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Abstract. Recent isotropic networks, such as ConvMixer and Vision
Transformers, have found significant success across visual recognition
tasks, matching or outperforming non-isotropic Convolutional Neural
Networks. Isotropic architectures are particularly well-suited to cross-
layer weight sharing, an effective neural network compression technique.
In this paper, we perform an empirical evaluation on methods for shar-
ing parameters in isotropic networks (SPIN). We present a framework to
formalize major weight sharing design decisions and perform a compre-
hensive empirical evaluation of this design space. Guided by our experi-
mental results, we propose a weight sharing strategy to generate a family
of models with better overall efficiency, in terms of FLOPs and parame-
ters versus accuracy, compared to traditional scaling methods alone, for
example compressing ConvMixer by 1.9x while improving accuracy on
ImageNet. Finally, we perform a qualitative study to further understand
the behavior of weight sharing in isotropic architectures. The code is
available at https://github.com/apple/ml-spin.
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1 Introduction

Isotropic neural networks have the property that all of the weights and inter-
mediate features have identical dimensionality, respectively (see Figure 1). Some
notable convolutional neural networks (CNNs) with isotropic structure [15,25]
have been proposed recently in the computer vision domain, and have been ap-
plied to different visual recognition tasks, including image classification, object
detection, and action recognition. These isotropic CNNs contrast with the typical
“hierarchical” design paradigm, in which spatial resolution and channel depth
are varied throughout the network (e.g., VGG [19] and ResNet [6]).

The Vision Transformer (ViT) [3] architecture also exhibits this isotropic
property, although softmax self-attention and linear projections are used for
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(b) Architecture of isotropic CNNs.

Fig. 1: Basic architectures of regular and isotropic CNNs. (a) Regular CNNs
vary the shape of intermediate features and weight tensors in the network while
(b) isotropic CNNs fix the shape of all intermediate features and weight tensors
in the network.

feature extraction instead of spatial convolutions. Follow-up works have exper-
imented with various modifications to ViT models (e.g. replacing softmax self-
attention with linear projections [24], factorized attention [27], and non-learned
transformations [26]); however, the isotropic nature of the network is usually
retained.

Recent isotropic models (e.g., ViT [3], ConvMixer [25], and ConvNext [15])
attain state-of-the-art performance for visual recognition tasks, but are com-
putationally expensive to deploy in resource constrained inference scenarios. In
some cases, the parameter footprint of these models can introduce memory trans-
fer bottlenecks in hardware that is not well equipped to handle large amounts
of data (e.g. microcontrollers, FPGAs, and mobile phones) [13]. Furthermore,
“over-the-air” updates of these large models can become impractical for con-
tinuous deployment scenarios with limited internet bandwidth. Parameter (or
weight) sharing?, is one approach which compresses neural networks, potentially
enabling the deployment of large models in these constrained environments.

#We interchangeably use the terms parameter and weight sharing throughout this
paper.
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Isotropic DNNs, as shown Figure 1, are constructed such that a layer’s
weight tensor has identical dimensionality to that of other layers. Thus, cross-
layer parameter sharing becomes a straightforward technique to apply, as shown
in ALBERT [13]. On the other hand, weight tensors within non-isotropic net-
works cannot be shared in this straightforward fashion without intermediate
weight transformations (to coerce the weights to the appropriate dimensional-
ity). In Appendix A, we show that the search space of possible topologies for
straightforward cross-layer parameter sharing is significantly larger for isotropic
networks, compared to “multi-staged” networks (an abstraction of traditional,
non-isotropic networks). This rich search space requires a comprehensive explo-
ration. Therefore, in this paper, we focus on isotropic networks, with the goal
of finding practical parameter sharing techniques that enable high-performing,
low-parameter neural networks for visual understanding tasks. To extensively
explore the weight sharing design space for isotropic networks, we experiment
with different orthogonal design choices (Section 3.2). Specifically, we explore (1)
different sharing topologies, (2) dynamic transformations, and (3) weight fusion
initialization strategies from pretrained non-sharing networks. Our results show
that parameter sharing is a simple and effective method for compressing large
neural networks versus standard architectural scaling approaches (e.g. reduction
of input image size, channel size, and model depth). Using a weight sharing
strategy discovered from our design space exploration, we achieve nearly identi-
cal accuracy (to non-parameter sharing, iso-FLOP baselines) with significantly
reduced parameter counts. Beyond the empirical accuracy versus efficiency ex-
periments, we also investigate network representation analysis (Section 5) and
model generalization (Appendix F) for parameter sharing isotropic models.

