches for the number of channels while
keeps the full parameters of remaining channels; (iii) SCW which first searches
for number of channels and then searches for weight sparsity with fixed channel
widths.

Table 3 shows that our JCW outperforms all the other variants, and CWO
performs the worst. In particular, under the latency of ∼ 160ms, the accuracy
of JCW is 0.61% and 2.38% higher than WSO and CWO, respectively. Under
the latency of ∼ 196ms, the JCW achieves 0.46% and 0.61% higher accuracy
than WSO and SCW, respectively. Moreover, we see from the table that SCW,
which simply applies channel width and weight sparsity search sequentially, does
not achieve a better accuracy-latency trade-off than JCW. This is reasonable
because simply applying channel and weight pruning search sequentially will
lead to a sub-optimal balance between channel and weight pruning. In contrast,
JCW optimizes channel width and weight sparsity jointly in one single search
and tries to find the optimal balance between channel and weight pruning, thus
achieving the best accuracy-latency trade-off.

Effect of uniform non-dominated sorting selection. Considering the search
efficiency, we predict the accuracy of models with different architectures using
parameter sharing at the cost of inaccurate accuracy prediction. Because of in-
accurate model accuracy prediction, the evolver tends to focus on minimizing
the other objective, the latency. For instance, let A, B be two architectures
in the combined population to be selected. We assume that T (A) < T (B),
E(A) > E(B). Here, T and E are real latency and error rate of architectures,
respectively. In terms of multi-objective optimization, there is no priority rela-
tion between A and B. In other words, both architectures A and B should be

JCW 13

selected in the new population with an equal chance. If the accuracy estimation
is inaccurate, it is likely that the predicted error rate of A is smaller than B.
In this case, the standard non-dominated sorting selection may remove the ar-
chitecture B from the population incorrectly. This motivates us to develop the
uniform non-dominated sort scheme, which explicitly selects architectures with
a wide range of latency. The uniform non-dominated sorting selection generates
diverse architectures of various latency.

To further validate the effectiveness of the proposed selection method, we
show the latency distribution of models searched with the above two different
selection methods in Fig. 7. The experiments are conducted with ResNet18 on
the ImageNet dataset. From the left of Fig. 7, we can observe that the latency of
models searched with the original selection scheme are small after 50 evolutionary
steps. In contrast, from the right of Fig. 7 we can observe that with the proposed
uniform non-dominated sorting selection, models with relatively large latency
are also preserved during search. So we conclude that the enhanced evolutionary
algorithm with the proposed uniform non-dominated sorting selection is able to
generate diverse models with various latency.

4 Related Works

Pruning has long been one of the primary techniques for network compression
and acceleration [18,17,32,20]. These methods remove unimportant parameters
from the original network and optimize the remaining parts of the networks to
retain accuracy. According to the granularity of pruning, these methods can be
categorized into fine-grained weight pruning and coarse-grained filter pruning. In
weight pruning, parameters are removed in weight-level [28,18,17,7,12]. Weight
pruning is flexible to achieve theoretically smaller models and can also be ef-
ficiently accelerated on mobile CPUs thanks to the recent work of fast sparse
convolution [10]. In contrast, channel pruning compresses networks by removing
parameters at the filter level. Most of the early channel pruning methods are
based on an filter importance scoring scheme, e.g., the filter norm [31,21], the
percentage of zero-activation [26], the reconstruction error of outputs [20,37,6],
the increase of loss after pruning [39,40,41,34], the geometric properties of fil-
ters [22,27]. Besides, sparse regularization-based methods [53,43] have also been
intensively explored. Channel pruning methods are well-structured, thus it can
be directly accelerated without extra implementation efforts.

Apart from the aforementioned pruning methods, many recently emerging
pruning methods formulate the network pruning as an architecture search, tak-
ing benefits from the automated process in composing architectures to avoid the
labor-prohibitive model design. He et al. [23] propose to determine the number of
channels with reinforcement learning and outperforms human-designed pruning
methods. Lin et al. [33] search for the channel numbers with population-based
algorithm. Wang et al. [52] model the problem of channel number search as
structural redundancy reduction. Gao et al. [13], Wang et al. [51] train parame-
terized accuracy predictors to guide the pruning process. Liu et al. [35] train a

14 Tianli Zhao et al.

meta network to predict the weights of compressed models, then conduct evo-
lutionary search for pruning. There is also a vast body of work utilizing the
parameter sharing technique to train a supernet for accuracy evaluation and
conduct the pruning with evolutionary search [16,3,45], greedy slimming [57],
or reinforcement learning [48]. Besides, differentiable channel number search ap-
proaches [9,15] have also been investigated.

Besides the above static pruning methods, there is also a vast body of work
pruning networks dynamically. These methods decide online inference which
connections should be pruned according to the input image [29,47,30]. Dynamic
pruning is a promising method to reduce the average computational complexity
over a large number of testing samples, while it is not convenient for deployment
on mobile devices for real-time applications because its computation complexity
depends on the input image and is unpredictable. Our method lies in the family
of static pruning.

