
Supplemental: Soft Masking for
Cost-Constrained Channel Pruning

Ryan Humble1⋆ , Maying Shen2, Jorge Albericio Latorre2, Eric Darve1 , and
Jose Alvarez2

1 Stanford University, Stanford CA 94305, USA
{ryhumble,darve}@stanford.edu

2 NVIDIA, Santa Clara CA 95051, USA
{mshen,jalbericiola,josea}@nvidia.com

1 Experimental settings

We define our networks and pruning operations using PyTorch [8] and run our
experiments across 8 NVIDIA Tesla V100 GPUs using automatic mixed precision
and DDP (distributed data parallel) training.

1.1 ImageNet experiments

For all of the ImageNet experiments, across ResNet50, ResNet101, and MobileNet-
v1, we follow NVIDIA’s ResNet50 training setup [7] with a batch size of 256 per
GPU, a linear learning rate warmup period of 8 epochs, a cosine decay learning
rate schedule [5], and a 90 epoch training time.

We start pruning after Kw = 10 epochs, reach the target Kt = 30 epochs
later at epoch 40, and allow the masks to continue to refine until fixing the
masks for the final Kc = 45 epochs. We recompute the masks every r = 80
steps. (We conduct a small sensitivity study on these hyperparameters later in
the supplementary materials). To ensure a GPU-friendly setting of the masks,

we set P(l) = {i : i%8 = 0, i ≤ C
(l)
in } for every layer but the first two. We prohibit

any pruning of the first convolution by setting P(1) = {3},P(2) = {C(2)
in } and

prohibit any layer pruning by ensuring 0 ̸∈ P(l).
We build the lookup table for ResNet50 and ResNet101 with a batch size of

256 and MobileNet-V1 with a batch size of 512; we assess the latency of the final
pruned networks under these settings as well.

1.2 PASCAL VOC experiments

We use the SSD512 model described in [4], swapping the VGG16 backbone
for a ResNet50 backbone. As in [2], we keep only the first three stages of the
convolutions and change the strides in the third to stage to 1× 1. We then add
6 pairs of feature detection layers as in [4] and the localization and confidence

⋆ Work performed during a NVIDIA internship

https://orcid.org/0000-0001-5854-9117
https://orcid.org/0000-0002-1938-3836
https://orcid.org/0000-0002-7535-6322

2 R. Humble et al.

heads to generate the boxes and their scores. We train for 800 epochs with
a batch size of 16 per GPU, using PyTorch’s SyncBatchNorm to synchronize
the batch normalization statistics. We use a learning rate of 8e-3 for the total
batch size 128, a linear warmup to that rate over 50 epochs, and reduce the rate
by a multiple of 3/8, 1/3, 2/5, 1/10 at 600, 700, 740, 770 epochs respectively. For
network biases, we double the learning rate. We also set the weight decay to 2e-3
except for the batch normalization parameters. We use the SGD optimizer with
a momentum of 0.9

We start pruning after Kw = 60 epochs, reach the target Kt = 250 epochs
later at epoch 310, and allow the masks to continue to refine until fixing the
masks for the final Kc = 350 epochs. We recompute the masks every r = 100
steps. We use the same rules for P(l) as with the ImageNet experiments.

We assess the latency of the final pruned SSD512-ResNet50 at a batch size
of 1 for comparison with other detectors.

2 ResNet50 layer-wise pruning ratios

Since we solve a global resource allocation problem, there are no preset layer-wise
pruning ratios. We therefore analyze the final pruning ratios for each layer to
derive insights into our method. Fig. 1 plots the fraction of channels remaining
in each layer relative to the original unpruned model. Generally, we find that
SMCP prunes heavily in the early layers of the network and preserves more
channels in the later layers of the network and in the second convolution layer
in each residual block throughout (i.e., the conv2 layers).

