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Abstract. When optimizing sequentially incoming tasks, deep neural
networks generally suffer from catastrophic forgetting due to their lack
of ability to maintain knowledge from old tasks. This may lead to a signif-
icant performance drop of the previously learned tasks. To alleviate this
problem, studies on continual learning have been conducted as a counter-
measure. Nevertheless, it suffers from an increase in computational cost
due to the expansion of the network size or a change in knowledge that
is favorably linked to previous tasks. In this work, we propose a novel
approach to differentiate helpful and harmful information for old tasks
using a model search to learn a current task effectively. Given a new task,
the proposed method discovers an underlying association knowledge from
old tasks, which can provide additional support in acquiring the new task
knowledge. In addition, by introducing a sensitivity measure to the loss
of the current task from the associated tasks, we find cooperative rela-
tions between tasks while alleviating harmful interference. We apply the
proposed approach to both task- and class-incremental scenarios in con-
tinual learning, using a wide range of datasets from small to large scales.
Experimental results show that the proposed method outperforms a large
variety of continual learning approaches for the experiments while effec-
tively alleviating catastrophic forgetting.
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1 Introduction

Deep learning algorithms are generally optimized for a single task or multiple
different tasks. However, it is difficult for them to apply to a more challenging
scenario; learning sequentially incoming tasks without accessing the old ones.
This is because a single deep network lacks the ability to accommodate both
new and old knowledge using a limited set of shared parameters. Specifically,
when a network learned from old tasks is further trained with a new task, it can
easily forget the previously learned tasks. This phenomenon is called catastrophic
forgetting [28,17], a major hindrance in learning sequential tasks with a deep
neural network.

Many approaches have been recently proposed as a remedy for memoriz-
ing knowledge. They are generally classified into four categories: regularization
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[2,5,21,17,42], replay [6,25,30,31,37,40,15,10], dynamic expansion [3,32,33,41],
and structural allocation [1,26,27,36] approaches. The regularization approaches
add a new penalty to consolidate old knowledge while training on a new task.
However, this will not be effective when a long sequence of tasks is involved
because the penalty does not sufficiently prevent the change of contributable
parameters. Replay methods retain a small number of instances from old tasks
and learn them with new task samples in a joint manner. For a large number
of tasks, the number of retained instances of each task decreases due to the size
limit to hold the old instances, causing performance degradation. Dynamic ex-
pansion methods generally expand the network when a new task comes in or
when performance does not meet a predetermined criterion. As a result, they
require a large amount of computation costs, constraining their applicability to
real-world problems. The last category, structural allocation, constructs disjoint
sets of parameters for tasks, respectively, and learns a new task using the older
sets. However, it will not be helpful when we use unwanted old parameters that
can negatively affect the new task.

The proposed method falls within the last category. Unlike other categories,
it encourages to use a disjoint set of parameters for each task, preventing the
network from containing the mixture of old and new knowledge. Despite its
benefit, the strategy will not be promising if we use adversarial parameters that
negatively affect a new task when using old parameter sets altogether [27]. From
this, a question arises can we discover helpful knowledge from old tasks to enrich
the knowledge of a new task for structural allocation based continual learning.

In this paper, we reformulate the forgetting problem into a task interference
problem in continual learning and solve it using model (task) selection to dis-
cover cooperative tasks. To this end, we propose a novel approach to differentiate
helpful and harmful knowledge from old tasks in a continual learning framework.
Specifically, the proposed framework is based upon an architecture consisting of a
global feature extractor and multiple heads (classifiers) corresponding to tasks.
The proposed approach is based on structural allocation using a train-prune-
retrain learning paradigm [27] to address sequential tasks so that the feature
extractor consists of disjoint sets of parameters corresponding to tasks, respec-
tively. To find older tasks and exploit their knowledge given a task, we present a
model search framework and apply it to the disjoint sets of parameters learned
so far (at a coarser level). The proposed method further discovers critical pa-
rameters in element-wise by measuring sensitivity to the loss of a new task from
the searched old tasks (at a finer level). The discovered knowledge is leveraged
when learning the new task. Due to the search mechanism, we select an opti-
mal subnetwork that can accelerate the model inference as well as discover a
cooperative relationship among tasks.

