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1 Comparison of loss designs

In this section, we show the effect that loss designs have on ensembles in terms of
bringing knowledge closer and separating knowledge. We trained four networks
and compared the ensemble accuracy using them. We used ResNet-18 [2] as the
network, the probability distribution and attention map as the knowledge, and
Stanford Dogs [3] as the dataset. The attention map was created from the output
of ResBlock4 using attention transfer [8]. The loss design for the probability
distribution used KL-divergence (KL) and cosine similarity (cos). The loss design
for the attention map used mean square error (MSE) and cosine similarity (cos).

Tables 1 and 2 show the results of the loss design for the probability distribu-
tion and the attention map. “+” means the loss design for bringing knowledge
closer and “−” means the loss design for separating knowledge. With the excep-
tion of several loss designs, the ensemble accuracy did not change significantly
with the loss design. Loss designs that use division have the possibility of dividing
by zero. Therefore, to train the network as a minimization problem, we selected
different loss designs for bringing knowledge closer and separating knowledge.

2 Types of knowledge and effects of loss design

In this section, we show the effect of knowledge type and loss design on network
accuracy. In Sec. 3.2 of the main paper, the ensemble accuracy (Fig. 3 in the

Table 1: Comparison of ensemble ac-
curacy for different loss designs with
probability distribution [%].

Loss design Knowledge Ensemble accuracy

KL + 69.95
−cos + 70.00
1/cos + 69.12

cos − 69.88
−KL − 57.87
1/KL − 67.88

Table 2: Comparison of ensemble ac-
curacy for different loss designs with
attention map [%].

Loss design Knowledge Ensemble accuracy

MSE + 68.91
−cos + 68.93
1/cos + 68.98

cos − 70.35
−MSE − 64.73
1/MSE − 68.50
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Fig. 1: Network accuracy by diverse knowledge distillation [%].

main paper) is comparable depending on the loss design. The accuracy of the
network in Sec. 3.2 is shown in Fig. 1. The accuracy of the network tends to
vary depending on the loss design. Therefore, we think that different loss designs
have different learning effects. Separating the probability distributions causes a
decrease in the accuracy of the network, whereas separating the attention maps
prevents a decrease in the accuracy of the network.

3 Process of graph optimization

Algorithm 1 shows process of graph optimization. Each graph is evaluated at
the timing of 2k epochs. If the ensemble accuracy of the graph is higher than
the median ensemble accuracy of previously evaluated graphs at the same epoch
timing, training is continued to the next 2k epochs and evaluated again. If the
ensemble accuracy of the graph is lower than the median, the training of the
graph is terminated. Then, a new graph is created for the structure that has
not yet been evaluated, and training of the new graph is started from 1 epoch.
These processes are repeated until the number of graphs created reaches 6,000.

4 Visualization of optimized graphs

In the main paper, we showed a graph structure that was automatically de-
signed using Stanford Dogs. In this section, we show graph structures that were
automatically designed using datasets other than Stanford Dogs. Figures 2, 3,
4, and 5 show graphs automatically designed using CIFAR-10 [5], CIFAR-100
[5], Caltech-UCSD Birds-200-2011 (CUB-200-2011) [7], and Stanford Cars [4]. A
red node represents an ensemble node, a gray node represents a network node,
and “Label” represents supervised labels. At each edge, the selected loss design
and gate are shown, excluding the cutoff gate. The accuracy in parentheses is
the result for the dataset used for automatic graph design.
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Algorithm 1 Optimizing the graph of M network nodes

Require: Number of searches Nsearch, Number of GPUs Ngpu

Require: Training epochs T , Train set Dtrain, Test set Dtest

Require: Networks set F : {f1, ..., fM}, Search space of graphs S : {S1, ..., Si}
Require: Random sampling function ϕ, Pruning function ASHA,

The function computing ensemble accuracy ψ
1: Abest ← 0
2: Nend ← 0
3: Start the asynchronous search in Ngpu environments
4: while Nend ≥ Nsearch do
5: Initialization of networks F
6: S ← ϕ(S) // Selection of graph structure by random sampling
7: for t← 1 to T do
8: S(F , Dtrain) // Training of networks by graph
9: Aens ← ψ(F , Dtest) // Evaluation of ensemble accuracy
10: // Judgement of pruning by ASHA
11: if ASHA(Aens) then
12: break
13: end if
14: end for
15: Aens ← ψ(F , Dtest)
16: if Aens > Abest then
17: Sbest ← S
18: Abest ← Aens