2 Related Works

Cross-layer Parameter Sharing. Cross-layer parameter sharing has been
explored for both CNN- and Transformer-based models [2,9,11-13,20, 21]. For
instance, Kim et al. [9] applies cross-layer parameter sharing across an entire
heterogeneous CNN. However, they share weights at the granularity of filters,
whereas we share weights at the granularity of layers. In terms of our framework,
Kubilius et al. [11] experiments with Uniform-Strided, proposing a heterogeneous
network based off of the human visual cortex. With isotropic networks, we can
decouple parameter sharing methods from the constraints imposed by heteroge-
neous networks. Thus, we expand the scope of weight sharing structures from
their work to isotropic networks.

Cross-layer parameter sharing is explored for isotropic Transformer models
for the task of neural language modeling [2,13] and vision [21]. Lan et al. [13]
experiments with Uniform-Sequential, and Dehghain et al. [2] experiments with
universal sharing (i.e. all layers are shared). Takase et al. [21] experiments with
3 strategies, namely Uniform-Sequential, Uniform-Strided, and Cycle. In this
paper, we extend these works by decomposing the sharing topology into com-
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Fig. 2: Sharing topologies. In (a), sharing mapping determines which layers
share the same weights while in (b), sharing distribution determines how the
weight sharing layers are distributed in the network. Layers with the same color
share weights. Layers outside of the sharing section do not share weights. Best
viewed in color.

binations of different sharing mappings (Figure 2a) and sharing distributions
(Figure 2b).

Dynamic Recurrence for Sharing Parameters. Several works [1,4,14,18]
explore parameter sharing through the lens of dynamically repeating layers. How-
ever, each technique is applied to a different model architecture, and evaluated in
different ways. Thus, without a common framework, it’s difficult to get a compre-
hensive understanding of how these techniques compare. While this work focuses
only on static weight sharing, we outline a framework that may encompass even
these dynamic sharing schemes. In general, we view this work as complementary
to explorations on dynamic parameter sharing, since our analysis and results
could be used to help design new dynamic sharing schemes.

3 Sharing Parameters in Isotropic Networks

In this section, we first motivate why we focus on isotropic networks for weight
sharing (Section 3.1), followed by a comprehensive design space exploration of
methods for weight sharing, including empirical results (Section 3.2).

3.1 Why Isotropic Networks?

Isotropic networks, shown in Figure 1b, are simple by design, easy to analyze,
and enable flexible weight sharing, as compared to heterogeneous networks.
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Simplicity of Design. Standard CNN architectural design, whether manual
[6,17]) or automated through methods like neural architecture search [7,22]),
require searching a complex search space, including what blocks to use, where
and when to downsample the input, and how the number of channels should
vary throughout the architecture. On the other hand, isotropic architectures
form a much simpler design space, where just a single block (e.g., attention
block in Vision Transformers or convolutional block in ConvMixer) along with
network’s depth and width must be chosen. The simplicity of implementation
for these architectures enables us to more easily design generic weight sharing
methods across various isotropic architectures. The architecture search space
of these networks is also relatively smaller than non-isotropic networks, which
makes them a convenient choice for large scale empirical studies.

Increased Weight Sharing Flexibility. Isotropic architectures provide sig-
nificantly more flexibility for designing a weight sharing strategy than traditional
networks.

We define the sharing topology to be the underlying structure of how weight
tensors are shared throughout the network. Suppose we have an isotropic network
with L > 1 layers and a weight tensor “budget” of 1 < P < L. The problem
of determining the optimal sharing topology can be seen as a variant of the
set cover problem; we seek a set cover with no more than B disjoint subsets,
which maximizes the accuracy of the resulting network. More formally, a possible
sharing topology is an ordered collection of disjoint subsets 7 = (S, Sa, ..., Sp),
where UB | S; = {1,2,..., L} for some 1 < P < L. We define % to be the share
rate.

