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Abstract. Structured channel pruning has been shown to significantly
accelerate inference time for convolution neural networks (CNNs) on
modern hardware, with a relatively minor loss of network accuracy. Re-
cent works permanently zero these channels during training, which we
observe to significantly hamper final accuracy, particularly as the frac-
tion of the network being pruned increases. We propose Soft Masking for
cost-constrained Channel Pruning (SMCP) to allow pruned channels to
adaptively return to the network while simultaneously pruning towards
a target cost constraint. By adding a soft mask re-parameterization of
the weights and channel pruning from the perspective of removing input
channels, we allow gradient updates to previously pruned channels and
the opportunity for the channels to later return to the network. We then
formulate input channel pruning as a global resource allocation problem.
Our method outperforms prior works on both the ImageNet classification
and PASCAL VOC detection datasets.
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1 Introduction

Deep neural networks have rapidly developed over the last decade and come to
dominate many traditional algorithms in a wide range of tasks. In particular,
convolutional neural networks (CNNs) have shown state-of-the-art results on a
range of computer vision tasks, including classification, detection, and segmenta-
tion. However, modern CNNs have grown in size, computation, energy require-
ment, and prediction latency, as researchers push for accuracy improvements.
Unfortunately, these models can now easily exceed the capabilities of many edge
computing devices and requirements of real-time inference tasks, such as those
found in autonomous vehicle applications.

Since neural networks have been shown to be heavily over-parameterizered
[52], one popular method for reducing the computation and prediction latency is
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Fig. 1. Top-1 accuracy tradeoff curve for pruning ResNet50 on the ImageNet classi-
fication dataset using a latency cost constraint. Baseline is from PyTorch [34] model
hub. Accuracy against FPS speed (left) and FLOPs (right) show the benefit of our
method, particularly at high pruning ratios. For FPS, top-right is better. For FLOPs,
top-left is better. FPS measured on an NVIDIA TITAN V GPU.

to prune (or remove) portions of the neural network, ultimately yielding a model
with fewer parameters. Due to the strict requirements for many deployment
applications, a large fraction of the parameters often must be removed; we focus
on this regime, which we refer to as the high pruning ratio regime. Towards
this aim, many pruning methods have been proposed to identify and remove
those parameters that are least important for inference [1,15,27,20,29,47,51].
Since each layer of the network involves a different computation and associated
computational burden, each parameter does not contribute equally to the final
network inference cost, typically measured as FLOPs or latency, so more recent
works have focused on pruning the network subject to explicit cost constraints.
To maximize inference speedup on modern hardware (e.g., GPUs), these works
largely focus on channel pruning [21,27,29,37,42,50].

However, in general, existing pruning works permanently remove the network
parameters along these channels, zeroing the network weights and preventing the
channel from being used during the rest of training. Particularly at high pruning
ratios, where a significant fraction of the total channels in the network must be
removed, the decisions on which channels to remove early during pruning are
potentially myopic. Moreover, as a large number of channels are removed, the
gradients to the remaining channels in each layer are significantly disrupted and
can grow quite substantially due to the batch normalization layers ubiquitous in
modern CNNs. This interferes with both network training and the identification
of which further channels to remove.

In this work, we introduce a novel channel pruning approach for neural net-
works that is particularly suitable for large pruning ratios. The core of our ap-
proach relies on regularly rewiring the network sparsity, through soft masking
of the network weights, to minimize the accuracy drop for large pruning ratios.
The introduction of soft masking allows previously pruned channels to later be
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restored to the network, instead of being permanently pruned. Additionally, to
mitigate the effect of large gradient magnitudes caused by removing many chan-
nels, we incorporate a new batch normalization scaling approach. Lastly, we
formulate channel pruning under a cost constraint as a resource allocation prob-
lem and show it can be efficiently solved. All together, we refer to this method
as Soft Masking for cost-constrained Channel Pruning (SMCP).

Our main contributions are:

1. We demonstrate that a network’s channel sparsity can be adaptively rewired,
using a soft mask re-parameterization of the network weights, and that this
requires channel pruning to be performed along input, instead of output,
channels, see Sec. 3.1.

2. We propose a new scaling technique for the batch normalization weights to
mitigate a gradient instability at high channel pruning ratios, see Sec. 3.2.

3. We perform channel pruning subject to a cost constraint by encoding it as
a resource allocation problem, which automatically allocates cost across the
network instead of relying on manual or heuristic-based layer-wise pruning
ratios. We show this allocation problem is a variant of the classic 0-1 knap-
sack problem, called the multiple-choice knapsack problem [38], which can
be efficiently solved for our experiments, see Sec. 3.3.