We also compare our pruning ratios to the EagleEye [3] models of comparable
FLOPs in Fig. 2. The general pattern of pruning heavily early and lighter later
still holds. In particular, at the high pruning ratios, SMCP is able to keep a much
larger number of channels in the later layers of the network, often twice as many
as the EagleEye model, which seems to convey a Top-1 accuracy improvement
as shown in Tab. 1 in the main paper.

3 Pruning schedule hyperparameters

Our algorithm only introduces new additional hyperparameters for the pruning
schedule: the number of steps between recomputing the masks r and the target
schedule defined by (Kw,Kt,Kc). To determine if our results are sensitive to
these choices, we train a ResNet50 model at a 70% reduction while varying r for
a fixed schedule and varying the schedule for fixed r; the results are shown in
Fig. 3. We find that varying the target schedule, from the original schedule of
(10, 30, 45) to (10, 35, 45), (10, 40, 35), (5, 20, 60), (5, 30, 50), has little impact on
the final accuracy and FPS, with Top-1 by at most 0.07% with a FPS difference
at most 46 FPS. Changing r has a much bigger impact. To understand why,
recall that in order to define the knapsack-like optimization problem in Eq.
(6) in the main paper we had to make an approximation T (l)

(
p(l), p(l−1)

)
≈

Supplemental: Soft Masking for Cost-Constrained Channel Pruning 3

T (l)
(
p(l), p(l−1)

)
. Therefore solving the optimization problem less often results

in a worse approximation of the loss landscape and a final model cost that can
vary more from the desired cost. Nonetheless the resulting pruned model is quite
accurate for its cost and lives on a Pareto frontier of possible models of different
costs.

4 Equivalence of Taylor FO importance scores

Theorem 1. For a network composed of Conv-BN-ReLU blocks and without a
mask re-parameterization, the first-order Taylor importance on the batch normal-
ization weight and bias (Taylor-FO-BN [6]) of layer l is equivalent to a first-order
Taylor importance on the weights of the downstream input channel in layer l+1.

γ
(l)
i g

γ
(l)
i

+ β
(l)
i g

β
(l)
i

=
∑
o,r,s

W
(l+1)
o,i,r,sgW (l+1)

o,i,r,s
(1)

Proof. Let the output BN layer be parameterized by γ and β and the following
convolution layer be parameterized by W . Suppose y is the input to the BN layer,
z is the output of the BN layer and x = ReLU(y) is the input to the convolution
layer. From the definition of a batch normalization layer, it follows that the
gradient of the batch normalization weight and bias are given by

gγi
=

∑
m,n

gzi,m,n
ŷi,m,n (2)

gβi =
∑
m,n

gzi,m,n (3)

where ŷ is the value of y after normalization. Then,

γigγi
+ βigβi

=
∑
m,n

(γiŷi,m,n + βi) gzi,m,n
(4)

=
∑
m,n

zi,m,ngzi,m,n
(5)

=
∑
m,n

xi,m,ngxi,m,n (6)

=
∑
o,r,s

Wo,i,r,sgWo,i,r,s
(7)

where the last step proceeds from the definition of the convolution.

Corollary 1. This holds even in the presence of skip connections in architec-
tures like ResNet.

Proof. Suppose for example that there are k BN layers whose outputs z(k) are
added to create z, applied through a ReLU nonlinearity to create x, and then

4 R. Humble et al.

distributed as x(j) = x to j different convolution layers with weights W (j). Using
results from the proof of Theorem 1, we have∑

k

γ
(k)
i g

γ
(k)
i

+ β
(k)
i g

β
(k)
i

=
∑
k,m,n

z
(k)
i,m,ngz(k)

i,m,n
(8)

=
∑
k,m,n

z
(k)
i,m,ngzi,m,n

(9)

=
∑
m,n

zi,m,ngzi,m,n
(10)

=
∑
m,n

xi,m,ngxi,m,n
(11)

=
∑
j,m,n

x
(j)
i,m,ngx(j)

i,m,n
(12)

=
∑

j,o,r,s

W
(j)
o,i,r,sgW (j)

o,i,r,s
(13)

where we use gradient rules for both the addition and ReLU operations to sim-
plify.