We characterize the search space in Appendix A, showing that isotropic net-
works support significantly more weight sharing topologies than heterogeneous
networks (when sharing at the granularity of weight tensors). This substan-
tially increased search space may yield more effective weight sharing strategies
in isotropic networks than non-isotropic DNNs, a reason why we are particularly
interested in isotropic networks

Cross-layer Representation Analysis. To better understand if the weights
of isotropic architectures are amenable to compression through weight sharing,
we study the representation of these networks across layers. We hypothesize that
layers with similar output representations will be more compressible via weight
sharing. To build intuition, we use Centered Kernel Alignment (CKA) [10], a
method that allows us to effectively measure similarity across layers.

Figure 3 shows the pairwise analysis of CKA across layers within the Con-
vMixer network. We find significant representational similarity for nearby layers.
This is not unexpected, given the analysis of prior works on iterative refinement
in residual networks [8]. Interestingly, we find that CKA generally peaks in the
middle of the network for different configurations of ConvMixer. Overall, these
findings suggest that isotropic architectures may be amenable to weight shar-
ing, and we use this analysis to guide our experiments exploring various sharing
topologies in Section 3.2.
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Fig.3: CKA similarity analysis on ConvMixer’s intermediate feature maps
shows that the output feature maps of neighboring layers and especially the
middle layers have the highest similarity. Here, we compute the CKA similarity
of each layer’s output feature maps. The diagonal line and the lower triangle
part are masked out for clarity. The CKA for the diagonal line is 1 since they
are identical. The CKA for the lower triangle is the mirror of the upper triangle.
Best viewed on screen.

3.2 Weight Sharing Design Space Exploration

When considering approaches to sharing weights within a neural network, there
is an expansive design space to consider. This section provides insights as well
as empirical evaluation to help navigate this design space. We first consider the
weight sharing topology. Then, we introduce lightweight dynamic transforma-
tions on the weights to increase the representational power of the weight-shared
networks. Finally, we explore how to use the trained weights of an uncompressed
network to further improve accuracy in weight-sharing isotropic networks. All
experiments done in this section are based on a ConvMixer model with 768 chan-
nels, depth of 32, patch extraction kernel size of 14, and convolutional kernel size
of 3.

Weight Sharing Topologies. Isotropic networks provide a vast design space
for sharing topologies. We perform an empirical study of various sharing topolo-
gies for the ConvMixer architecture, evaluated on the ImageNet dataset. We
characterize these topologies by the (1) sharing mapping (shown in Figure 2a),
which describes the structure of shared layers, and (2) the sharing distribution
(shown in Figure 2b), which describes which subset of layers sharing is applied
to. We study the following sharing mappings:

1. Sequential: Neighboring layers are shared in this topology. There is moti-
vated by our cross layer similarity analysis in Section 3.1 and Figure 3, which
suggest that local structures of recurrence may be promising.

2. Strided: This topology defines the recurrence on the network level rather
than locally. If we consider having P blocks with unique weights, we first
run all of the layers sequentially, then we repeat this whole structure L/P
times.
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Network Sharing Sharing Params FLOPs  Top-1

Distribution Mapping (M) (G) Acc (%)
ConvMixer - - 20.46 5.03 75.71
Sequential 73.29
WS-ConvMixer Uniform Strided 11.02 5.03 72.80
Random Diverged
. . Sequential 73.14
WS-ConvMixer Middle Pyramid 11.02 5.03 73.92
. Front . 73.31
WS-ConvMixer Back Sequential 11.02 5.03 79.35

Table 1: Effect of different sharing distributions and mappings on the
performance of weight-shared (WS) ConvMixer with a share rate of 2.
In order to maintain the fixed share rate 2 for non-uniform sharing distributions
(i.e., Middle, Front and Back), we apply sharing to 8 layers with share rate 3x
and have 16 independent layers. For Middle-Pyramid, the network is defined as
[4x1,1%x2,2x3,2x4,2x3,1x2,4x 1], where for each element N x S, N
stands for the number of sharing layers and S the share rate for the layer. All
experiments were done with a ConvMixer with 768 channels, depth of 32, patch
extraction kernel size of 14, and convolutional kernel size of 3.