We validate our method for both task-incremental and class-incremental
learning scenarios. A number of large-scale datasets, including ImageNet [8] and
diverse fine-grained datasets, are used in task-incremental learning. In class-
incremental learning, ImageNet-50 [30], Split CIFAR-10 [19], and Split MNIST
[20] are used. Experimental results show that the proposed method achieves
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higher performance than state-of-the-art continual learning methods for both
learning scenarios while minimizing the computation cost. The contributions of
this work are mainly four-fold:

– We redesign the forgetting problem into a task association problem by taking
task interference into account in the structural allocation strategy.

– We propose a novel continual learning approach that can effectively learn a
new task by differentiating and absorbing helpful knowledge from old tasks.

– The proposed approach elaborately selects contributable parameters from
older tasks using a gradient-based model search at a coarser level and a
sensitivity measure at a finer level.

– Experimental results show that the proposal achieves remarkable perfor-
mance improvement over diverse continual learning competitors while mini-
mizing the computation cost.

2 Related work

Regularization method. Regularization approaches [17,42,5,2,21] in continual
learning typically append a regularization term to suppress updating of param-
eters that are important to the previously learned tasks. The importance can be
calculated by the Fisher information [17], the change of loss [42], or the deriva-
tive of the network output [2]. This line of methods is memory-efficient because
it does not require instances of previous tasks and does not expand the size
of the network. However, the regularization term does not effectively prevent
the change of previous knowledge for many sequential tasks, resulting in drastic
performance drop [12].
Replay method. The approaches rely on some raw samples [6,25,31,40,23,10] or
generated instances by a generative model [30,37]. [6] and [25] mitigate forgetting
by controlling gradient produced from a few replayed samples. [31] picks some
nearest neighbor samples to the average sample per task, and [24] parameterizes
exemplar samples which can be optimized. However, they repeatedly train a
small number of old instances, potentially leading to an overfitting problem.
Also, since generated instances may not exactly imitate the distribution of real
instances, we may encounter a performance drop [4].
Dynamic expansion. Methods falling into this category dynamically expand
the network structure when a new task comes in [33,41,3,32,38]. Progressive neu-
ral network [33] produces an additional network to perform a new task, which
inherits the knowledge of old tasks by connecting to previously learned networks.
However, this reveals a drawback that the computation cost increases propor-
tionally to the number of tasks. Dynamically expandable network [41] expands
the network architecture by adding a predetermined number of parameters and
learning with sparse regularization for size optimization. However, this method
is not free from the forgetting issue as many parameters of old tasks are updated
for the new task.
Structural allocation. This family of approaches [26,27,36,1] does not suffer
from updating old knowledge with a new one. The key is to assign a disjoint
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subset of parameters to each task. The disjoint sets of old tasks are fixed [26,27,1]
or rarely [36] updated while training a new task. This is usually achieved by
pruning parameters [27], learning a mask [26], or attention through gradient
descent [36]. However, these methods do not discover relationships between tasks,
which may cause negative task interference. Recently, [1] has proposed to select
an internal network structure with the channel-gating module, but it produces
a non-negligible amount of additional parameters unlike ours.
Contributions. We reformulate the catastrophic forgetting problem into a task
interference problem under the structural allocation framework. To solve the
problem, we introduce a task association strategy through a model search that
effectively differentiates helpful and harmful information from old tasks. Since
we explore an optimally shrunk subnetwork from an architecture, it is faster than
the structural allocation baseline [27] that leverages all previous knowledge (i.e.,
using the entire architecture). The proposed task selection approach results in
performance improvement over its strong competitors [27,26] while consuming a
small number of model parameters.