Corollary 2. Theorem 1 also holds under hard masking (masking without the
STE) and for unpruned channels under soft masking. For pruned channels under
soft masking, γigγi + βigβi = 0 since it is the sparse weights that determine the
gradient of input feature map but the dense weights receive a dense gradient
update.

5 Exploding gradients without batch normalization
scaling

Let’s consider the popular Conv-BN pattern, with weights W,γ, β and statistics
µ(t), σ(t) at step t. Suppose that a fraction 1 − α of the input channels are
pruned at the end of one training step. During the next training step, there are
fewer non-zero weights, which can intuitively cause the batch variance to shrink:
σ(t+1) < σ(t). This does not affect the forward pass significantly, in that the
output of the BN layer is still roughly N

(
β, γ2

)
, but it affects the gradients

quite noticeably. In fact, this causes the gradients flowing to the remaining,
unpruned channels to be boosted quite significantly as α nears 1.

Concretely, let the Conv-BN pair be characterized by z = W ∗x, ẑ = z−µ
σ , y =

γẑ + β. The gradient to the intermediate feature map z is equal to

gzo,h,w
=

γo
σo

(
gyo,h,w

− 1

S
gβo

− 1

S
ẑo,h,wgγo

)
(14)

where S is the size of each channel in the feature map y. When σo shrinks, the
gradient magnitude is inversely increased, causing gzo,h,w

at time t + 1 to be

Supplemental: Soft Masking for Cost-Constrained Channel Pruning 5

roughly a factor of st = σ(t)/σ(t+1) larger than it was at time t. In the extreme
case with α → 1, we can get exploding gradients, with a degeneracy at α = 1
which corresponds to layer pruning.

6 Derivation of the cost-constrained optimization
problem

We start from the idea cost-constrained network objective for neural network
f : X → Y

argmin
W

L (W,D) s.t. T (f(W,xi)) ≤ τ (15)

where L is the network loss function, W = {W (l)} are the network’s weights,
D = {(xi, yi)} is the training set, T is the network’s cost function, and τ is the
cost constraint. Using the input channel masks M = {m(l)} and sparse weights

W̃ (l) = W (l) ⊙ m(l), as described in Sec. 3.1 in the main paper, we get a joint
optimization problem over the weights and masks

argmin
W,M

L
(
W̃ ,D

)
s.t. T (M) ≤ τ (16)

where the cost constraint is now only a function of the masks. This is a com-
binatorially hard discrete optimization problem over the masks, so to make it
tractable, we make several changes. First, we replace the loss minimization ob-
jective with an importance maximization objective and linearize it with a per-

channel importance score I(l)
i defined in Eq. (3) in the main paper. This assumes,

that despite the nonlinearities of f , the importance score I(l)
i is a good approxi-

mation of the effect of removing that channel from the network. This makes the
objective linear in the masking variables:

argmax
M

L∑
l=1

C
(l)
in∑

i=1

I(l)
i m

(l)
i s.t. T (M) ≤ τ (17)

Second, we assume the cost function T is layer-wise separable into constituent
cost functions T (l) that depend only on the number of input and output channel
masks for that layer. The output channel mask is defined by the input channel
mask of the downstream layer. This yields

argmax
M

L∑
l=1

C
(l)
in∑

i=1

I(l)
i m

(l)
i (18)

s.t.

L∑
l=1

T (l)
(∥∥∥m(l)

∥∥∥
1
,
∥∥∥m(l+1))

∥∥∥
1

)
≤ τ

Lastly, we add the additional constraint on the allowable values for the number
of input channels,

∥∥m(l)
∥∥
1
∈ P(l), to get Eq. (5) in the main paper.