3. Pyramid: This topology is an extension of Sequential, which has increas-
ingly more shared sequential layers as you approach the center of the net-
work. This is inspired by (1) empirical results in Figure 3 that show a simi-
lar structure in the layer-wise similarity and (2) neural network compression
methods (e.g. quantization and sparsity methods), which leave the beginning
and end of the network uncompressed [5,16].

4. Random: We randomly select which layers are shared within the network,
allowing us to understand how much the choice of topology actually matters.

For the sharing distribution, we consider applying (1) Uniform, where shar-
ing mapping is applied to all layers, (2) Front, where sharing mapping is applied
to the front of the network, (3) Middle, where sharing mapping is applied to
the middle of the network, and (4) Back, where sharing mapping is applied to
the back of the network. Note that front, middle and back sharing distributions
results in a non-uniform distribution of share rates across layers.

Figure 2 visualizes different sharing topologies while Table 1 shows the re-
sults of these sharing methods on the ImageNet dataset. When share rate is 2,
ConvMixer with uniform-sequential, middle-pyramid, and front-sequential shar-
ing topology result in similar accuracy (2.5% less than the non-shared model)
while other combinations result in lower accuracy. These results are consistent
with the layer-wise similarity study in Section 3.1, and suggests that layer-wise
similarity may be a reasonable metric for determining which layers to share.
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Because of the simplicity and flexibility of uniform-sequential sharing topology,
we use it in the following experiments unless otherwise stated explicitly.

Lightweight Dynamic Transformations on Shared Weights. To improve
the performance of a weight shared network, we introduce lightweight dynamic
transformations on top of the shared weights for each individual layer. With this,
we potentially improve the representational power of the weight sharing network
without increasing the parameter count significantly.

To introduce the lightweight dynamic transformation used in this study, we
consider a set of N layers to be shared, with a shared weight tensor Wy. In the
absence of dynamic transforms, the weight tensor Wy would simply be shared
among all N layers. We consider W; € REXCXKXK {45 he the weights of the
i-th layer, where C is the channel size and K is the kernel size. With a dynamic
weight transformation function f;, the weights W; at the i-th layer becomes

The choose f; to be a learnable lightweight affine transformation that allows us
to transform the weights without introducing heavy computation and parameter
overhead. Specifically, f;(W) = a* W + b applies a grouped point-wise convo-
lution with weights a € R“*¢ and bias b € R” to W, where G is the number
of groups. The number of groups, G € [1,C], can be varied to modulate the
amount of inter-channel mixing.

Table 2 shows the effect of different number of groups in the dynamic weight
transformation on the performance and efficiency (in terms of parameters and
FLOPs) of ConvMixer on the ImageNet dataset. As Table 2 shows, using G = 64,
the dynamic weight transformation slightly improves accuracy by 0.07% (from
73.29% to 73.36%) with 7% more parameters (from 11.02M to 11.8M) and 11.9%
more FLOPs (from 5.03G to 5.63G). Despite having stronger expressive power,
dynamic weight transformation does not provide significant accuracy improve-
ment with under 10% of overhead on number of weights and FLOPs and some-
times even degrading accuracy.

Initializing Weights from Pretrained Non-sharing Networks. Here we
consider how we can use the weights of a pretrained, uncompressed network to
improve the parameter shared version of an isotropic network. To this end, we
introduce transformations on the original weights to generate the weights of the
shared network for a given sharing topology. We define V; € REXCXKEXK 14
be the j-th pretrained weight in the original network, and u; € RY to be the
corresponding pretrained bias. The chosen sharing topology defines a disjoint set
cover of the original network’s layers, where each disjoint subset maps a group of
layers from the original network to a single shared weight layer. Concretely, if the
weight W; is shared among S; layers {41, 2, ...,is,} in the compressed network,
then we define W; = F;(V;,, Vi, ..., Vis, ), where we can design each F;. We refer
to F' as the fusion strategy. In all experiments we propagate the gradient back
to the original, underlying V; weights. Importantly, ' does not incur a cost at
inference-time, since we can constant-fold this function once we finish training.
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Weight Params FLOPs Top-1

