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1 Supplemental Material

1.1 Proofs.

Lemma 1. If a function f : Rn 7−→ Rm is a locally Lipschitz continuous function,
then f is differentiable almost everywhere. Moreover, if f is Lipschitz continuous,
then

∥f∥Lip = sup
x∈Rn

∥∇xf∥2 (1)

where ∥ · ∥2 is the L2 matrix norm.
Proof. Based on Rademacher’s theorem, for the functions restricted to some
neighborhood around any point is Lipschitz, their Lipschitz constant can be
calculated by their differential operator.
Lemma 2. Let W ∈ Rm×n,b ∈ Rm and T (x) = Wx+b be an linear function.
Then for all x ∈ Rn, we have

∇g(x) = WTWx (2)

where g(x) = 1
2∥f(x)− f(0)∥22.

Proof. By definition, g(x) = 1
2∥f(x)− f(0)∥22 = 1

2∥(Wx+ b)− (W0+ b)∥22 =
1
2∥Wx∥22, and the derivative of this equation is the desired result.
Theorem 1. If a matrix U is an orthogonal matrix, such that UTU = I, where
I is a unit matrix, the largest eigenvalues of UTHU and H are equivalent:

σ1(U
THU) = σ1(H), (3)

where the notation σ1(·) indicates the largest eigenvalue of a matrix.
Proof. Because for U−1, we have

(U−1)T(UTHU)(U−1) = (UU−1)TH(UU−1) = H. (4)

⋆ Corresponding author.
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Thus matrix (UTHU) and matrix (H) are similar. The Theorem 1 can be proven
by this matrix similarity.

Exact Lipschitz constant computation is NP-Hard. We take a 2-layer
fully-connected neural network with ReLU activation function as an example to
demonstrate that Lipschitz computation is not achievable in polynomial time.
As we denoted in Method Section, this 2-layer fully-connected neural network
can be represented as

f(W1,W2;x) = (W2 ◦ σ ◦W1)(x), (5)

where W1 ∈ Rd0×d1 and W2 ∈ Rd1×d2 are matrices of first and second layers of
neural network, and σ(x) = max{0, x} is the ReLU activation function.

Proof. To prove that computing the exact Lipschitz constant of Networks is NP-
hard, we only need to prove that deciding if the Lipschitz constant ∥f∥Lip ≤ L
is NP-hard.

From a clearly NP-hard problem:

maxminΣi(h
T
i p)

2 = pTHp (6)

s.t. ∀k, 0 ≤ pk ≤ 1, (7)

where matrix H = Σihih
T
i is positive semi-definite with full rank. We denote

matrices W1 and W2 as

W1 = (h1,h2, · · · ,hd1
), (8)

W2 = (1d1×1,0d1×d2−1)
T, (9)

so that we have

W2diag (p)W1 =

h
T
1p 0 . . . 0
...

...
. . .

hT
np 0 0


T

(10)

The spectral norm of this 1-rank matrix is Σi(h
T
i p)

2. We prove that Eq. 6 is
equivalent to the following optimization problem

maxmin∥W2diag (p)W1∥22 (11)

s.t. p ∈ [0, 1]
n
. (12)

Because H is full rank, W1 is subjective and all p are admissible values for ∇g(x)
which is the equality case. Finally, ReLU activation units take their derivative
within {0, 1} and Eq. 11 is its relaxed optimization problem, that has the same
optimum points. So that our desired problem is NP-hard.
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Algorithm 1 Compute Spectral Norm using Power Iteration

Require: Targeted matrix RM and stop
condition resstop.

Ensure: The spectral norm of matrix
RM, i.e., ∥RM∥SN .

1: Initialize v0 ∈ Rm with a random vec-
tor.

2: while res ≥ resstop do
3: vi+1 ← RMvi

/
∥RMvi∥2

4: res = ∥vi+1 − vi∥2
5: end while
6: return ∥RM∥SN = vT

i+1RMvi

1.2 Power Iteration Algorithm

1.3 Detailed derivation of the gradient.

The derivative of the loss function L w.r.t Wk
B is:

∂L
∂WB

=
∂(LCE)

∂WB
+

∂(LLip)

∂Wk
B

= M− λ

L−1∑
k=1

βk−L(
∥RMk

F ∥SN

∥RMk
B∥SN

)
∂∥RMk

B∥SN

∂Wk
B

≈ M− λ

L−1∑
k=1

βk−L(
∥RMk

F ∥SN

∥RMk
B∥SN

)
∂∥Wk

B∥SN

∂Wk
B

≈ M− λ

L−1∑
k=1

βk−L(
∥RMk

F ∥SN

∥RMk
B∥SN

)uk
1(v

k
1)

T,

(13)

For the third equation:

M−λ

L−1∑
k=1

βk−L(
∥RMk

F ∥SN

∥RMk
B∥SN

)
∂∥Wk

B∥SN

∂Wk
B

≈ M−λ

L−1∑
k=1

βk−L(
∥RMk

F ∥SN

∥RMk
B∥SN

)uk
1(v

k
1)

T,

(14)
we provide the core proof in here, i.e. the first pair of left and right singular

vectors of WB can reconstruct ∂∥WB∥SN

∂WB
precisely. For WB ∈ Rm×n, the spec-

tral norm ∥WB∥SN = σ1(WB) stands for its biggest singular value, u1 and
v1 are correspondingly left and singular vectors. The SVD of WB is WB =
UΣVT . Therefore ∥WB∥SN = eT1 U

T (UΣVT )Ve1, where e1 is the largest
eigenvalue of matrix WT

BWB . Hence ∥WB∥SN = uT
1 WBv1. Thus the derivative

of spectral norm can be evaluated in the direction H: ∂∥W∥SN

∂WB
(H) = uT

1 Hv1 =

trace(uT
1 Hv1) = trace(v1u

T
1 H). The gradient is ∂∥WB∥SN

∂WB
= v1u

T
1 , which sup-

ports the Eq.13.

1.4 ImageNet-C

Sample Visualization of ImageNet-C. In Section 4.4 we evaluate methods
on a common image corruptions benchmark (ImageNet-C) to demonstrate the
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effectiveness of LCR from the perspective of model robustness. As illustrated
in Section 4.4, ImageNet-C [1] consists of 19 different types of corruptions with
five levels of severity from the noise, blur, weather and digital categories applied
to the validation images of ImageNet (see Fig. 1). As the figure presented, it
is natural to introduce the ImageNet-C to measure the semantic robustness of
models. Recently, ImageNet-C indeed has became the most widely acknowledged
dataset for measuring the robustness of models.

Fig. 1. Examples of each corruption type in the image corruptions benchmark. While
synthetic, this set of corruptions aims to represent natural factors of variation like noise,
blur, weather, and digital imaging effects. This figure is reproduced from Hendrycks &
Dietterich (2019).
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