6 R. Humble et al.

6.1 Skip connections

For architectures that have skip connections or other structural branching fea-
tures, the optimization problem in Eq. (5) in the main paper needs one additional
constraint. Specifically, all layers that share the same input channels must prune
identically to one another. For example, in a ResNet bottleneck block that per-
forms downsampling, both the downsample convolution and the first convolution
in the branch share the same input channels. Therefore, their masks m(down) and
m(conv1) must be equal to each. More formally, let gk be a group of layers that
share input channels. Then, we must add the constraint

m(l) = m(gk) ∀l ∈ gk (19)

for every group gk of layers in the network. For G = {gk}, the optimization
problem reduces to choice of masks over each group instead of each layer

argmax
M

|G|∑
k=1

C
(gk)

in∑
i=1

∑
l∈gk

I(l)
i

m
(gk)
i (20)

s.t.

|G|∑
k=1

∑
l∈gk

T (l)
(∥∥∥m(gk)

∥∥∥
1
,
∥∥∥m(l+1))

∥∥∥
1

)
≤ τ∥∥∥m(gk)

∥∥∥
1
∈

⋃
l∈gk

P(l)

m(l) = m(gk) ∀l ∈ gk

where we decouple the cost impacts of masks in consecutive layers as in Eq. (6)
in the main paper. This is a simply a generalization of Eq. (5) in the main paper
where we consider groups of layers together instead of each layer individually.

7 Cost-constrained channel pruning as multiple-choice
knapsack

Our cost-constrained resource allocation problem in Eq. (6) in the main paper is
an example of a general class called the multiple-choice knapsack problem of [9].
We now show this connection explicitly. We start with Eq. (6) in the main paper,
reproduced here for readability,

max
p(2),...,p(L)

L∑
l=1

p(l)∑
i=1

I(l)
(i)

s.t.

L∑
l=1

T (l)
(
p(l), p(l+1)

)
≤ τ

p(l) ∈ P(l).

Supplemental: Soft Masking for Cost-Constrained Channel Pruning 7

Now, we define

vl,j =

j∑
i=1

I(l)
(i) (21)

cl,j = T (l)(j, p(l+1)) (22)

xl,j = 1
(
j = p(l)

)
(23)

where 1(·) is the indicator function. This yields the the equivalent optimization
problem

max
x

L∑
l=1

nl∑
j=1

vl,jxl,j (24)

s.t.

L∑
l=1

nl∑
j=1

cl,jxl,j ≤ τ

xl,j ∈ {0, 1},
nl∑
j=1

xl,j = 1

∑
j∈P(l)

xl,j = 1

where nl = C
(l)
in is the maximum number of input channels for layer l. By

trimming the problem to only the values vl,j and costs cl,j where j ∈ P(l), we
recover the general form of the multiple choice knapsack problem shown in Eq.
(7) in the main paper.

8 Solving the multiple-choice knapsack problem

The standard method for solving the classic 0-1 knapsack problem is a dy-
namic programming algorithm. For the multiple-choice knapsack problem [9],
Dudziński and Walukiewicz [1] define a similar dynamic programming solution.
It requires integer costs cl,i, C ∈ Z≥0 and has solution runtime complexity O(nC)
where n =

∑
g nl and space complexity O(GC) (in order to recover the items

used) when cl,i, C ∈ Z≥0. When the costs are not integer or are incredibly
large integers, this becomes intractable unless a scaling and rounding step is
performed. Even still, for problems with very sparse values vl,i and costs cl,i,
the dynamic programming approach is inefficient. We instead solve the MCK
problem using a GPU-implemented generalization of the meet-in-the-middle al-
gorithm used for the classic 0-1 knapsack problem. The full algorithm is defined
in Algorithm 1. The benefit of this approach is we only store feasible values
and costs and aggressively reject suboptimal solutions with the condense step.
However, the runtime and space complexities are asymptotically much worse in
general, as shown in Theorem 2.

8 R. Humble et al.

Theorem 2. The meet-in-the-middle algorithm in Algorithm 1 has worst case
runtime complexity O

(
LBL log(B)

)
and space complexity O

(
BL

)
where B =

maxl nl and we assume B ≫ L.