Network Transformation? Group Rate (M) (G) Acc (%)
ConvMixer - - 20.46 5.03 75.71
X - 11.02 5.03 73.29
v 1 11.05 5.04 72.87
WS-ConvMixer v 16 11.20 5.17 73.20
v 32 11.40 5.31 73.14
v 64 11.80 5.63 73.36

Table 2: Effect of affine transformations on the performance of Weight
Shared ConvMixer model with a sharing rate of 2. All experiments were
done with a ConvMixer with 768 channels, depth of 32, patch extraction kernel

size of 14, and convolutional kernel size of 3.

. Params FLOPs Top-1

Network Fusion Strategy (M) (G) Acc (%)
ConvMixer - 20.5 5.03 75.71
- 73.23
Choose First 74.81
. Mean 74.91
WS-ConvMixer g1y Weighted Mean 10.84 5.03 75.15
Channel Weighted Mean 75.15

Pointwise Convoulution Diverged

Table 3: Effect of different fusion strategies (Section 3.2) on the per-
formance of ConvMixer. All experiments were done with a ConvMixer with
768 channels, depth of 32, patch extraction kernel size of 14, and convolutional
kernel size of 3. All weight sharing ConvMixer models share groups of 2 sequen-

tial layers.

One simple fusion strategy would be to randomly initialize a single weight
tensor for this layer. Note that this is the approach we have used in all previous
experiments. We empirically explore the following fusion strategies:

— Choose First: In this setup we take the first of the set of weights within

the set: W; = F;(Viy, Viyy ooy Vi

is

) = V;i,. The choice of the first weight (V;,),

rather than any other weight, is arbitrary. Training this method from scratch
is equivalent to our vanilla weight sharing strategy.
— Mean: We take the average of all the weight tensors within the set, W; =

1 Si _ 1 Sy
5 per Vi and by = 5 300 gy

— Scalar Weighted Mean: Same as the average, except each weight tensor
gets a learned scalar weighting, W, = Si 221:1 ;. Vi, a; € R. We take a
simple mean of the bias, just as in the Mean strategy. The idea here is to
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provide the ability to learn more complex fusions, of which Choose First
strategy, and Mean are special cases.

— Channel Weighted Mean: Rather than a scalar per layer, each weight
tensor has a learned scalar for every filter, W, = Si 221:1 a; Vi, &; € RC.
Again, we take a simple mean of the bias, just as the Mean strategy. This
strategy should allow the model to choose filters from specific weight tensors,
or learn linear combinations.

— Pointwise Convolution: In this transformation, a pointwise convolution
is applied to each layers weights, that maps to the same size filter, W; =
S%» Zle A% Vi, A; € REXC This should allow arbitrary mixing and per-
mutations of the kernels of each layer.

Table 3 shows that the Channel Weighted Mean fusion strategy allows us to
compress the model by 2x while maintaining the performance of original net-
work. Furthermore, in Section 5, we show that weight fusion strategies allow us
to learn representations similar to the original network.

4 Effect of Parameter Sharing on Different Isotropic
Networks on the ImageNet dataset

We evaluate the performance of the parameter sharing methods introduced in
Section 3.2 on a variety of isotropic architectures. For more information on the
training set-up and details, see Appendix C.

4.1 Parameter Sharing for ConvMixer

Typically, when considering model scaling, practitioners often vary parameters
including the network depth, width, and image resolution, which scale the per-
formance characteristics of the model [23]. In Table 4, we show that weight
sharing models can significantly outperform baselines with the same FLOPs and
parameters generated through traditional scaling alone, for example improving
accuracy by roughly 10% Top-1 in some cases. We also show a full family of
weight sharing ConvMixer models across multiple architectures in Table 5, and
find that weight sharing can reduce parameters by over 2x in many architectures
while maintaining similar accuracy. These results show that weight sharing, in
addition to typical scaling methods, is an effective axis for model scaling.

