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Abstract. Conventional NAS-based pruning algorithms aim to find the
sub-network with the best validation performance. However, validation
performance does not successfully represent test performance, i.e., po-
tential performance. Also, although fine-tuning the pruned network to
restore the performance drop is an inevitable process, few studies have
handled this issue. This paper provides a novel Ensemble Knowledge
Guidance (EKG) to solve both problems at once. First, we experimen-
tally prove that the fluctuation of loss landscape can be an effective
metric to evaluate the potential performance. In order to search a sub-
network with the smoothest loss landscape at a low cost, we employ
EKG as a search reward. EKG utilized for the following search iteration
is composed of the ensemble knowledge of interim sub-networks, i.e.,
the by-products of the sub-network evaluation. Next, we reuse EKG to
provide a gentle and informative guidance to the pruned network while
fine-tuning the pruned network. Since EKG is implemented as a memory
bank in both phases, it requires a negligible cost. For example, in the case
of ResNet-50, just 315 GPU hours are required to remove around 45.04%
of FLOPS without any performance degradation, which can operate even
on a low-spec workstation. the source code is available at here.

1 Introduction

Network pruning is attracting a lot of attention as a lightweight technique to
reduce computation and memory cost by directly removing parameters of deep
neural networks (DNNs). In particular, filter pruning is advantageous in acceler-
ating using the basic linear algebra subprograms (BLAS) library because it elim-
inates parameters in units of filters. Recently, filter pruning has been regarded
as a kind of neural architecture search (NAS), that is, the sub-network search
process. Actually, some methods using the existing NAS algorithms succeeded
in finding a high-performance pruned network [6,25,24,40]. Based on ‘supernet’
capable of dynamic inference, the other methods significantly reduced compu-
tational complexity while maintaining high performance of NAS-based pruning
algorithm [2,45,11,36].
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Fig. 1. Conceptual visualization showing the perfor-
mance change of the search algorithm according to re-
ward and the intrinsic goal of the proposed agent

In general, NAS-based
pruning algorithms con-
sist of a search phase and
a fine-tuning phase. We
paid attention to the fact
that prior arts seldom
dealt with critical factors
in each phase. First, note
that rewards used in the
search phase so far are not
accurate enough to find
the optimal sub-network.
NAS-based pruning usu-
ally samples the valida-
tion set from the training
dataset and uses the validation performance as a reward. In other words, it is as-
sumed that validation performance has a high correlation with test performance,
i.e., potential performance. Although this approach improves the search speed
greatly, it implies the possibility of overfitting the sub-network to the validation
set. Despite such a risk, most previous works adopted validation performance
as the reward without any doubt. Second, there were no prior arts consider-
ing the characteristics of the pruned network in the fine-tuning phase. During
the filter pruning procedure, some information loss is unavoidable. To recover
the information loss, we should fine-tune the pruned network. Since the pruned
network still possesses the information of the pre-trained network, an approach
differentiated from randomly-initialized networks is required. However, prior arts
employed general learning strategies used when learning pre-trained networks as
they are or adopted primitive knowledge distillation (KD).

To solve two problems mentioned above, this paper presents a single solu-
tion, i.e., Ensemble Knowledge Guidance (EKG). In general, a student network
constrained by teacher knowledge has a flatter local minima [27,38,3] and faster
convergence speed [39], compared to ordinary optimization algorithms. Based on
these characteristics, we formulate a way to improve the search and fine-tuning
phases by using EKG as follows: First, we show that loss landscape fluctuation is
a useful tool to evaluate the potential performance of sub-network. Fig. 1 visual-
izes the concept. The sub-network with the highest potential performance is ex-
pected to be sufficiently generalized as well as to have a fast learning speed. Since
the smoothness of loss landscape can estimate both factors, i.e., generalization
and learning speed [20,34,9], we employ it to evaluate sub-networks. However,
since loss landscape-based reward requires massive computational cost, it is im-
practical to utilize the smoothness of loss landscape as a search reward. So, we
use EKG to find an optimal sub-network with the smoothest loss landscape at
an acceptable cost. Based on the property of KD, EKG implicitly selects a sub-
network with a smoother loss landscape and discovers the optimal sub-network
more precisely than previous works that solely use the validation loss. Here, as
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the source of knowledge, the output features of interim sub-networks, i.e., by-
products of each search iteration, are stored and ensembled in the memory bank.
Therefore, EKG incurs only a negligible cost because we don’t have to infer the
numerous genuine teacher networks in every training iteration.