Proof. We start by deriving the complexity of the merge function for a group of
size M and another of size N .

Tmerge(M,N) = O(MN) + Tcondense(MN) (25)

= O(MN log(MN)) (26)

since the condense function requires and is dominated by a sort of the values.

The runtime complexity of the full multiple-choice knapsack solver can be
bounded by assuming every group takes the maximum size B. Without loss of
generality, we also assume L = 2j for some j. Then, for a multiple-choice knap-
sack (MCK) problem with L groups of size B, we have

Tmck(L,B) =Tmck

(
L

2
, B2

)
+

L

2
Tmerge(B,B) (27)

≤Tmck

(
1, B2j

)
(28)

+

j∑
i=1

L

2i
Tmerge

(
B2i−1

, B2i−1
)

(29)

≤O
(
B2j

)
(30)

+

j∑
i=1

L

2i
2iO

(
B2i log(B)

)
(31)

≤O
(
LBL log(B)

)
(32)

since the merge can create a new item for every combination of items in the two
merging groups (squaring the size of the group), Tmck(1, B) = O(B), and the
runtime is dominated by the final merge of groups.

The space complexity proceeds similarly, except for the log factor which is
due to the sort in the condense step.

Corollary 3. The runtime and space complexity of Algorithm 1 can be improved
to O

(
LBL/2 log(B)

)
and O

(
BL/2

)
respectively by replacing the final merge with

a O
(
BL/2 log

(
BL/2

))
sort and sweep over the last two groups.

Since the multiple-choice knapsack problem reverts to the original knapsack
problem under B = 2, vl,1 = 0, cl,1 = 0, Algorithm 1 recovers the runtime and
space complexities of the standard meet-in-the-middle knapsack solver, which
are O

(
L2L/2

)
and O

(
2L/2

)
respectively, using the sort and sweep improvement

of Corollary 3.

Supplemental: Soft Masking for Cost-Constrained Channel Pruning 9

Algorithm 1 MCK meet-in-the-middle solver

Input: Number of groups L, group value vectors vl, group cost vectors cl ≤ C, and
capacity C
Output: Best value vbest, best cost cbest, and used items kl = i s.t. xl,i = 1.

function MCK(v, c, C)
L← len(v)
kl ← 0 ∀l ∈ [L]
if L == 1 then

k1 ← argmaxi v1,i
return v1,k1 , c1,k1 , k

end if
for l ∈ range(1, ⌊L/2⌋) do

vl, cl, ul, uL−l+1

← MERGE(vl, cl, vL−l+1, cL−l+1, C)
end for
v ← {v1, . . . , v⌈L/2⌉}, c← {c1, . . . , c⌈L/2⌉}
vbest, cbest, krest ← MCK(v, c, C)
for l ∈ range(1, ⌊L/2⌋) do

i← kl
kl ← ul,i

kL−l+1 ← uL−l+1,i

end for
return vbest, cbest, k

end function
function merge(v1, c1, v2, c2, C)

vnew,N(i−1)+j ← v1,i + v2,j ∀i ∈ [M], j ∈ [N]
cnew,N(i−1)+j ← c1,i + c2,j
vnew, cnew, u← CONDENSE(vnew, cnew, C)
u1 ← ⌊ u

N
⌋

u2 ← u%N
return vnew, cnew, u1, u2

end function
function condense(v, c, C)

u← {i : vi > vj ∀j ̸= i s.t. cj ≤ ci}
∪{i : vi ≥ vj ∀j ̸= i s.t. cj = ci}

u← u ∩ {i : ci ≤ C}
return {vi : i ∈ u}, {ci : i ∈ u}, u

end function

10 R. Humble et al.

Method Accuracy Solve time (s)

DP (s = 10) 1 decimal < 1 second
DP (s = 100) 2 decimal ∼ 6 second
DP (s = 500) 2− 3 decimals ∼ 30 second
DP (s = 1000) 3 decimals ∼ 70 second
Algorithm 1 machine roundoff < 1 second

Table 1. Representative time to solve Eq. (6) in the main paper under different set-
tings. DP is our implementation of the algorithm in [1].