4.2 Parameter Sharing for Other Isotropic Networks

Although our evaluations have focused on ConvMixer, the methods discussed
in Section 3 are generic and can be applied to any isotropic model. Here, we
show results of applying parameter sharing to ConvNeXt [15] and the Vision
Transformer (ViT) architecture.
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Network Resolution Weight Share Params FLOPs Top-1
(C/D/P/K) Sharing? Rate (M) (G)  Acc(%)
768/32/14/3 224 X - 20.5 5.03 75.71
576/32/14/3 322 X - 11.8 5.92 70.326
768/16/14/3 322 X - 10.84 5.32 74.20
768/32/14/3 224 v 2 11.02 5.03 75.14
384/32/14/3 448 X - 5.5 5.23 58.83

768/8/14/3 448 X - 6.04 5.38 68.31
768/32/14/3 224 v 4 6.3 5.03 71.91
288/32/14/3 644 X - 3.25 6.23 40.46

768/4/14/3 644 X - 3.63 6.04 57.75
768/32/14/3 224 v 8 3.95 5.03 67.19

Table 4: Weight sharing vs. model scaling for the ConvMixer model
on ImageNet. For a fair comparison, we generate models with similar FLOPs
and network parameters to our family of weight sharing models using traditional
model scaling methods. Weight sharing methods achieve significantly better per-
formance than traditional model scaling. See Table 5 for more details on the
weight sharing model.

ConvNeXt. Table 6 shows the results of parameter sharing on the ConvNeXt
isotropic architecture. With parameter sharing, we are able to compress the
model by 2x while maintaining similar accuracy on the ImageNet dataset.

Vision Transformer (ViT). We also apply our weight sharing method to a
Vision Transformer, a self-attention based isotropic network. Due to space limit,
we report accuracy numbers in Appendix B. Furthermore, we discuss the differ-
ences between applying weight sharing methods to CNNs versus transformers.

4.3 Comparison with State-of-the-art Weight Sharing Methods.

Table 7 compares the performance of weight sharing methods discussed in Sec-
tion 3.2 with existing methods [4, 9, 14] on ImageNet. Compared to existing
methods, our weight sharing schemes are effective; achieving higher compression
rate while maintaining accuracy. For example, ConvMixer-768/32, ConvMixer-
156/20, and ConvNeXt-18 with weight sharing and weight fusion achieve 1.86x,
1.91x and 1.92 share rate while having a similar accuracy. Existing weight shar-
ing techniques [4,9] can only achieve at most 1.58x and 1.45x share rate at while
maintaining accuracy. Although [14] can achieve 12x share rate, it results in a
8.8% accuracy drop.

These results show that isotropic networks can achieve a high share rate
while maintaining accuracy with simple weight sharing methods. The traditional
pyramid style networks, while using complicated sharing schemes [4,9, 14], the
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Network Weight Share Weight Params FLOPs Top-1

(C/D/P/K) Sharing? Rate Fusion? (M) (G) Acc(%)
X - - 49.4 78.03
v 2 v 25.8 78.47
1536/20/7/3 p | ’ 9 1896 -
v 10 X 6.9 72.27
X - - 20.5 75.71
v 2 v 11.02 75.14
768/32/14/3 p | p 63 503 v
v 8 v 3.95 67.19
X - - 5.7 67.48
v 2 v 3.63 65.04
512/16/14/9 v 4 v 2.58 L33 5934
v 8 X 2.05 54.25

Table 5: Weight sharing family of ConvMixer model on ImageNet.
Significant compression rates can be achieved without loss in accuracy across
multiple isotropic ConvMixer models. We also generate a full family of weight
sharing models by varying the share rate, which is the reduction factor in number
of unique layers for the weight shared model compared to the original. C/D/P/K
represents the dimension of channel, depth, patch and kernel of the model. If
weight fusion is specified, the channel weighted mean strategy described in Sec-
tion 3.2 is used.