Furthermore, EKG is applied once again to fine-tune the pruned network. As
mentioned above, KD is an effective way to improve a small network. However, as
the pruning rate increases, the gap between the pre-trained and pruned networks
also increases, which makes it difficult to transfer knowledge [27]. To bridge the
performance gap, we adopt interim sub-networks once again as teacher-assistant
networks and build a memory bank with their knowledge. Then, according to
the learning status of the pruned network, the knowledge of the memory bank is
ensembled and transferred. Since the knowledge always maintains an appropriate
gap with the pruned network, over-constraints can be avoided.

As a result, the proposed EKG can improve the performance of the pruned
network while affecting both phases with a marginal cost increase. For example,
when pruning ResNet-50, 45.04% FLOPS can be removed without any perfor-
mance drop in only 315 GPU hours, which is an impressive result considering
that our experiments are performed on a low spec workstation. Finally, the con-
tributions of this paper are summarized as follows:
• As a new tool to measure the potential performance of sub-network in NAS-
based pruning, the smoothness of loss landscape is presented. Also, the experi-
mental evidence that the loss landscape fluctuation has a higher correlation with
the test performance than the validation performance is provided.
• EKG is proposed to find a high potential sub-network and boost the fine-
tuning process without complexity increase, which makes a high-performance
light-weighted neural network democratized.
• To our knowledge, this paper provides the world-first approach to store the
information of the search phase in a memory bank and to reuse it in the fine-
tuning phase of the pruned network. The proposed memory bank contributes to
greatly improving the performance of the pruned network.

2 Related Work

This section reviews the research trend of filter pruning. Existing filter pruning
algorithms can be categorized into two groups. The first approach is filter im-
portance scoring (FIS). FIS scores the importance of each filter according to a
specific criterion and removes lower-score filters. Early FIS techniques adopted
filter norms as criteria [13]. However, they faced with a problem of ‘smaller-
norm-less-importance criteria.’ So, various scoring techniques were proposed to
solve this problem, e.g., gradient-norm [28,44], geometric relation [16,40], and
graph structure [19,41]. Although the latest FIS techniques improved the perfor-
mance of the pruned network, a question still remains as to whether the existing
filter scores are closely related to the performance degradation.

The second is a NAS-based approach and is more intuitive than the first.
NAS-based methods define the number of filters as a search space and search for
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the optimal sub-network by learning and evaluating each sub-network [6,25,24].
Here, the performance itself is considered a score. However, the NAS-based
methodology inevitably requires a huge cost because each sub-network must
be actually trained. Thus, supernet was proposed to reduce this massive cost. A
supernet in which a low index filter has higher importance than a high index fil-
ter is a network trained to enable dynamic inference [47,11,45]. Once a supernet
is trained, the search agent can explore the search space by free, so the search
cost can be greatly reduced. Thus, supernet-based pruning has become the most
dominant methodology. For example, [36,37] achieved state-of-the-art (SOTA)
performance by adopting a more sophisticated search algorithm, and [46,45] pre-
sented a few effective methods for training supernets. However, since a supernet
is not publicly available in general, it must be re-trained every time. In other
words, supernet-based methods have a fatal drawback in that they cannot use
well-trained networks [10,43].

The most important virtue of the pruning algorithm is to find a sub-network
that minimizes information loss, but the process of restoring it is just as impor-
tant. Surprisingly, how to fine-tune the pruned network has been rarely stud-
ied. For example, most pruning algorithms adopted a naive way of training the
pruned network according to a general training strategy. If following such a naive
way, a huge cost is required for fine-tuning. As another example, a method to
re-initialize the pruned network according to lottery-ticket-hypothesis was pro-
posed [7]. This method can guide the pruned network fallen into the local minima
back to the global minima, but its learning cost is still huge. The last example
is using KD [17]. In general, the pre-trained network has a similar structure to
the pruned network, but has a higher complexity and is more informative. So,
we can intuitively configure the pre-trained and pruned networks as a teacher-
student pair. Recently, a few methods have been proposed to improve the per-
formance of the pruned network with the pre-trained network as a teacher [6].
However, if the pruning rate increases, that is, if the performance gap between
teacher and student increases, the information of the teacher network may not
be transferred well [27]. Also, since the pruned network has information about
the target dataset to some extent, unlike general student networks, fine-tuning
for the pruning algorithm is required.