3 Methodology

3.1 Framework

The proposed method aims to enrich the knowledge of a new task from old
tasks without absorbing negative information. To this end, we propose a novel
approach to whether each old task and its parameters help learn the new task
or not. The proposal is a structural allocation method based on a train-prune-
retrain framework [27], where a disjoint set of parameters is assigned to each
task in a network. Let us denote incoming tasks as T 1, ..., T t, where the t-th
task T t = {X t,Yt} contains data X t = {xt

j}nj=1 and corresponding labels Yt =

{ytj}nj=1. The first task T 1 is learned using the feature extractor fθ1 and the

classifier g1w1 parameterized by θ1 and w1, respectively. For T 1, we allocate the
set of task-specific parameters θ1 to Θ1 in the feature extractor, i.e., Θ1 =
[θ1]. After learning T 1, redundant parameters in θ1 are pruned away to reserve
parameters for the next task, and the set of survived parameters θ̃1 squeezed
from θ1 performs T 1.

For the i-th task T i, we allocate the set of parameters θi to the pruned
locations in the feature extractor after learning up to T i−1. One way to train
parameters θi is to utilize the entire set of parameters Θi = [θ̃1, . . . , θ̃i−1, θi] in
the forward pass and then the set of parameters θi assigned to the ith task is
updated in the backward pass [27]:

Forward: fθi
fwd

(xi) where θifwd = Θi,

Backward: fθi
bwd

(xi) where θibwd = θi.
(1)

After learning θi, we apply a prune-retrain approach to get θ̃i and the set of
reusable parameters θi+1 for the next task. In summary, we train incoming tasks
and sequentially produce disjoint sets of parameters, θ̃1, · · · , θ̃t−1, θt for t tasks.
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Fig. 1: A graphical illustration of the training process of the proposed method
for the t-th task. It searches the old parameters to help optimize the t-th task.
The architecture is obtained by the sampled variable mi. The information from
the proposed measure, F̂ t, is computed by combining mi and the sensitivity
F . Helpful and harmful parameters are finally identified through a binary mask
that is obtained from F̂ t. From this, we get a masked layer obtained through
the element-wise multiplication of the parameters in each layer and the corre-
sponding mask. Best viewed in color.

To discover parameter sets that are critical for the new task t in the search
space containing {θ̃1, · · · , θ̃t−1}, in this work, we discover an association knowl-
edge between tasks based on how each old task affects the new one. Note here
that Eq. (1) may not avoid harmful interference between tasks because the for-
ward pass takes the entire parameters from all previous tasks. By selectively
using parameters of the previous tasks, which are positively cooperative to the
new task, it can mitigate negative task interference. To discover helpful tasks
with the corresponding parameters, we first search for an optimal subnetwork by
a model search approach at a coarser level. Then, we further explore the param-
eters within the searched network that are sensitive to the loss of the new task
at a finer level. Here, sensitive parameters can be understood as crucial old ones
for the new task. By the search mechanism and the sensitivity measure, we can
find the most promising architecture for the current task. The entire procedure
of the proposal is illustrated in Fig. 1.

3.2 Search

We present a gradient-based search method to find previous tasks that are co-
operative to the new task. We first define the search problem for the t-th task
in continual learning as

min
at∈A

min
θt
L(at, θt). (2)

Given the search space A containing a pool of candidate networks (corre-
sponding to different combinations of parameters sets), we find an optimal net-
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work structure at and update the set of parameters θt to minimize the loss. Since
we aim to find cooperative old tasks for T t, the search space is 2t−1. As a näıve
approach, during training task t, a previous parameter set θ̃i is sampled and
leveraged with the probability of

Pα(θ̃
i) = softmax(αi) =

exp(αi)∑t−1
j=1 exp(α

j)
, (3)

where α = (α1, · · · , αt−1) denotes learnable parameters that determine the sam-
pling probability. Therefore, the output based on the probability over all previous
sets becomes

Θ̂t =

t−1⋃
i=1

(
mi · θ̃i

)
∪ θt, (4)

and it defines the structure at. Here, mi ∈ {0, 1} becomes 1 if softmax(αi) is
greater than pre-determined threshold and 0 otherwise.

However, we may not solve the problem in Eq. (2) using a gradient descent
method due to (i) the discrete search space A and (ii) discontinuous relation be-
tween the sampling parameter αi and mi. For the discrete optimization problem,
we relax it as the following problem:

min
α

min
θt

Eat∼Pα
[ L(at, θt) ]. (5)

To alleviate the latter problem, we present the Gumbel softmax trick [9,16] that
produces the continuous random variable mi.

mi = GumbelSoftmax(αi|α) = exp((αi + gi)/τ)∑t−1
j=1 exp((α

j + gj)/τ)
, (6)

where gi follows the Gumbel distribution [16] and τ is the control variable. While
training, we discover the optimal architecture at of the feature extractor for T t

using Eqs. (5) and (6). We optimize the current set of parameters θt followed by
updating α to select the contributable old parameters.