Efficient model design often involves multiple objectives, e.g., the accuracy,
the latency, the model size, etc. In this perspective, it is more desired to search
for a sequence of Pareto optimal models. Many works have been proposed to
deal with multi-objective model design. Hsu et al. [25], Tan et al. [46] integrate
multiple objectives into one correlated reward function and conduct the search
with reinforcement learning. However, they need trial and error to design the
form and related hyper-parameters for the correlated reward function, which is
prohibitively laborious. Some recent works [8,36,11,56] search for Pareto optimal
architectures directly with evolutionary algorithm and a selection criterion based
on non-dominated sorting [4]. Our work focuses on model pruning, which is
orthogonal to these general NAS methods.

To our best knowledge, the JCW is the first work investigating the essential
part of pruning: is it possible to absorb both benefits of channel and weight prun-
ing and achieve a better accuracy-latency trade-off by applying the two jointly?
We conduct extensive experiments and ablation studies, which demonstrate that
the joint channel and weight pruning achieves a better accuracy-latency Pareto
frontier than previous pruning approaches.

5 Conclusion

In this work, we propose a joint channel and weight pruning, named JCW,
which achieves a better pruning proportion between channel and weight prun-
ing. We further construct a multi-objective optimization considering both model
accuracy and inference latency in the JCW, which can be solved by a tailored
Pareto-optimization evolutionary algorithm. Extensive experiments demonstrate
that the effectiveness of each component of JCW.
Acknowledgements This work was supported in part by the National Key
Research and Development Program of China under Grant 2021ZD0201504, in
part by the Strategic Priority Research Program of Chinese Academy of Sciences
under Grant XDA27040300.

JCW 15

References

1. Towards compact cnns via collaborative compression. In: IEEE Conference on
Computer Vision and Pattern Recognition, (CVPR)

2. Berman, M., Pishchulin, L., Xu, N., B.Blaschko, M., Medioni, G.: Aows: Adap-
tive and optimal network width search with latency constraints. In: 2020 IEEE
Conference on Computer Vision and Pattern Recognition, (CVPR) (2020)

3. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for all: Train one network
and specialize it for efficient deployment. In: International Conference on Learning
Representations (2020)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002). https://doi.org/10.1109/4235.996017

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

6. Ding, X., Ding, G., Zhou, X., Guo, Y., Liu, J., Han, J.: Approximated oracle filter
pruning for destructive cnn width optimization. In: IEEE Conference on Machine
Learning, (ICML) (2019)

7. Ding, X., Ding, G., Zhou, X., Guo, Y., Liu, J., Han, J.: Global sparse momentum
sgd for pruning very deep neural networks. In: Advances in Neural Information
Processing Systems, (NeurIPS) (2019)

8. Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: Device-aware
progressive search for pareto-optimal neural architectures. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 517–531 (2018)

9. Dong, X., Yang, Y.: Network pruning via transformable architecture search. In:
Advances in Neural Information Processing Systems. pp. 760–771 (2019)

10. Elsen, E., Dukhan, M., Gale, T., Simonyan, K.: Fast sparse convnets. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2020)

11. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture
search via lamarckian evolution. In: International Conference on Learning Repre-
sentations, (ICLR) (2019)

12. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: International Conference on Learning Representations (ICLR)
(2019)

13. Gao, S., Huang, F., Cai, W., Huang, H.: Network pruning via performance max-
imization. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2021)

14. Google-Inc.: Machine learning for mobile devices: Tenworflow lite. https://www.
tensorflow.org/lite (2020)

15. Guo, S., Wang, Y., Li, Q., Yan, J.: Dmcp: Differentiable markov channel pruning
for neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1539–1547 (2020)

16. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-
shot neural architecture search with uniform sampling. In: European Conference
on Computer Vision. pp. 544–560. Springer (2020)

17. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

https://doi.org/10.1109/4235.996017
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite

16 Tianli Zhao et al.

18. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. In: Advances in Neural Information Processing Systems,
(NIPS) (2015)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

20. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: 2017 IEEE International Conference on Computer Vision (ICCV)
(2017)

21. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: Proceedings of International Joint Confer-
ence on Artificial Intelligence, (IJCAI) (2018)

22. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: IEEE Conference on Computer
Vision and Pattern Recognition, (CVPR) (2019)

23. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. In: in Proceedings of the European
Conference on Computer Vision (ECCV) (September 2018)

24. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR abs/1704.04861 (2017), http://arxiv.org/
abs/1704.04861

25. Hsu, C.H., Chang, S.H., Liang, J.H., Chou, H.P., Liu, C.H., Chang, S.C., Pan,
J.Y., Chen, Y.T., Wei, W., Juan, D.C.: Monas: Multi-objective neural architecture
search using reinforcement learning. arXiv preprint arXiv:1806.10332 (2018)

26. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven neuron
pruning approach towards efficient deep architectures. arXiv:1607.03250 (2016)

27. Joo, D., Yi, E., Baek, S., Kim, J.: Linearly replaceable filters for deep network
channel pruning. In: The 34th AAAI Conference on Artificial Intelligence, (AAAI)
(2021)

28. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in neural
information processing systems. pp. 598–605 (1990)