Network  Depth Spare Params FLOPs  Top-1

Rate (M) (G) Acc(%)
18 - 22.3 4.3 78.7
ConvNeXt 9 _ 11.5 2.2 75.3
2 115 78.07
4 6.7 76.11
WS-ConvNeXt 18 6 i3 43 72.07
9 3.1 68.75

Table 6: Effect of weight sharing on the ConvINeXt model on Ima-
geNet. WS-ConvNeXxt has 2x less number of parameters but still achieves
similar accuracy to the original ConvNeXt model.

share rate is usually limited. Note that although our sharing schemes can achieve
higher share rates, existing methods like [9,14] are able to directly reduce FLOPs,
which our method does not address.
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Share Params FLOPs Top-1
Rate (M) (G) Acc(%)

ConvMixer-768/32 [25] (baseline) - 20.5 5.03 75.71
WS-ConvMixer-768/32-S2 (ours) 1.86 11.02 5.03 75.14

ConvMixer-1536/20 [25] (baseline) - 49.4 48.96 78.03
WS-ConvMixer-1536/20-S2 (ours) 1.91 25.8 48.96 78.47

Network

ConvNeXt-18 [15] (baseline) - 22.3 4.3 78.7
WS-ConvNeXt-18-S2 (ours) 1.92 11.5 4.3 78.07
WS-ConvNeXt-18-S4 (ours) 3.33 6.7 4.3 76.11
ResNet-152 [6] (baseline) - 60 11.5 78.3
TamNN [14] 12 5 259 695
ResNet-101 [6] (baseline) - 44.54 7.6 77.95
DR-ResNet-65 [4] 158  28.12 5.49 78.12
DR-ResNet-44 [4] 2.2 20.21 4.25 77.27
ResNet-50 [6] (baseline) - 25.56 3.8 76.45
DR-ResNet-35 [4] 145 1761 3.12 76.48
ResNet50-OrthoReg [9] 1.25 20.51 4.11 76.36

ResNet50-OrthoReg-Shared All [9] 1.6 16.02 4.11 75.65

Table 7: Share rate and ImageNet accuracy comparison with existing weight
sharing methods.

5 Representation Analysis

In this sections, we perform qualitative analysis of our weight sharing models
to better understand why they lead to improved performance and how they
change model behavior. To do this, we first analyze the representations learned
by the original network, compared to one trained with weight sharing. We follow
a similar set-up to Section 3.1. We use CKA as a metric for representational
similarity and compute pairwise similarity across all layers in both the networks
we aim to compare. In Figure 4(a) we first compare the representations learned
by a vanilla weight sharing method to the representations of the original network.
We find that there is no clear relationship between the representations learned.
Once we introduce the weight fusion initialization strategy (Section 3.2), we find
significant similarity in representations learned, as shown in Figure 4(b). This
suggests that our weight fusion initialization can guide the weight shared models
to learn similar features to the original network. In Appendix F, we further
analyze the weight shared models and characterize their robustness compared to
standard networks.
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(a) Vanilla WS-ConvMixer. (b) WS-ConvMixer with Fusion.

Fig. 4: (a) The CKA similarity analysis of a standard ConvMixer’s intermediate
feature maps compared to a vanilla weight shared ConvMixer, with share rate of
2. (b) The same analysis but compare to a weight shared ConvMixer initialized
with weight fusion. The channel weighted mean fusion strategy is used (see
Section 3.2).

6 Conclusion

Isotropic networks have the unique property in which all layers in the model
have the same structure, which naturally enables parameter sharing. In this pa-
per, we perform a comprehensive design space exploration of shared parameters
in isotropic networks (SPIN), including the weight sharing topology, dynamic
transformations and weight fusion strategies. Our experiments show that, when
applying these techniques, we can compress state-of-the-art isotropic networks
by up to 2 times without losing any accuracy across many isotropic architec-
tures. Finally, we analyze the representations learned by weight shared networks
and qualitatively show that the techniques we introduced, specifically fusion
strategies, guide the weight shared model to learn similar representations to the
original network. These results suggest that parameters sharing is an effective
axis to consider when designing efficient isotropic neural networks.
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