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A Analysis and Discussion

A.1 Model Scaling

In ViTs, the most common method to scale the model is to change the number
of channels, while our SPViT provides another perspective to perform token
pruning for better complexity/accuracy trade-o↵s. We illustrate this superior
e↵ect of SPViT in Figure 8. First, we train several DeiT [25] models with varying
embedding dimensions from 192 to 384. Second, we compress these DeiTs into
ones whose channel has one less head than them. However, these new compressed
models (SPViT-serious) have better accuracy than DeiT original variants with
similar computation. Specifically, the orange line of SPViT-serious is closer to the
upper left corner of the Figure 8 than the original DeiT-serious. For DynamicViT,
we have also observed uniform benefits, but its e�cient models are still slightly
inferior to SPViT.

Fig. 8: Comparison of our SPViT method with model scaling. We prune DeiT
models with embedding dimensions varying from 192 to 384 and compare with
DynamicViT under comparable GFLOPS.

A.2 Progressive Training Sparsity for Each Layer

As a supplement for Figure 7, we show the exact sparsity and accuracy of each
layer for our progressive training in Table 7. We start by adding the token selector
one by one from the 11th layer to the 1st layer. The layer index indicates the
layer before the token selector. Between 6⇠8 and 9⇠11 layer, each layer has
similar accuracy and sparsity, which indicates that these layers can be combined
to one pruning phase with a token selector at the front.
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Layer 1 2 3 4 5 6 7 8 9 10 11
Accuracy 75.7 77.3 79.4 79.5 79.6 79.7 79.7 79.7 79.8 79.8 79.8
Sparsity 0.15 0.17 0.39 0.47 0.64 0.71 0.77 0.85 0.89 0.92 0.93

Table 7: Progressive training sparsity for each layer

A.3 Model Latency on Hardware

We show all model latency results tested on Samsung Galaxy S20 in Table 8.
On the one hand, our models can outperform lightweight models such as DeiT-T
by up to 4.8% with even smaller latency (38ms vs. 44ms). On the other hand,
we are able to reduce the latency of larger models such as DeiT-S by up to 47%
(60ms vs. 113ms) with only 0.46% decrease in accuracy. On LV-ViT-S/M, our
SPViT models show better performance, outperforming DynamicViT on both
latency and accuracy.

Model Method Top-1 Acc. (%) Latency (ms)

Baseline 72.20 44
S2ViTE 70.12 35
DynamicViT 71.85 37

DeiT-T
SPViT (Ours) 72.20 33

SPViT (Ours) 72.10 26

SPViT-256 (Ours) 76.87 36

SPViT-320 (Ours) 77.02 38

Baseline 79.80 113
S2ViTE 79.22 78
IA-RED2 79.10 80

DeiT-S
DynamicViT 79.30 72
SPViT-320 (Ours) 78.65 47

SPViT (Ours) 79.34 60

SPViT (Ours) 77.02 38

Baseline 83.30 148

LV-ViT-S
DynamicViT 83.00 114
SPViT (Ours) 83.10 89

Baseline 84.00 269

LV-ViT-M
DynamicViT 83.61 195
SPViT (Ours) 73.71 152

Table 8: Evaluation results on Samsung Galaxy S20 with a Snapdragon 865
processor.

A.4 Number of Package Tokens.

We insert three soft pruning modules for hierarchical pruning for all models. In
each module, a new package token is generated. We conduct two ways to pass on



SPViT 25

Method Params (M) GFLOPs Top-1 Acc. (%)

Baseline 22.10 4.60 79.80
1 ⇥ Package Token 22.13 2.63 79.26

+ Attention-based Branch 22.13 2.64 79.30
3 ⇥ Package Token 22.13 2.64 79.28

+ Attention-based Branch 22.13 2.64 79.34

Table 9: Package token number comparison on DeiT-S

the package token for subsequent layers: 1) Merge the package token generated
from the current module with the existing one from the last module by element-
wise addition. Therefore, only 1 additional token is added to the input sequence
in total. 2) Concatenate the new package token to the existing ones. Making it
3 additional tokens in total. Table 9 shows a comparison of the two methods.

A.5 Comparison of Di↵erent Token Selector Designs

We analyze the performance of our token selector design by replacing it with
di↵erent operations. More specifically, we replace the original MLP based
pipeline in Eq. (1) and (2) with a convolution-based pipeline: Conv1d !
BatchNorm1d ! GELU . We also evaluated di↵erent activation functions:
RELU and Hardswish. We compare these variants of the token selector on DeiT-
T with a complexity of 0.9 GFLOPs. As shown in Table 10, under the same
training settings, MLP based token selectors outperform convolution-based to-
ken selectors (72.10% vs 71.56%). Furthermore, GELU function outperforms
Hardswish and RELU (71.56% vs. 71.48% vs. 71.13% on Conv1d+3kernel).
However, we can not hastily conclude that MLP and GELU are superior to
convolution and other activation functions. This may be due to di↵erent train-
ing di�culties. Hardswish is harder to converge, so larger epochs may be neces-
sary [31]. Additionally, Conv1d with 1kernel can mimic MLP’s fully connected
layer. The accuracy gap between these two may due to distinct desirable initial
learning rates and schedulers. Result also shows that a larger kernel size may
be preferable (71.34% vs. 71.56% on Conv1d), which can help learn more local
representation. We will further invest in these designs in our future work. More
specifically, train each design under di↵erent training settings and also combine
the advantages of MLP and convolution layers.