29. Li, C., Wang, G., Wang, B., Liang, X., Li, Z., Chang, X.: Dynamic slimmable
network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 8607–8617 (June 2021)

30. Li, F., Li, G., He, X., Cheng, J.: Dynamic dual gating neural networks. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
pp. 5330–5339 (October 2021)

31. Li, H., Kadav, A., Durdanovic, I.: Pruning filters for efficient convnets. In: Inter-
nation Conference on Learning Representation, (ICLR) (2017)

32. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

33. Lin, M., Ji, R., Zhang, Y., Zhang, B., Wu, Y., Tian, Y.: Channel pruning via
automatic structure search. In: Proceedings of International Joint Conference on
Artificial Intelligence, (IJCAI) (2020)

34. Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J., Wang, X., Chen, Y., Yang, W.,
Liao, Q., Zhang, W.: Group fisher pruning for practical network compression. In:
International Conference on Machine Learning, (ICML) (2021)

35. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: Metapruning:
Meta learning for automatic neural network channel pruning. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 3296–3305 (2019)

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

JCW 17

36. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.:
Nsga-net: neural architecture search using multi-objective genetic algorithm. In:
Proceedings of the Genetic and Evolutionary Computation Conference. pp. 419–
427 (2019)

37. Luo, J., Zhang, H., Zhou, H., Xie, C., Wu, J., Lin, W.: Thinet: Pruning cnn filters
for a thinner net. IEEE Transactions on Pattern Analysis and Machine Intelligence,
(TPAMI) (2018)

38. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural
networks. In: in Proceedings of the International Conference on Machine Learning
(2017)

39. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: International Conference on
Learning Representations, (ICLR) (2017)

40. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation
for neural network pruning. In: IEEE Conference on Computer Vision and Pattern
Recognition, (CVPR) (2019)

41. Peng, H., Wu, J., Chen, S., Huang, J.: Collaborative channel pruning for deep
neural networks. In: International Conference on Machine Learning, (ICML) (2019)

42. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. In: International Conference on Machine Learning
(2018)

43. Ruan, X., Liu, Y., Li, B., Yuan, C., Hu, W.: Dpfps: Dynamic and progressive filter
pruning for compressing convolutional neural networks from scratch. In: The 34th
AAAI Conference on Artificial Intelligence, (AAAI) (2021)

44. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2:
Inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2018)

45. Su, X., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: Bcnet: Searching for network
width with bilaterally coupled network. In: IEEE Conference on Computer Vision
and Pattern Recognition, (CVPR) (2021)

46. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
2820–2828 (2019)

47. Tang, Y., Wang, Y., Xu, Y., Deng, Y., Xu, C., Tao, D., Xu, C.: Manifold regular-
ized dynamic network pruning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 5018–5028 (June 2021)

48. Wang, J., Bai, H., Wu, J., Shi, X., Huang, J., King, I., Lyu, M., Cheng, J.: Revis-
iting parameter sharing for automatic neural channel number search. Advances in
Neural Information Processing Systems 33 (2020)

49. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: Hardware-aware automated
quantization with mixed precision. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2019)

50. Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., Han, S.: Apq: Joint
search for network architecture, pruning and quantization policy. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
2078–2087 (2020)

51. Wang, W., Chen, M., Zhao, S., Chen, L., Chen, L., Hu, J., Liu, H., Cai, D., He,
X., Liu, W.: Accelerate cnns from three dimensions: A comprehensive pruning
framework. In: International Conference on Machine Learning, (ICML) (2021)

18 Tianli Zhao et al.

52. Wang, Z., Li, C., Wang, X.: Convolutional neural network pruning with struc-
tural redundancy reduction. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2021)

53. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: in Advances in Neural Information Processing Systems
(NeurIPS) (2016)

54. Yang, H., Zhu, Y., Liu, J.: Ecc: Platform-independent energy-constrained deep
neural network compression via a bilinear regression model. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2019)

55. Yang, T., Howard, A.G., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., Adam,
H.: Netadapt: Platform-aware neural network adaption for mobile applications. In:
European Conference on Computer Vision, (ECCV) (2018)

56. Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu, C.: Cars:
Continuous evolution for efficient neural architecture search. In: IEEE Conference
on Computer Vision and Pattern Recognition, (CVPR) (2020)

57. Yu, J., Huang, T.S.: Autoslim: Towards one-shot architecture search for channel
numbers. CoRR abs/1903.11728 (2019), http://arxiv.org/abs/1903.11728

58. Yu, J., Huang, T.S.: Universally slimmable networks and improved training tech-
niques. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 1803–1811 (2019)

59. Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.J., Tan, M., Huang, T., Song,
X., Pang, R., Le, Q.: Bignas: Scaling up neural architecture search with big single-
stage models. In: European Conference on Computer Vision, (ECCV) (2020)

60. Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu, J.:
Discrimination-aware channel pruning for deep neural networks. In: in Advances
in Neural Information Processing Systems (NeurIPS) (2018)

http://arxiv.org/abs/1903.11728

	Multi-Granularity Pruning for Model Acceleration on Mobile Devices