3.3 Sensitivity measure

To further explore useful parameters learned from the selected old tasks, we addi-
tionally introduce a promising measure that gives a sensitivity of each parameter
to the loss of a new task, which can be calculated by the Fisher information [14]
as

F (θ) =
∑
n

Epθ(y|xn)[∇θ log pθ(y |xn)∇θ log pθ(y |xn)⊤], (7)

where ∇θ log pθ(y|xn) denotes the gradient of the log-likelihood at all parameters
θ. Fisher information captures the variability of the gradient and tells us which
old parameters are sensitive (important) for the current task [17]. Note that
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while [17] applies Fisher to prevent the update of sensitive old parameters, ours
uses them to select helpful parameters.

Let us first express the sensitivity for the ith task. Fθ̃i denotes the element-

wise Fisher values corresponding to θ̃i. For T t, we gather all the Fisher informa-
tion up to the task t as follows:

F t(θ) =

t−1⋃
i=1

Fθ̃i ∪ Fθt . (8)

Finally, θtfwd, exploiting both sampled variable in Eq. (6) and the sensitivity in
Eq. (8), is obtained as

θtfwd =

t−1⋃
i=1

(
σϕ(m

i · Fθ̃i)⊙ θ̃i
)
∪ θt, (9)

where ⊙ is the element-wise multiplication. By applying the threshold function
σϕ(·) to mi ·Fθ̃i , we discover a final architecture at which is used in the forward
pass.

3.4 Meta classifier

To perform the challenging class-incremental learning scenario, where task iden-
tity is unknown, we present a meta classifier to predict the task label of each
sample and allocate the corresponding network. The meta classifier hθmc(·) has
a few learnable parameters θmc but the total parameter increase is negligible.
Features are extracted from the exemplar, xt

e, corresponding to each task. By
concatenating the features for t tasks, we compose data x̃t to learn the meta
classifier, which is obtained by

x̃t =

t⊕
i=1

flatten(âi(xt
e)), (10)

where
⊕

the concatenation operation and âi is the architecture ai excluding
the head classifier giwi . Using the collected data, we learn the meta classifier and
predict the task identity l to perform the chosen task l with the head classifier
glwl(·), where

l← hθmc(x̃t), l ≤ t. (11)

To develop the meta classifier that learns discriminative task-wise features,
we optimize it with the contrastive loss [7]. Unlike the contrastive loss used in
self-supervised learning, which allows two different transformations to apply to
an image as a positive pair, we treat samples in the same task as a positive pair.
Formally, we compute the loss using positive pairs identified by their task IDs
as
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Lcon =
∑
i

∑
j ̸=i

π(zi, zj)

where π(zi, zj) = −log
exp(sim(zi, zj)/γ)∑

k 1[k ̸=i]exp(sim(zi, zk)/γ)
,

(12)

where 1, sim(·) and γ are the indicator function, cosine similarity, and temper-
ature parameter, respectively. z is the extracted feature of hθmc , where zi and zj
are extracted features from different tasks. The total loss with the cross-entropy
loss Lce for training hθmc is

Ltotal = Lcon + λLce, (13)

where λ is a balancing factor between two losses.

4 Experiments

4.1 Datasets

We applied the proposed approach to discover Helpful or Harmful parameters,
named H2, to task-incremental and class-incremental learning scenarios. The
datasets used in the task-incremental scenarios include ImageNet, diverse fine-
grained datasets, CIFAR-10, and MNIST, where the fine-grained datasets are
CUBS [39], Stanford Cars [18], Flowers [29], Wikiart [34], and Sketch [11]. Ima-
geNet and the fine-grained datasets were used altogether in a task-incremental
scenario and resized to 224×224 pixels. CIFAR-10 [19] contains 50, 000 training
and 10, 000 test samples of the 32× 32 pixels. This dataset was divided into five
tasks, referred to as Split CIFAR-10, and each task is composed of two classes.
MNIST [20] consists of 60, 000 training and 10, 000 test handwritten images of
the 28 × 28 size. The dataset was divided into five tasks, referred to as Split
MNIST, similar to Split CIFAR-10.