A.6 E↵ectiveness of the Token Packaging Technique w/o Class
Token

In many recently proposed vision transformer models, the class token was re-
moved and replaced by doing average pooling on the last output feature to
aggregate representation from all patch tokens [31,106]. This process is similar
to our token packaging technique, where we also apply average pooling on the
removed tokens. We raise a conjecture: Our token packaging technique can be
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Token Selector GFLOPs Top-1 Acc. (%)

MLP+GELU 0.90 72.10

MLP+Hardswish 0.90 71.94
Conv1d+3kernel+RELU 0.90 71.13
Conv1d+3kernel+GELU 0.90 71.56
Conv1d+3kernel+Hardswish 0.90 71.48
Conv1d+1kernel+GELU 0.90 71.34

Table 10: Comparison of di↵erent token selector layers and activation functions

more e↵ective on models that do not rely on the class token. To test our hypoth-
esis, we run a simple experiment by first pre-training a DeiT-T without a class
token, and then applying our method both with and without the token packaging
technique. As shown in Table 11, when training on a DeiT model that contains
a class token, our token packaging technique can improve the performance by
0.12% (72.1% vs. 72.0%). When training on a DeiT model without a class token,
our token packaging technique can improve the performance by 0.23% (70.75%
vs. 70.52%), which verified our assumption.

A.7 Comparison of Di↵erent Batch Sizes

We run our SPViT on DeiT-S with di↵erent batch sizes for ablation. Results in
Table 12 show that accuracy has a slight boost when batch size increases.

A.8 Encoding Redundancy of the Pooling Layer

We make further discussion on Pooling-based ViT (PiT Series). Figure 9 shows
that the attention matrix before and after SPViT retains great similarity, which
enlightens that the encoding redundancy of the pooling-layer mechanism can be
recognized precisely by SPViT.

B Visualization

B.1 Token Pruning Visualization

We further visualize the process of SPViT to describe the performance in the
inference phase and make a comparison between the framework with the token
packaging technique and without it the token packaging technique. As shown in
Figure 10, row 1 and 3 show the results collected from the framework without
token packaging, row 2 and 4 are from the framework with token packaging. Take
row 1 and 2 for example: At phase 1, there is a 7% di↵erence in the left image
groups and 11% in the right ones; At phase 2, 11% di↵erence in the left image
groups and 15% in the right ones; At phase 3, 14% di↵erence in the left image
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Table 11: E↵ectiveness of the token pack-
aging technique w/o class token
Model GFLOPs Top-1 Acc. (%)

DeiT-T 1.30 72.20
SPViT 0.90 72.10
SPViT w/o package token 0.90 71.98
DeiT-T w/o cls token 1.29 71.42
SPViT 0.87 70.75
SPViT w/o package token 0.87 70.52

Table 12: Di↵erent batch size comparison
on DeiT-S

Batch Size GFLOPs Top-1 Acc. (%) Top-5 Acc. (%)

96 2.65 79.31 94.64
128 2.65 79.32 94.64
256 2.64 79.34 94.67

Fig. 9: Illustration of the first atten-
tion matrix at the final block. Upper
figure is the original PiT-S, lower
one is with SPViT.

groups and 18% in the right ones. We can infer token packaging can help to lock
the object instead of the background. And this phenomenon is more obvious in
complex and multi-object images.

Input Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3Input
71.1%56.2%33.8%

72.4%57.7%34.7%

71.2%56.4%34.0%

73.5%58.1%36.2%

73.2%56.6%34.2%

74.0%58.2%34.6%

72.2%56.1%32.9%

73.2%55.8%34.5%

Fig. 10: Visualization of each pruning phase. Row 1 and 3 show the results col-
lected from the framework without token packaging and row 2 and 4 show the
results from the framework with token packaging.

B.2 Self-attention Head Heatmap

Figure 11 shows the heatmaps of informative region detected by each self-
attention head in DeiT-S. Each attention head focuses on encoding di↵erent im-
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age features and visual receptive fields. Therefore, token importance is di↵erent
for each head. This demonstrates the need for obtaining token score individually.

Input Head 1 Head 2 Head 3 Head 4 Head 5 Head 6

Fig. 11: Heatmaps showing the informative region detected by each head in DeiT-
S.