3 Method: Ensemble knowledge guidance

3.1 Accurate potential performance evaluation

Conventional NAS-based pruning iteratively eliminates redundant filter set θ
from the pre-trained network’s filter set Θ0 until the target floating point oper-
ations (FLOPs) are reached. This process is expressed by

Θi+1 = Θi \ θ∗i (1)

θ∗i = argmax
θi

R (Θi, θi) (2)
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Fig. 2. (Left) Potential loss vs. validation loss (Right) Potential loss vs. condition num-
ber. 50 sub-networks of ResNet-56 trained on CIFAR10 were used for this experiment

where i is the search step, \ is the set subtraction, and R indicates the reward
of the search agent. It is costly to handle all filter combinations, so the agent
usually divides the search space into intra-layer and inter-layer spaces. Then, the
redundant filter set candidate ϕi,l is determined in each layer, and the candidate
with the highest reward is selected. If a supernet is used as a pre-trained network,
a candidate of each layer can be determined at no cost. As a result, the search
process is regarded as a task that evaluates candidates, and is re-written by

Θi+1 = Θi \ ϕi,l∗ (3)

l∗ = argmax
l

R(Θi, ϕi,l)

s.t. Φi = {ϕi,l|1 ≤ l ≤ L}
(4)

where L stands for the number of layers in DNN.
Among prior arts, some concentrated on how to construct candidates while

maintaining the above-mentioned framework [47,46,45,2], and others presented
new search agents to select the best candidate [37,36]. On the other hand, most of
the previous studies employed sub-network’s performance as a search reward R
without any doubt. Since it is too heavy to use the entire training dataset for val-
idation, the validation set Dval is sampled from the training dataset. Therefore,
assuming that the loss function L is used as a metric to measure performance
and ϕi,l is removed from Θi by a certain NAS-based pruning algorithm, the
search reward is defined by

R(Θi, ϕi,l) = −L(Dval;Θi \ ϕi,l) (5)

The reason to search for the sub-network with the highest validation per-
formance is that its potential performance after fine-tuning is expected to be
high. In other words, it is assumed that validation performance is highly corre-
lated with potential performance. To examine whether this assumption holds,
we randomly sampled sub-networks of ResNet-56 [14] trained on CIFAR10 [18]
and measured the validation performance and test performance after fine-tuning.
Specifically, Pearson Correlation Coefficient [35] (PCC) ρX,Y of the validation
loss (X ) and potential loss (Y ) was calculated. For the detailed training config-
uration of this experiment, please refer to the supplementary material. The left
plot of Fig. 2 shows that the correlation between the two losses is not so high.
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Especially, note that the validation loss has high variance in the low potential
loss region of the most interest. This phenomenon makes it difficult to adopt the
validation loss as a reliable reward. Since the search process is a sort of optimiza-
tion, exploring the validation set makes the sub-network fit the validation set. In
other words, there is a risk of overfitting. Therefore, instead of simply measuring
validation performance, we need another indicator to measure generality.

We introduce loss landscape [20] as a means to analyze the generality of
sub-networks. The more the loss landscape is smooth and close to convex, the
more the network is robust and easy to be trained. Therefore, quantitatively
measuring fluctuations in the loss landscape can determine how well the net-
work is generalized, which provides higher-order information than performance.
Because a network with fewer filters has relatively large fluctuations in the loss
landscape, the loss landscape of the sub-network becomes more complex as prun-
ing progresses. However, if the information of a certain filter is redundant, the
generality error as well as fluctuations in the loss landscape do not increase.
Based on this insight, we assume that a sub-network can be evaluated through
the fluctuation of the loss landscape. To verify whether this assumption is valid,
we examine the PCC of loss landscape fluctuation (X ) and potential loss (Y ).
As an index representing the loss landscape fluctuation, we employed the condi-
tion number (CN), i.e., the ratio of minimum and maximum eigenvalues of the
Hessian [31,20], which is defined by

Condition number =
∣∣λmin/λmax

∣∣ (6)

The right plot of Fig. 2 shows that CN has a higher correlation with potential
loss than validation loss. In particular, note that the variance of CN is very small
in the low potential loss region. This proves that CN is a more reliable indicator
to evaluate sub-networks. Based on this experimental result, the next subsection
designs a search process to select a sub-network with a smoother loss landscape.