For class-incremental learning scenarios, we used three datasets: ImageNet-
50 [8], Split CIFAR-10, and Split MNIST. The summary of all datasets used in
the experiments is shown in Table 1. To construct ImageNet-50, we selected 50
classes randomly from the ImageNet dataset and resized to 32×32, following the
practice in [30]. It contains five tasks, each of which has 10 classes and 13,000
images. We also have the same datasets, Split CIFAR-10 and Split MNIST, to
task-incremental learning, but their task identities are unknown at test time in
class-incremental learning.

Table 1: Datasets used in this work.
Dataset ImageNet CUBS Stanford Cars Flowers Wikiart Sketch ImageNet-50 CIFAR-10 MNIST

# Train 1,287,167 5,994 8,144 2,040 42,129 16,000 65,000 50,000 60,000

# Test 50,000 5,794 8,041 6,149 10,628 40,000 2,500 10,000 10,000

# Class 1,000 200 196 102 195 250 50 10 10
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Table 2: Classification accuracy (Acc, %) and the number of required parame-
ters (Param, ×106) on the ImageNet and find-grained datasets. Best results are
indicated in bold font.

ImageNet CUBS Stanford Cars Flowers Wikiart Sketch Avg Avg
Method Acc Param Acc Param Acc Param Acc Param Acc Param Acc Param Acc Param

EWC-On 54.5 23.4 64.1 23.4 52.1 23.4 78.7 23.4 51.4 23.4 30.7 23.4 55.3 23.4
LwF 64.5 23.4 51.7 23.4 43.9 23.4 72.9 23.4 42.7 23.4 45.5 23.4 53.6 23.4
PackNet 75.7 12.5 80.4 15.6 86.1 18.0 93.0 19.7 69.4 21.0 76.7 22.0 80.2 18.1
Piggyback 76.1 23.4 81.5 20.5 89.6 19.7 94.7 22.3 71.3 16.3 79.9 18.0 82.2 20.0

H2 (Ours) 75.7 12.5 84.1 14.5 90.6 15.9 94.9 15.2 75.1 9.4 76.2 4.1 82.8 11.9

4.2 Implementation details

We used the ResNet-50 [13] backbone architecture for the task-incremental learn-
ing scenario using the ImageNet and fine-grained datasets. The backbone models
on Split MNIST and Split CIFAR-10 were a three-layer CNN and ResNet-18,
respectively, for both task-incremental and class-incremental learning scenarios.
All layers except the last convolutional layer are accompanied by the max pool-
ing operation in the three-layer CNN. We used ResNet-18 for ImageNet-50. The
meta classifier used in all class-incremental scenarios consists of three fully con-
nected layers with the hyperparameters γ and λ of 0.5 and 1.6, respectively. The
feature z is obtained by passing through two linear layers of the meta-classifier.
For large-scale datasets, we resized every image into the size of 224×224 and ap-
plied a center crop. We applied random cropping and horizontal flip to augment
ImageNet-50 and Split CIFAR-10 except for the Split MNIST dataset. We set
the Gumbel softmax parameter τ for all experiments to 1.0. We set the threshold
ϕ in Eq. (9) to 0.01 for all the experiments. We trained the backbone and the
meta classifier using stochastic gradient descent. We report the average results
over five independent runs for all the experiments.

4.3 Task-incremental learning

Large-scale datasets We first demonstrated the task association strategy of
the proposed method compared with EWC-On [35], LwF [22], PackNet [27] and
Piggyback [26]. We applied the compared approaches for six large-scale datasets
in order of ImageNet, CUBS, Stanford Cars, Flowers, Wikiart, and Sketch, where
we regard each dataset as a task. The scenario is challenging because the datasets
are from different domains and rarely share many common classes. For a fair
comparison, ours has the same pruning ratio to PackNet for each task.