9 Multiple-choice knapsack solve effort

We present representative timings for the solve effort of the meet-in-the-middle
multiple-choice knapsack solver in Algorithm 1. When pruning a ResNet50, there
are 38 pruning groups (see Sec. 6.1 for more details). There are a total of 22, 531
input channels, including the 3 image channels of the first convolution layer.
The largest layer has 2048 input channels. Restricting the possible masks to 8x
for GPU tensorcores, we test the solution time for both the meet-in-the-middle
solver in Algorithm 1 and an implementation of the dynamic programming (DP)
approach [1]. We use a representative latency capacity of 255.4, in units of mil-
liseconds, and randomly choose the current mask settings of the network. To
use the DP approach, we define a scaling factor s and convert all costs to in-
tegers according to ⌊cl,is⌋. For s = 10d, the DP solution will be correct to d
digits; Algorithm 1 is correct up to machine roundoff. The solution times are
shown in Tab. 1.

10 Allowing layer pruning

In deriving our optimization problem in Eq. (5) in the main paper, as shown
in Sec. 6, we had to assume that the importance and cost functions were layer-
wise separable, meaning the input mask m(l) for layer l only affects layer l and
the layer(s) immediately upstream. This assumption is obviously broken when
we allow layer pruning, m(l) = 0, as pruning the entire layer effectively prunes
all layers in that branch of the network.

Nonetheless, we ran several experiments where we allowed layer pruning to
occur, if so chosen by the knapsack solver, when pruning the ResNet50 from the
EagleEye [3] baseline. The results are shown in Fig. 4. Breaking the theoretical
layer-wise separability assumption yields poor experimental results.

Supplemental: Soft Masking for Cost-Constrained Channel Pruning 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

conv1
layer1.0.conv1

layer1.0.conv2

layer1.0.conv3

layer1.1.conv1

layer1.1.conv2

layer1.1.conv3

layer1.2.conv1

layer1.2.conv2

layer1.2.conv3

layer1.0.downsample.0

layer2.0.conv1

layer2.0.conv2

layer2.0.conv3

layer2.1.conv1

layer2.1.conv2

layer2.1.conv3

layer2.2.conv1

layer2.2.conv2

layer2.2.conv3

layer2.3.conv1

layer2.3.conv2

layer2.3.conv3

layer2.0.downsample.0

layer3.0.conv1

layer3.0.conv2

layer3.0.conv3

layer3.1.conv1

layer3.1.conv2

layer3.1.conv3

layer3.2.conv1

layer3.2.conv2

layer3.2.conv3

layer3.3.conv1

layer3.3.conv2

layer3.3.conv3

layer3.4.conv1

layer3.4.conv2

layer3.4.conv3

layer3.5.conv1

layer3.5.conv2

layer3.5.conv3

layer3.0.downsample.0

layer4.0.conv1

layer4.0.conv2

layer4.0.conv3

layer4.1.conv1

layer4.1.conv2

layer4.1.conv3

layer4.2.conv1

layer4.2.conv2

layer4.2.conv3

layer4.0.downsample.0

1

Fraction of Channels Remaining

SMCP-80%

SMCP-50%

SMCP-30%

SMCP-25%

Fig. 1. Fraction of remaining channels per layer for SMCP models on the ImageNet
classification dataset.