3.2 Search with ensemble knowledge guidance

CN must be a better indicator to evaluate potential performance than validation
performance. However, since the Hessian matrix required to calculate CN causes
a huge computation cost, it is burdensome to directly use CN as a search reward.

To design a new sub-network search process of a reasonable cost, we adopt
EKG. KD is widely used to enhance the performance of a small-size network
(student) with a large-size network (teacher). Many researchers have pointed
out that the performance of a student is improved because the loss landscape of
the student gets smoother by receiving the teacher’s knowledge, that is, the gen-
erality error of the student is reduced [27,38,3]. Student networks are saturated
with a smoother loss landscape under multi-directional constraints due to knowl-
edge and target loss. However, if the pruning rate gets higher, a performance
gap between the pre-trained network and the sub-network gets larger, mak-
ing teacher knowledge not transferred effectively [27]. Fortunately, interim sub-
networks have suitable properties as teacher-assistant networks [27]. In detail,
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Fig. 3. An example of a position sensing a feature map fθ2 for scoring a filter θ2 in
the proposed method. Compared with f ′θ2 , which only grasps residual importance, fθ2

can observe that importance is well measured regardless of architecture characteristics

interim sub-networks have intermediate performance between the pre-trained
and pruned networks and are computationally efficient because there is no ad-
ditional training cost. So, we build a memory bank and ensemble the knowledge
of interim sub-networks at every step to keep the knowledge guidance at the
middle point of the pre-trained network and the current sub-network. Finally,
R is re-defined by

R(Θi, ϕi,l) = −L(Dval;Θi \ ϕi,l)− L(Ti;Θi \ ϕi,l) (7)

Ti =
1

i+ 1

i∑
j=0

O(Dval;Θj) (8)

where O(·; ·) indicates the inference result.
Based on the proposed reward, we reconfigure the existing search process as

follows. First, a score is given to each filter according to Eq. (7), and filters of low
scores are selected as candidates. Here, in order to more accurately evaluate the
importance of θ, the input feature map of the next layer fθ is used as in Fig. 3.
Since fθ has both the information generated from θ and the characteristics of the
network architecture, it can more accurately represent the importance of each
filter. Using the well-known Taylor expansion [28,44], we propose the following
scoring function:

S(θ) =
∣∣∣∣∂R(Θi, ·)

∂fθ
fθ

∣∣∣∣ (9)

The detailed derivation process of the above formula is depicted in the supple-
mentary material. Next, filters of lower scores as much as a specific ratio r for
each layer become candidates, and a candidate with the highest reward is se-
lected through a greedy search. Finally, the optimal sub-network Θ∗ is searched
iteratively.

In fact, the concept of transferring knowledge of a large sub-network to a
small sub-network is already widely used for learning supernets [47,45,11,2,36].
We can say that the proposed reward based on EKG inherits this concept. Here,
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Algorithm 1: The proposed pruning algorithm

Input : Θ0,Dtrain, r Output : Fine-tuned network
1: Sample Dsubset and Dval in Dtrain and fine-tune Θ0 in an epoch on Dsubset

2: Store initial ensemble knowledge T0

3: Repeat
4: Compute filter importance scores S(θ) by Eq. (9)
5: Sample candidates Φi in each layers with r.
6: Select ϕ∗

i,l by Eq. (4) that maximizes Eq. (7).
7: Get next pruned network Θi+1 by Eq. (3).
8: Update ensemble knowledge Ti+1 by Eq. (8)
9: i = i+ 1

10: Until FLOPs reduction rate reaches the goal
11: Θ∗ = Θi

12: Build memory bank by Eq. (10)
13: Repeat
14: Get training sample in Dtrain and apply two augmentation functions.
15: Minimize loss function in Eq. (12).
16: Until Training is done

scoring based on Taylor expansion can compute the scores of all filters at once,
so it not only requires a much lower cost than learning the supernet itself but
also has the advantage of using well-trained networks as they are.