Table 2 shows the experimental results of the methods on the six datasets.
The proposed method, H2, outperforms the compared approaches for most of the
tasks. The regularization approaches, EWC-On and LwF, do not effectively ad-
dress the large-scale tasks. PackNet does not give satisfactory results, especially
for CUBS, Stanford Cars, and Wikiart. This is probably due to negative inter-
ference between tasks as the tasks may be irrelevant to one another. Piggyback
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Table 3: Task-incremental learning results on the Split MNIST and Split CIFAR-
10 datasets. We provide the accuracy for each task after training the last task,
T 5, where T i denotes the i-th task. Best results are indicated in bold font.

Split MNIST Split CIFAR-10
Method T 1 T 2 T 3 T 4 T 5 Avg T 1 T 2 T 3 T 4 T 5 Avg
Joint 99.9 99.9 99.9 100.0 99.5 99.9 99.6 96.4 97.9 99.8 98.3 98.3
EWC-On 97.1 99.4 93.4 98.2 93.2 96.3 75.8 80.4 80.3 95.2 96.0 85.5
LwF 99.8 97.9 99.7 99.9 98.5 99.2 94.8 87.3 67.1 50.5 51.4 70.2
PackNet 99.7 99.4 99.8 99.8 98.2 99.3 98.8 93.4 95.7 98.7 97.8 96.8
Piggyback 100.0 99.6 100.0 99.7 97.0 99.2 96.1 85.4 91.8 96.6 96.4 93.3
HAT 99.9 99.6 99.9 99.8 99.0 99.7 98.8 91.1 95.3 98.5 97.8 96.3
TAC 100.0 99.4 100.0 99.9 99.3 99.7 99.4 91.7 95.0 98.3 97.8 96.4

H2 (Ours) 100.0 99.8 100.0 100.0 99.6 99.9 98.8 94.1 96.5 98.8 98.3 97.3

performs better than PackNet but performs poorer than ours. The results show
that finding helpful parameters by the proposed measure can alleviate destruc-
tive task interference. When it comes to the number of parameters, ours takes
a much smaller number of parameters than the compared methods. Overall, the
proposed method selects fewer parameters while allowing better performance
than the existing approaches, showing its excellence.

Split CIFAR-10 and Split MNIST We conducted additional task-incremental
learning experiments on Split MNIST and Split CIFAR-10, where we construct
five incremental tasks for each dataset. We compared with EWC-On [35] and
LwF [22] in the regularization category, PackNet [27], Piggyback [26], HAT [36],
and TAC [1] in the structural allocation category. We also compared with a
joint learning method that learns multiple tasks simultaneously. Note that since
Piggyback requires a pretrained backbone, we pretrained a three-layer CNN by
collecting 10K data samples from the original MNIST data. For Split CIFAR-10,
we used the ImageNet pretrained ResNet-18 backbone for Piggyback.

The results for the Split MNIST are summarized on the left of Table 3.
From the table, we can observe that H2 performs better than other continual
learning approaches on average and is almost similar to the joint learning results.
The results for Split CIFAR-10 are shown on the right of Table 3. For both
experiments, the structural allocation methods consistently perform better than
the regularization methods. The proposed method gives higher accuracy than
the regularization and other structural allocation methods with a larger margin.
Compared to the recently proposed structural allocation method, TAC, ours
achieves meaningful performance improvement with a margin of 0.9% for Split
CIFAR-10.

4.4 Class-incremental learning

ImageNet-50 We evaluated H2 to the class-incremental learning scenario using
ImageNet-50 to compare with two class-incremental learning methods [31,40].
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Table 4: Class-incremental learning results on ImageNet-50 in terms of the ex-
emplar size.
Exemplar size 65,000 2,000 5,000