19: end if
20: Nend ← Nend + 1
21: end while
22: return Sbest
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Fig. 2: Two-node graph optimized on
CIFAR-10.
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Fig. 3: Two-node graph optimized on
CIFAR-100.
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Fig. 4: Graph optimized on CUB-200-2011.
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Fig. 5: Graph optimized on Stanford Cars.
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5 Generalizability of graphs

In the main paper, we showed the generalizability of graph structures automati-
cally designed using Stanford Dogs for four datasets. In this section, we evaluate
five graphs automatically designed using five different datasets. We used at-
tention branch network (ABN) [1] based on ResNet as the network. We used
Stanford Dogs, Stanford Cars, CUB-200-2011, CIFAR-10, and CIFAR-100 as
the datasets. Stanford Dogs, Stanford Cars, and CUB-200-2011 belong to the
fine-grained object classification task. CIFAR-10 and CIFAR-100 belong to the
general object classification task.

Table 3 shows the ensemble accuracy of the two-node graph. “Independent”
is the result of an individually trained network. “DML” is the result of a net-
work trained with deep mutual learning [9]. The bold text in the Ensemble
column shows that the ensemble accuracy was higher than Independent and
DML. The graphs automatically designed using the datasets of the fine-grained
object classification task showed an improved ensemble accuracy, especially in
the fine-grained object classification task. The graphs automatically designed
using the datasets of the general object classification task showed an improved
ensemble accuracy, especially in the general object classification task. We believe
that there was generalizability in the graph structure when the problem set was
the same and that optimization resulted in a graph structure that corresponded
to the problem set.

Tables 4, 5, and 6 show the results for various numbers of network nodes,
from two to five, between the fine-grained object classification tasks. We believe
that there was generalizability in the graph structure even when the number
of network nodes was increased. Focusing on the ensemble accuracy of “Ours,”
the ensemble accuracy varied depending on the dataset used for the automatic
design. We believe that this is because the number of combinations of graph
structures was huge, and automatic design using random search finally resulted
in different graph structures.

Figures 6a and 6b show the attention maps of the five-node graph optimized
by Stanford Dogs for training CUB-200-2011 and Stanford Cars, respectively.
Each point in the graph is two-dimensional because the attention maps were
reduced to two dimensions by UMAP [6]. We see that the attention maps of
each dataset are similar even when training on a dataset different from the opti-
mization. These dimensionally reduced maps have a similar trend for each node
regardless of the sample. This indicates that the graph structure is generalizable
in terms of the attention map.
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Table 3: Ensemble accuracy of reused two-node graphs optimized on another
dataset [%].

Method
Training Optimizing

Ensemble
Graph Graph

Independent Stanford Dogs - 70.90
DML Stanford Dogs - 71.45
Ours Stanford Dogs Stanford Dogs 73.86
Ours Stanford Dogs CUB-200-2011 72.43
Ours Stanford Dogs Stanford Cars 72.79
Ours Stanford Dogs CIFAR-100 71.53
Ours Stanford Dogs CIFAR-10 70.08

Independent CUB-200-2011 - 65.26
DML CUB-200-2011 - 66.90
Ours CUB-200-2011 Stanford Dogs 72.06
Ours CUB-200-2011 CUB-200-2011 69.81
Ours CUB-200-2011 Stanford Cars 71.27
Ours CUB-200-2011 CIFAR-100 66.43
Ours CUB-200-2011 CIFAR-10 66.42

Independent Stanford Cars - 88.49
DML Stanford Cars - 88.89
Ours Stanford Cars Stanford Dogs 89.76
Ours Stanford Cars CUB-200-2011 89.50
Ours Stanford Cars Stanford Cars 89.44
Ours Stanford Cars CIFAR-100 88.90
Ours Stanford Cars CIFAR-10 88.63