3.3 Fine-tuning with ensemble knowledge guidance

Even though a sub-network with high potential is available, the performance of
the sub-network can be maximized through fine-tuning. So, we once again utilize
EKG. As mentioned in Sec. 3.2, the pruning process generates many qualified
teacher networks, i.e., interim sub-networks. If this knowledge is transferred to
the pruned network again, the effect of inverse-tracking the information loss of
the pruning process can be accomplished. However, acquiring knowledge by infer-
encing of all teacher networks at every iteration requires a huge computational
cost. To transfer teacher knowledge efficiently, we propose to sample interim
sub-networks with a uniform performance gap and store their knowledge in a
memory bank. This entire procedure is expressed by

M = {Mk = O(Dtrain, Tk)|1 ≤ k ≤ K} (10)

Tk = argmin
Θi

∣∣∣∣K − k

K
L(Θ∗) +

k

K
L(Θ0)− L(Θi)

∣∣∣∣ (11)

where K indicates the number of interim sub-networks to be sampled.
Memory bank knowledge smoothly bridges the performance gap between pre-

trained and pruned networks, but fixed knowledge can often cause overfitting.
To resolve this side-effect, we employ contrastive learning. Contrastive learn-
ing is to minimize the gap between two data representations to which different
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augmentations are applied [4,10]. So, it allows DNNs to learn more generalized
representations. We set memory bank knowledge as the center of the augmented
data distribution and transfer it into the sub-network. As in the search pro-
cess, we select the teacher network from M according to the performance of the
pruned network, and then the ensemble knowledge is transferred. Therefore, the
loss function Lft for fine-tuning is defined by

Lft =

2∑
a=1

L(Dtrain,Aa;Θ
∗) + L(M;Θi \ ϕi,l) (12)

M = E

{
Mk

∣∣∣∣∣ 1 ≤ k ≤ K

L(Mk) ≤ L(Dtrain;Θ∗)

}
(13)

where A stands for augmentation function. The proposed fine-tuning strategy
injects extra information into the pruned network at almost no cost. Also, it not
only improves the learning speed but also has a regularization effect so that the
pruned network has higher performance. Algorithm 1 summarizes the proposed
method. The proposed search process has the following differentiation points
from the existing supernet-based search algorithm.
• Because of the ease of using the pre-trained network and the accurate potential
performance evaluation, a better sub-network can be obtained.
• The potential of sub-network is maximized by transferring the information lost
in the search phase back to the fine-tuning phase, resulting in high performance.
• Since the proposed search process has almost no additional cost compared to
prior arts, it can operate even on a low-performance computer system.

4 Experimental results

This section experimentally proves the performance of EKG. First, we verify
that CN can be a metric that evaluates sub-networks more accurately than val-
idation performance. Second, an ablation study is given. Third, we prove that
the proposed method accomplishes more effective pruning than conventional
methods in various configurations and achieves SOTA performance at a rea-
sonable cost. The datasets for experiments were CIFAR10, CIFAR100 [18], and
ImageNet [32]. ResNet family [14] and MobileNet-v2 [33] were used as network
architectures. The proposed method was implemented in Tensorflow [1]. The CI-
FAR pre-trained network was trained by ourselves, and the ImageNet pre-trained
network is a version released in Tensorpack [42]. Detailed hyper-parameters for
training are shown in the supplementary material. GPU hours were calculated
on GTX1080Ti, and 1 to 2 GPUs were utilized, depending on the architecture.

4.1 Empirical analysis for loss landscape-based evaluation

This subsection proves that the proposed method effectively searches the sub-
network of smoother loss landscape. Unfortunately, direct comparison with ex-
isting supernet-based search algorithms is unreasonable. Instead, we assigned a
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Fig. 4. Visualization of loss landscapes of sub-networks searched by various filter im-
portance scoring algorithms

Score L1 [13] FPGM [16] GBN [44] EKG

CIFAR10
Validation loss 0.1569 0.1066 0.0710 0.0713

Condition number 0.4078 0.1461 0.0414 0.0211
Test accuracy 93.57 93.57 93.70 93.85

CIFAR100
Validation loss 1.2050 0.7635 0.6816 0.7733

Condition number 0.2535 0.0838 0.0747 0.0649
Test accuracy 71.43 71.60 71.60 71.82

Table 1. Comparison of validation loss, condition number, and test accuracy of various
scoring methods on CIFAR10 and CIFAR100

score to each filter using a specific filter scoring technique, found a sub-network
with the minimum validation loss, and employed the result for comparison.