12 R. Humble et al.

0 0.5 1 1.5 2 2.5 3 3.5 4

conv1
layer1.0.conv1

layer1.0.conv2

layer1.0.conv3

layer1.1.conv1

layer1.1.conv2

layer1.1.conv3

layer1.2.conv1

layer1.2.conv2

layer1.2.conv3

layer1.0.downsample.0

layer2.0.conv1

layer2.0.conv2

layer2.0.conv3

layer2.1.conv1

layer2.1.conv2

layer2.1.conv3

layer2.2.conv1

layer2.2.conv2

layer2.2.conv3

layer2.3.conv1

layer2.3.conv2

layer2.3.conv3

layer2.0.downsample.0

layer3.0.conv1

layer3.0.conv2

layer3.0.conv3

layer3.1.conv1

layer3.1.conv2

layer3.1.conv3

layer3.2.conv1

layer3.2.conv2

layer3.2.conv3

layer3.3.conv1

layer3.3.conv2

layer3.3.conv3

layer3.4.conv1

layer3.4.conv2

layer3.4.conv3

layer3.5.conv1

layer3.5.conv2

layer3.5.conv3

layer3.0.downsample.0

layer4.0.conv1

layer4.0.conv2

layer4.0.conv3

layer4.1.conv1

layer4.1.conv2

layer4.1.conv3

layer4.2.conv1

layer4.2.conv2

layer4.2.conv3

layer4.0.downsample.0

1

Ratio of Remaining Channels Compared to Comparable EagleEye Model

SMCP-80%

SMCP-50%

SMCP-30%

SMCP-25%

Fig. 2. Relative comparison of number of remaining channels per layer for SMCP and
EagleEye ResNet50 models on the ImageNet classification dataset. Each SMCP model
is compared to the EagleEye model of comparable FLOPs.

Supplemental: Soft Masking for Cost-Constrained Channel Pruning 13

2,300 2,400 2,500 2,600 2,700 2,800 2,900 3,000 3,100

74.4

74.6

74.8

75

75.2

75.4

0.5×
0.8×

1.3×

2×

Original10− 35− 45
10− 40− 35

5− 20− 605− 30− 50

FPS

T
op

-1
A
cc
u
ra
cy

(%
)

Fig. 3. Ablation study for SMCP’s pruning schedule hyperparameters. Baseline model
is EagleEye’s ResNet50 model [3]. Multiple denotes changing the rewiring frequency
by the given multiple. Triples denote changing the target schedule hyperparameters.
FPS measured on an NVIDIA TITAN V GPU.

2,000 2,500 3,000 3,500 4,000

71

72

73

74

75

76

FPS

T
op

-1
A
cc
u
ra
cy

(%
)

SMCP
With layer pruning

Fig. 4. Comparison of allowing versus disallowing layer pruning at high pruning ratios
for ResNet50 on the ImageNet classification dataset using a latency cost constraint.
Baseline model is from EagleEye [3]. Accuracy against FPS speed shows the disad-
vantage of allowing layer pruning. Top-right is better. FPS measured on an NVIDIA
TITAN V GPU.

14 R. Humble et al.

References

1. Dudziński, K., Walukiewicz, S.: Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research 28(1), 3–21 (1987) 7,
10

2. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,
Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for
modern convolutional object detectors. In: CVPR. pp. 3296–3297 (2017) 1

3. Li, B., Wu, B., Su, J., Wang, G.: Eagleeye: Fast sub-net evaluation for efficient
neural network pruning. In: ECCV. pp. 639–654 (2020) 2, 10, 13

4. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD:
single shot multibox detector. In: ECCV. vol. 9905, pp. 21–37 (2016) 1

5. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017) 1

6. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation
for neural network pruning. In: CVPR. pp. 11264–11272 (2019) 3

7. NVIDIA Deep Learning Examples: ResNet50 v1.5 For Pytorch. https://github.
com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Classification/

ConvNets/resnet50v1.5/README.md, accessed: 2021-11-15 1
8. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Wallach,
H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.)
NeurIPS 2019. pp. 8024–8035 (2019) 1

9. Sinha, P., Zoltners, A.A.: The multiple-choice knapsack problem. Oper. Res. 27(3),
503–515 (1979) 6, 7

https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Classification/ConvNets/resnet50v1.5/README.md
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Classification/ConvNets/resnet50v1.5/README.md
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Classification/ConvNets/resnet50v1.5/README.md

	Supplemental: Soft Masking for Cost-Constrained Channel Pruning