C Main Results

We compare our method with several representative methods including Dynam-
icViT [69], IA-RED2 [64], RegNetY [67], CrossViT [7], VTP [112], ATS [28],
CvT [85], PVT [83], T2T-ViT [104], UP-DeiT [95], PS-ViT [78], Evo-ViT [89],
TNT [34], HVT [65], Swin [49], CoaT [88], CPVT [18], EViT [46], UVC [97],
MD-DeiT [39],and S2ViTE [12]. As shown in Table 13, we report the top-1 accu-
racy and GFLOPs for each model. Note that “*” refers to the results reproduced
with similar GFLOPs for comparison.
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Model Method Params (M) GFLOPs GFLOPs # (% ) Top-1 Acc. (%)

Baseline/192 5.60 1.30 0.00 72.20
Baseline/160* 4.00 0.90 30.77 68.10
NViT-T 6.40 1.30 0.00 73.91
UP-DeiT-T 5.70 1.30 0.00 75.79
MD-DeiT-T 5.70 1.30 0.00 75.06
T2T-ViT-10 5.90 2.13 -63.85 75.00
UVC - 0.64 -50.74 71.3

DeiT-T PVT-Tiny 13.20 2.64 -103.08 75.00
DynamicViT 5.90 0.91 30.00 71.85
PS-ViT 5.60 0.93 28.46 72.00
S2ViTE 4.20 0.95 26.92 70.12
ATS+DeiT/258 10.13 1.50 -15.38 76.90
SPViT (Ours) 5.70 1.00 23.08 72.20

SPViT (Ours) 5.70 0.90 30.77 72.10

SPViT-256 (Ours) 10.16 1.29 0.77 76.87
SPViT-320 (Ours) 15.44 1.30 0.00 77.02

Baseline/384 22.10 4.60 0.00 79.80
Baseline/320* 15.40 3.25 29.35 79.00
Baseline/288* 12.60 2.65 42.39 78.53
Baseline/256* 10.00 2.14 53.48 77.21
HVT-S-1 22.10 2.40 47.82 78.00
S2ViTE 14.60 3.14 31.74 79.22

DeiT-S IA-RED2 - 3.15 31.52 79.10
DynamicViT 22.80 2.91 36.74 79.30
DynamicViT* 22.80 2.71 41.09 79.12
SPViT-320 (Ours) 15.44 2.00 56.52 78.65
SPViT (Ours) 22.13 3.86 16.09 79.80

SPViT (Ours) 22.13 2.64 42.61 79.34

Baseline/384 26.15 6.55 0.00 83.30
Swin-T 29.00 4.50 31.29 81.30
CvT-13/224 20.00 4.50 31.29 81.60
MD-DeiT-S 22.10 4.60 29.77 81.48
CPVT-Small-GAP 23.00 4.60 29.77 81.50
NViT-S 23.00 4.70 28.24 81.22

LV-ViT-S ATS+CvT-21 32.00 5.10 22.14 82.30
T2T-ViT-14 22.00 5.20 20.61 81.50
CrossViT-S 26.70 5.60 14.50 81.00
PVT-Medium 44.20 6.70 -2.29 81.20
CoaT Mini 10.00 6.80 -3.82 80.80
DynamicViT 26.90 4.57 30.22 83.00
SPViT (Ours) 26.17 4.28 34.65 83.10

Baseline/512 55.83 12.67 0.00 84.00
CvT-21/224 32.00 7.10 43.96 82.50
DynamicViT* 57.10 7.35 41.99 83.61
DynamicViT 57.10 8.45 33.31 83.80
RegNetY-8G 39.00 8.00 36.86 81.70
Swin-S 50.00 8.70 31.33 83.00
T2T-ViT-19 39.20 8.90 29.76 81.90
Evo-ViT 87.30 9.07 28.41 81.11
VTP 48.00 10.00 21.07 80.70
ATS+CvT-13/384 20.00 11.70 7.66 82.90

LV-ViT-M T2T-ViT-24 64.10 14.10 -11.29 82.30
TNT-B 66.00 14.10 -11.29 82.80
Swin-B 88.00 15.40 -21.55 83.30
RegNetY-16G 84.00 16.00 -26.28 82.90
CvT-13/384 20.00 16.30 -28.65 83.00
ATS+CvT-21/384 32.00 17.40 -37.33 83.10
DeiT-B 86.60 17.60 -38.91 81.80
CrossViT-B 104.70 21.20 -67.32 82.20
CvT-21/384 32.00 24.90 -96.53 83.30
SPViT (Ours) 55.85 7.32 42.23 83.71

Table 13: Results of di↵erent ViTs on ImageNet-1K. We compare the proposed
SPViT with existing ViT pruning methods under comparable GFLOPs and the
number of parameters. Note that “*” refers to our reproduced results to ob-
tain models with similar GFLOPs for comparison. Negative values in FLOPs
reduction mean FLOP increases. Baseline/160/192/288/384 indicates the em-
bedding dimensions. SPViT-256/320 indicates pruning from DeiT scaling model
of 256/320 embedding dimensions.