First, we visualized the loss landscapes of the sub-networks for each method.
As a network for visualization, ResNet-56 trained on CIFAR10 was used. Two
directions for constructing the loss landscape were set to a gradient direction
and its orthogonal random direction. Fig. 4 is the visualization result. We can
observe that the sub-network of EKG has the least fluctuation. In particular,
it is noteworthy that L1-norm-based pruning, which has been adopted in many
studies, is in fact not so effective. GBN [44] has the lowest fluctuation among
conventional techniques. GBN has a similar structure to the proposed method
because it is also based on Taylor expansion. However, since a reward of GBN
relies on performance only and does not consider the information of the archi-
tecture sufficiently, its loss landscape fluctuation is larger than that of EKG.

Next, let’s compare the performance when sub-networks are trained with
the same native fine-tuning (see Table 1). We could find that the correlation
between the CN and the test accuracy is high. Even though EKG has a higher
validation loss than GBN, its potential performance is expected to be higher
because the CN or the loss landscape fluctuation of EKG is smaller. Actually,
EKG’s test accuracy on CIFAR10 was the highest as 93.85%. Therefore, we can
find that the proposed search process based on ensemble KD effectively finds the
sub-network of smoother loss landscape. Also, the loss landscape fluctuation is
a very accurate indicator for evaluating potential performance.
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Teacher ResNet-56 MobileNet-v2
Search Fine-tune CIFAR10 CIFAR100 GPU hours CIFAR10 CIFAR100 GPU hours

Baseline 93.84 72.62 0.44 94.21 76.07 1.83

None None 93.78 (±0.07) 71.63 (±0.21) 0.19 / 0.50 93.69 (±0.06) 74.27 (±0.18) 0.31 / 1.35
Single None 93.54 (±0.09) 71.66 (±0.17) 0.21 / 0.50 93.73 (±0.04) 74.10 (±0.12) 0.35 / 1.35

Ensemble None 93.85 (±0.10) 71.82 (±0.20) 0.21 / 0.50 93.89 (±0.04) 74.53 (±0.16) 0.35 / 1.35
Ensemble Single 94.02 (±0.08) 72.62 (±0.15) 0.22 / 0.88 94.44 (±0.09) 76.11 (±0.15) 0.38 / 2.36
Ensemble Ensemble 94.09 (±0.07) 72.93 (±0.16) 0.22 / 0.68 94.52 (±0.05) 76.29 (±0.17) 0.38 / 1.64

Table 2. Ablation study to verify each part of the proposed method. Here, None,
Single, and Ensemble refer to three methods of using the teacher network. GPU hours
were measured in search and fine-tuning phases, respectively

4.2 Ablation study

Method Acc. FLOPs ↓ Param ↓
TAS [6] 93.69 52.7 -
ABC [22] 93.23 54.13 52.20
GAL [23] 91.58 60.2 65.9

GBN-60 [44] 93.43 60.1 53.5
FPGM [16] 93.49 52.6 -
Hrank [21] 93.17 50 57.6
LFPC [15] 93.34 52.9 -
DSA [29] 92.93 52.6 -

ManiDP [40] 93.64 62.4 -
NPPM [8] 93.40 50.0 -

SRR-GR [41] 93.75 53.8 -
ResRep [5] 93.71 52.91 -
GDP [12] 93.97 53.35 -

EKG
93.92 55.22 33.69
93.69 65.11 46.52

Table 3. Comparison with various tech-
niques for ResNet-56 trained on CIFAR10.
Here, Acc is the accuracy, and FLOPs ↓ and
Param ↓ are the reduction rates of FLOPs
and the number of parameters, respectively

This section analyzes the effects of
EKG on the search and fine-tuning
phases. In this experiment, three sce-
narios of the teacher network are com-
pared: None, Single (when only the
pre-trained network is used), and En-
semble (when the proposed ensem-
ble teacher is used). ResNet-56 and
MobileNet-v2 trained with CIFAR10
and CIFAR100 were used as datasets,
and the FLOPs reduction rate was set
to 50%. The experimental results are
shown in Table 2.