Method Joint iCaRL BiC TAC PackNet H2 iCaRL BiC TAC PackNet H2

Acc (%) 58.7 43.6 21.2 40.4 48.0 49.7 47.3 35.2 42.9 48.2 55.5

While task-incremental learning knows task ID, class-incremental learning pre-
dicts it through the meta classifier described in Section 3.4. The backbone archi-
tecture for this scenario was ResNet-18. The dataset consists of five tasks of 10
classes each. For the scenario, the proposed method utilizes exemplars to learn
the meta classifier and is compared with other replay-based methods, iCaRL
[31] and BiC [40]. We also compared with two structural allocatioin methods,
PackNet [27] and TAC [1]. Because PackNet does not address class-incremental
learning, we applied the same meta classifier. Even if we make use of exemplars in
class-incremental learning, we use them when we train the meta-classifier. Fine-
tuning with a small number of exemplars can distort the knowledge learned on
complete data of the previous tasks. We also compared H2 with a joint learning
method that has full accessibility to the previous data. We report the average
accuracy of the learned tasks after learning the last task.

Table 4 shows the experimental results under two exemplar sizes. The pro-
posed method yields better results than the replay-based methods. The proposed
method achieves 6.1%, 28.5%, 1.7% and 9.3% higher accuracy than iCaRL, BiC,
PackNet, and TAC, respectively, for the exemplar size of 2,000. For the exem-
plar size of 5,000, ours achieves more significant performance improvement over
those methods with the margins of 8.2%, 20.3%, 5.8%, and 12.6%, respectively.
The results show that ours is more efficient in terms of accuracy under the same
memory sizes than the competitors for class-incremental learning.

Split CIFAR-10 and Split MNIST We also conducted additional class-
incremental learning scenarios on the Split CIFAR-10 and Split MNIST datasets,
respectively. In this scenario, we compared H2 with the same approaches in the
previous experiment. A three-layer CNN was used for Split MNIST, and ResNet-
18 was used for Split CIFAR-10. We show the results under different exemplar
sizes, from small to large, obtained after learning all tasks.

Fig. 2 (left) shows the results of the compared methods for Split MNIST. H2

gives higher accuracy than other approaches for most exemplar sizes. The struc-
tural allocation methods, TAC and PackNet, perform better than the replay
methods, iCaRL and BiC, because they do not update old parameter sets. How-
ever, these methods perform poorer than the proposed approach using the search
mechanism for task association. The performance gap between the proposed
method and the joint learning baseline decreases as the number of exemplars
increases. Fig. 2 (right) shows the results of the methods on Split CIFAR-10.
Notably, ours outperforms other compared approaches for all of the exemplar
sizes. As the number of stored exemplars increases, the gap between H2 and
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Fig. 2: Class-incremental learning results on the Split MNIST and Split CIFAR-
10 datasets under different exemplar sizes.

TAC increases (4.9%, 9.2%, and 10.9% for 1,000, 1,500, and 2,000 exemplars,
respectively). Similarly, ours outperforms PackNet equipped with the presented
meta classifier for all exemplar sizes.

4.5 Analysis

Ablation study To demonstrate the efficiency of the proposed approach, we
conducted an ablation study. We compared ours by removing the search method,
the sensitivity measure, and both strategies, i.e., using all parameters [27] under
the same learning framework as ours. In addition, we compared ours by removing
the contrastive loss to show the effect on training the meta classifier. We also
provide the results of the random selection, which chooses the parameters of
the previous tasks randomly with the same ratio as the proposed method for a
fair comparison. For the experiment, we conducted both task-incremental and
class-incremental learning scenarios using Split CIFAR-10. We report the average
accuracy of the tasks learned each time step.

Table 5 summarizes the ablation study. The proposed method of searching
cooperative tasks and parameters gives higher accuracy than other strategies
for both learning scenarios. Random selection performs poorly for most of the
tasks in the scenarios, indicating that selectively incorporating helpful parame-
ters from old tasks improves performance and arbitrarily selecting old parame-
ters worsens the performance. The method using all parameters without search
and sensitivity shows disappointing results (0.5% and 2.9% margins for task-
incremental and class-incremental learning, respectively) compared to ours. This
reveals that some parameters influence the current task negatively. We find that
applying both approaches is the most promising way and is better than applying
the individual method. Note that the performance gap is clearly shown in class-
incremental learning that is more challenging than task-incremental learning.