Independent CIFAR-100 - 73.16
DML CIFAR-100 - 73.61
Ours CIFAR-100 Stanford Dogs 72.19
Ours CIFAR-100 CUB-200-2011 73.66
Ours CIFAR-100 Stanford Cars 72.53
Ours CIFAR-100 CIFAR-100 74.18
Ours CIFAR-100 CIFAR-10 73.37

Independent CIFAR-10 - 93.99
DML CIFAR-10 - 93.97
Ours CIFAR-10 Stanford Dogs 93.87
Ours CIFAR-10 CUB-200-2011 94.09
Ours CIFAR-10 Stanford Cars 93.93
Ours CIFAR-10 CIFAR-100 94.37
Ours CIFAR-10 CIFAR-10 94.15
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Table 4: Ensemble accuracy on Stanford Dogs [%].

Method
Optimizing Number of nodes

Graph 2 3 4 5

Independent - 70.09 71.41 72.06 72.32
Ours Stanford Dogs 73.86 73.41 74.16 74.14
Ours CUB-200-2011 72.43 73.78 74.03 74.55
Ours Stanford Cars 72.79 73.35 72.86 74.56

Table 5: Ensemble accuracy on CUB-200-2011 [%].

Method
Optimizing Number of nodes

Graph 2 3 4 5

Independent - 65.26 65.27 66.40 66.66
Ours Stanford Dogs 72.06 71.82 73.03 72.13
Ours CUB-200-2011 69.81 74.17 71.27 74.05
Ours Stanford Cars 71.19 72.56 70.26 73.43

Table 6: Ensemble accuracy on Stanford Cars [%].

Method
Optimizing Number of nodes

Graph 2 3 4 5

Independent - 88.49 89.23 89.55 89.48
Ours Stanford Dogs 89.76 89.94 89.98 90.41
Ours CUB-200-2011 89.58 90.39 89.95 90.81
Ours Stanford Cars 89.44 90.04 89.57 90.73

(a) CUB-200-2011 (b) Stanford Cars

Fig. 6: Attention map of five nodes optimized by Stanford Dogs trained on other
datasets with dimensionality reduction by UMAP.



8 N. Okamoto et al.

Table 7: Comparison of ensemble accuracy by nodes used in ensemble. [%].
Used for ensemble

Ensemble
node 1 node 2 node 3 node 4 node 5

✓ ✓ ✓ ✓ ✓ 74.50

✓ ✓ ✓ ✓ 74.30
✓ ✓ ✓ ✓ 74.06
✓ ✓ ✓ ✓ 74.31
✓ ✓ ✓ ✓ 74.23

✓ ✓ ✓ ✓ 74.44

✓ ✓ ✓ 73.76
✓ ✓ ✓ 73.80
✓ ✓ ✓ 73.71
✓ ✓ ✓ 73.87
✓ ✓ ✓ 73.28
✓ ✓ ✓ 73.65

✓ ✓ ✓ 73.51
✓ ✓ ✓ 73.88
✓ ✓ ✓ 73.40

✓ ✓ ✓ 73.01

✓ ✓ 72.54
✓ ✓ 72.69
✓ ✓ 72.74
✓ ✓ 72.28

✓ ✓ 72.62
✓ ✓ 72.69
✓ ✓ 72.18

✓ ✓ 72.56
✓ ✓ 71.52

✓ ✓ 72.44

6 Relationship between network nodes and ensemble
accuracy

On the basis of the trend in Fig. 7 of the main paper, training with the five-node
graph automatically designed using Stanford Dogs (Fig. 6d of the main paper)
lead to a different attention map being acquired for each network node. As a
result, node 2 became a network that strongly focused on the background, which
may have a negative impact on the ensemble. In this section, we show the impact
on the ensemble accuracy of each network node trained with the five-node graph
automatically designed using Stanford Dogs. We used ABN based on ResNet as
the network and Stanford Dogs as the dataset.

Table 7 shows the ensemble accuracy using selected network nodes. “✓”
means the network node used in the ensemble. The bold text in the Ensemble
column shows the highest ensemble accuracy for each number of network nodes.
The ensemble accuracy was highest when all network nodes were used. Therefore,
we believe that the five-node graph is a training method that achieves high
performance by acquiring different attention maps among network nodes that
cooperate with each other.
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