First, let’s look at the sub-network
search phase. Although the search
process of ‘None’ has almost no dif-
ference from that of GBN except for
the score calculation position, ‘None’
achieved some performance improve-
ment over GBN. In the case of ‘Sin-
gle,’ over-constraint occurs due to
the far performance gap between the
pre-trained and interim sub-networks.
Since interim sub-networks did not undergo fine-tuning to recover the informa-
tion loss, this phenomenon is further highlighted. Thus, we can observe no per-
formance improvement or rather a decrease in most configurations. For example,
in the case of ResNet-56 on CIFAR10, the performance of ‘None’ and ‘Single’ was
93.78% and 93.54%, respectively. That is, using knowledge rather causes degra-
dation of 0.24%. On the other hand, if bridging the pre-trained and pruned
networks through interim sub-networks, i.e., ‘Ensemble,’ a sub-network of high
potential performance can be selected because of more effective knowledge-based
guidance. For example, in the case of ResNet-56 on CIFAR10, the performance of
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‘Ensemble’ is 0.31% higher than ‘Single’ and outperforms ‘None.’ Here, it is note-
worthy that the performance of ‘None’ is already comparable than conventional
algorithms (see Fig. 5). Therefore, performance improvement of ‘Ensemble’ is
sufficiently acceptable considering that it requires almost no cost.

Next, because the fine-tuning phase re-learns the sub-network, the over-
constraints caused by the far performance gap are somewhat mitigated. Ac-
cordingly, even if only a single teacher is used, the performance of the pruned
network is sufficiently improved, reaching 94.02% in the case of ResNet-56 on
CIFAR10. However, as the time for forwarding the teacher network is added, the
training time increases by 71.09% compared to ‘None.’ On the other hand, when
training with the proposed memory bank, which ensembles the knowledge of in-
terim sub-networks, that is, in the case of ‘Ensemble’ knowledge, we can achieve
similar performance improvement with only 29.03% increase in training time.
This is because the memory bank provides qualified guidance by encapsulating
information from many networks. Therefore, each part of the proposed method
contributes to effectively providing a lightweight network with high performance
at a low cost.

4.3 Performance evaluation

Fig. 5. FLOPS reduction rate-accuracy of various
pruning techniques for ResNet-56 on CIFAR10

Experiments using ResNet
family [14] prove that the pro-
posed method reaches SOTA
performance. The datasets
used in the experiments are
CIFAR10 and ImageNet.

First, Table 3 shows the
experimental results for ResNet-
56 trained on CIFAR10. For
example, when 65.11% of
FLOPs are removed by the
proposed method, the perfor-
mance reaches 93.69%. This
proves that EKG outperforms
the other methods with sim-
ilar FLOPs reduction rates.
To analyze the performance of
EKG in detail, Fig. 5 plots
the performances at various
FLOPs reduction rates. We can observe that EKG provides higher performance
than other methods at all FLOPs reduction rates. Note that NN (i.e, ‘None’),
where any knowledge is not utilized in both phases, already shows a better or
comparable performance than most conventional methods. Here, EN utilizing
‘Ensemble’ knowledge only in the search phase gives sufficient performance im-
provement. This is because EKG accurately searches for a sub-network with high



Ensemble Knowledge Guided Sub-network Search and Fine-tuning 13

ResNet Method Top-1 (diff.) Top-5 (diff.) FLOPs ↓

18

TAS [6] 69.15 (-1.50) 89.19 (-0.68) 33.3
ABC [22] 67.80 (-1.86) 88.00 (-1.08) 46.9
FPGM [16] 68.41 (-1.87) 88.48 (-1.15) 41.8
DSA [29] 68.62 (-1.11) 88.25 (-0.82) 40.0

DMCP [11] 69.20 N/A 43.0
ManiDP [40] 68.88 (-0.88) 88.76 (-0.32) 51.0

EKG 69.39 (-0.99) 88.65 (-0.87) 50.1

34

FPGM [22] 72.63 (-1.28) 91.08 (-0.54) 41.1
SFP [16] 71.84 (-2.09) 89.70 (-1.92) 41.1
NPPM [8] 73.01 (-0.29) 91.30 (-0.12) 44.0

ManiDP [40] 73.30 (-0.01) 91.42 (-0.00) 46.8
EKG 73.51 (-0.34) 91.27 (-0.19) 45.1