We also show the parameter consumption, FLOPs, and memory requirement
of the proposed method (except the meta classifier) in Fig. 3. We compute pa-
rameter consumption and FLOPs following the practice of ShrinkBench1. Since

1 https://github.com/jjgo/shrinkbench

https://github.com/jjgo/shrinkbench
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Table 5: Ablation study of the proposed method for Split CIFAR-10.
Task-incremental Class-incremental

Method T 1 T 2 T 3 T 4 T 5 T 1 T 2 T 3 T 4 T 5

Ours 98.8 96.4 96.4 97.1 97.3 98.8 91.2 87.4 86.1 80.3
w/o search 98.8 96.1 96.0 96.7 97.0 98.8 89.5 84.9 84.5 79.6
w/o sensitivity 98.8 96.2 96.1 96.7 96.9 98.8 90.0 83.8 82.6 78.7
w/o search and sensitivity [27] 98.8 96.1 95.9 96.6 96.8 98.8 89.3 83.5 81.1 77.4
w/o contrastive loss N/A 98.8 90.7 86.7 83.2 77.1
Random search 98.8 95.1 95.1 95.9 96.3 98.8 86.3 80.8 77.9 68.7

Fig. 3: Ablation study on parameter consumption, FLOPs, and memory of the
proposed method for Split CIFAR-10. Best viewed in color.

the random selection method has the same number of parameters as the proposal,
it was excluded from the experimental results. The proposed method takes the
smallest number of parameters and FLOPs to perform tasks on average under
the same threshold. The proposed methods without search and sensitivity con-
sume a larger number of parameters than the proposal. Especially, the amount of
parameters consumed to perform a task continues to increase (4.2× higher than
ours for T 5) when we exclude the search and sensitivity approach, as shown on
the left of the figure. The result shows that ours containing search and sensitivity
makes it highly efficient for parameter consumption. In addition, we compute
the memory of the mask to perform each task. Since the proposed method and
the method without search use a binary mask, the memory for performing each
task is constant. For example, when the backbone network has n parameters,
the binary mask requires n bits. However, the memory of the mask to perform
each task generally continues to increase for the other methods.

Task order To analyze the performance of the proposed method with re-
spect to different task orders, we conducted an additional experiment using the
ImageNet-50 (I) and Split CIFAR-10 (C) datasets, respectively. Specifically, the
datasets were divided into five tasks as done in Sections 4.3 and 4.4, respectively.
In this study, we performed both task- and class-incremental learning scenarios.
We produced ten random sequences for each scenario and evaluated the com-
pared methods using the average result. We used 1,000 and 2,000 exemplars for
Split CIFAR-10 and ImageNet-50, respectively, in class-incremental learning.

Fig. 4 reports the average accuracies of the tasks trained up to each time
step. Overall, the results on ImageNet-50 and Split CIFAR-10 show a similar
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Fig. 4: Ablation study of the proposed method with respect to different orders
of tasks for ImageNet-50 (I) and Split CIFAR-10 (C). Best viewed in color.

trend to those in Table 5. In Fig. 4 (left two subfigures), the proposed method
outperforms other strategies without search, sensitivity, or both, by large mar-
gins of 1.06%, 1.97%, and 2.42%, respectively, in the task-incremental scenario.
Similarly, the proposed method outperforms other methods for all time steps on
average in the class-incremental scenario. The experiments using Split CIFAR-10
are shown in Fig. 4 (right two subfigures). The results show a similar trend to
those on ImageNet-50. Note that compared to the results for task-incremental
learning, the class-incremental learning performance degrades significantly due
to its difficulty without knowing the task oracle.

5 Conclusions

We have proposed a novel approach to find an optimal architecture that ex-
ploits useful knowledge from old tasks in structural allocation-based continual
learning. The proposed method simultaneously associates cooperative tasks and
explores the optimal architecture by a model search with continuous relaxation.
We have also presented element-wise parameter selection from the sensitivity
measure incorporated with the model search. The proposed method takes fewer
parameters than its competitors while avoiding negative interference. In experi-
ments, we have compared with existing methods for task- and class-incremental
learning scenarios using small to large-scale datasets. Experimental results show
that the proposed method achieves excellent performance over diverse continual
learning competitors while minimizing the computation cost.
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