50

DSA [30] 75.1 (-0.92) 92.45 (-0.41) 40.5
FPGM [22] 75.59 (-0.56) 92.63 (-0.24) 42.7
BNP [26] 75.51 (-1.01) 92.43 (-0.66) 45.6
GBN [44] 76.19 (+0.31) 92.83 (-0.16) 41.0
TAS [6] 76.20 (-1.26) 92.06 (-0.81) 44.1

SRR-GR [41] 75.76 (-0.37) 92.67 (-0.19) 45.3
NPPM [8] 75.96 (-0.19) 92.75 (-0.12) 56.2
ResRep [5] 76.15 (-0.00) 92.89 (+0.02) 54.9

Autoslim [45] 75.6 N/A 51.6
DMCP [11] 76.20 N/A 46.7
CafeNet [36] 76.90 93.3 52.0
BCNet [37] 76.90 93.3 52.0

EKG
76.43 (-0.02) 93.13 (-0.02) 45.0
75.93 (-0.52) 92.82 (-0.33) 55.0

EKG-BYOL 76.60 (-0.40) 93.23 (-0.31) 55.0

Table 4. Comparison with various techniques for ResNet family trained on ImageNet

potential performance even at high reduction rates. In particular, the higher per-
formance than the pre-trained network even at low FLOPs reduction rates shows
that the proposed fine-tuning has a similar regularization effect even though the
actual teacher network is not used. Also, this phenomenon indicates that bet-
ter fine-tuning strategy is more crucial than better sub-network search. Next,
Table 4 shows the experimental results for ResNet family trained on ImageNet.
EKG achieved SOTA performance in all architectures. For instance, top-1 ac-
curacy of EKG reached 73.51% at 45.1% FLOPs reduction rate for ResNet-34.
Since EKG can be plugged-in easily, we adopted a primitive search algorithm,
i.e., the greedy search of Autoslim [45] to verify EKG. As a result, EKG improved
Autoslim by 0.34% in top-1 accuracy and by 3.5% in FLOPs reduction rate for
ResNet-50. On the other hand, in the case of ResNet-50, EKG showed lower per-
formance than the latest supernet-based algorithms, i.e., CafeNet and BCNet.
However, since EKG can employ well-trained networks which are not allowed
for supernet-based algorithms, it can overcome even CafeNet and BCNet. For
example, when using BYOL [10], which is the best among available Tensorflow-
based ResNet-50, the top-1 accuracy of EKG was improved up to 76.6% without
cost increase. Therefore, if a better pre-trained network is released, EKG will be
able to overwhelm the supernet in performance.

For further analysis, the GPU hours-accuracy plot is given in Fig. 6, together
with the results for ResNet-50. The cost of pruning and fine-tuning ResNet-50
with EKG is about 315 GPU hours, which is much lower than the other meth-
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Fig. 6. Performance analysis for ResNet-50 trained on ImageNet. The left plot is the
FLOPs reduction rate-Top-1 accuracy, and the right plot is the GPU hours-Top-1
accuracy

ods with similar performance. In particular, EKG is computationally efficient
because we used just mid-range GPUs mounted on general-purpose worksta-
tions. In other words, EKG democratizes DNNs because it allows more users to
learn high-performance lightweight DNNs.

4.4 Limitation

EKG improves the performance of conventional NAS-based pruning by effec-
tively searching and fine-tuning sub-networks. However, some limitations still
remain. First, as mentioned above, CN looks impractical because it cannot di-
rectly replace performance due to computational complexity. In this paper, we
indirectly induced the sub-network of the smoother loss landscape to be selected,
but additional research is needed on how the CN can be used as a direct metric.
Second, the fact that EKG has not been evaluated in sufficiently many configura-
tions obscures its generalization a little bit. In order to analyze the performance
of EKG more clearly, it is necessary to verify light-weight architectures on a
large dataset or to attach to other search algorithms, e.g., evolutionary search.

5 Conclusion

This paper proposes EKG as an efficient and effective solution for search reward
and fine-tuning strategy, which have been rarely considered in existing NAS-
based pruning approaches. In particular, sub-network evaluation based on loss
landscape fluctuations can reflect generality more accurately than validation
performance which may cause a high risk of overfitting. Furthermore, EKG is
pretty valuable because it can be easily plugged-in to the existing NAS-based
pruning. Despite some unresolved limitations, we expect this paper to provide
meaningful insight to filter pruning researchers. In particular, we pointed out
and corrected the fact that inaccurate validation performance has been adopted
without any doubt.
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