4. We analyze our method’s accuracy and cost improvements for the ImageNet
and PASCAL VOC datasets for ResNet, MobileNet, and SSD architectures.
We outperform prior pruning approaches, as shown in Fig. 1 and more exten-
sively in Sec. 4. In particular, at high pruning ratios for ResNet50/ResNet101
on ImageNet, SMCP can achieve up to an additional 20% speedup at the
same Top-1 accuracy level or up to a 0.6% Top-1 accuracy improvement at
the same FPS (frames per second). SMCP can also prune an SSD512 with
a ResNet50 backbone to achieve a speedup of 2.12×, exceeding the FPS
(frames per second) of the smaller SSD300-ResNet50 model by 12%, while
simultaneously improving on the mAP of the baseline model.

2 Related Work

2.1 Soft pruning

Most pruning methods start with a dense pretrained network and prune itera-
tively over a schedule to obtain a final network with the desired cost, where at
each pruning step parameters are permanently zeroed (or masked). This effec-
tively limits the model capacity as pruning occurs. Stosic and Stosic [39] argue
that preserving the larger model capacity is critical to sparse model training
by forming new paths for optimization that are not available for permanently
pruned networks; they suggest it is important to allow gradient flow to previously
pruned parameters and to rewire the sparsity occasionally.

Along these lines, several works have proposed soft pruning methods where
parameters can be pruned and later unpruned if desirable. He et al. [14] zero
weights during pruning but allows gradients to update them in an effort to
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maintain model capacity. Dettmers and Zettlemoyer [6], Evci et al. [8], Mostafa
and Wang [31], and Wortsman et al. [43] allow previously pruned weights to
be regrown. Kusupati et al. [19] used a soft thresholding operator to achieve
state-of-the-art results for unstructured and low-rank structured pruning. Kang
and Han [18] introduces soft channel pruning by adding a differentiable mask in
the batch normalization layers; however, their approach is limited to an implicit
cost constraint on the total number of neurons. Our approach though is most
similar to Guo et al. [10], Lin et al. [23], De Jorge et al. [17], and Zhou et al. [53],
which explicitly or implicitly use the Straight-through Estimator (STE) [2] to
adaptively prune parameters during training. The first three target unstructured
sparsity, and the last targets N:M structured sparsity. In our work, we extend
the use of the STE to channel pruning, show this requires pruning to be formu-
lated along input channels, and embed this soft masking into a general-purpose,
explicit cost-constrained formulation.

2.2 Cost-constrained and structured pruning

The goal of most pruning methods is to maximize network accuracy subject to
low memory, computation, and/or latency requirements. Although unstructured
sparsity approaches have proven to be very successfully in removing upwards of
95% of weights without affecting network accuracy [12], modern hardware has
poor support for unstructured sparsity and therefore this rarely translates to ac-
tual speedup. Therefore, it is common to choose a pruning sparsity structure that
can actually be accelerated in hardware, typically channel pruning for CNNs.
There is now some hardware support for other sparsity structures, such as the
N:M structured sparsity of [28], but we limit our focus to channel pruning in this
work. Both Li et al. [21] and Yang et al. [45,46] select the best constraint-abiding
network from a large number of candidate networks, which can be prohibitively
expensive. Yu and Huang et al. [50], Tan et al. [41], and Wu et al. [44] pose
cost-constrained optimization problems but use a greedy selection or cost-aware
importance score to approximately select the best channels to prune. Chen et
al. [3] presents a Bayesian optimization approach to determine compression hy-
perparameters that satisfy a cost constraint while maximizing network accuracy.
Liu et al. [26] linked network pruning to Neural Architecture Search (NAS),
arguing that the resulting pruned architectures are the novel contribution in-
stead of the trained weights themselves. However, most NAS methods, such as
those in [5,7,40], remain more computationally expensive than network pruning
approaches. Our approach is most similar to the concurrent work of Shen et
al. [37], called HALP, which also poses a cost-constrained resource allocation
problem. There are however several major differences. First, we reduce our allo-
cation problem to the multiple choice knapsack problem [38] and solve it with
a meet-in-the-middle algorithm, which provides both optimality guarantees and
efficient (< 1 second) solutions for general cost-constraints. HALP solves their
allocation problem with a custom augmented knapsack solver, which gives no
optimality guarantees and requires significant extra computation (1+ minute
for each pruning step on ResNet50 [13], even after a large GPU-specific neuron
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grouping step). Second, our method uses soft input channel masking as opposed
to the permanent output channel pruning of HALP; we show this change alone
yields performance gains in Sec. 4.3. Lastly, we use a new batch normalization
scaling technique to stabilize training at high pruning ratios.

2.3 Pruning impact on batch normalization layers

Channel pruning can have a significant impact on the batch normalization statis-
tics, which therefore strongly affects the network gradients to the remaining
channels. This effect is particularly pronounced at high pruning ratios, since a
large number of channels are being removed from most layers. Several pruning
methods note this phenomenon and describe mitigation strategies. Li et al. [21]
demonstrated the need to update the batch normalization statistics after prun-
ing, as they can be significantly impacted, before evaluating possible pruned
candidate networks. This approach does not however alleviate the issue of large
gradients. Instead of immediately removing pruned weights and incurring the
disruption, Wang et al. [42] slowly regularized them away, noticing significant
performance gains particularly at high pruning ratios. They do not connect this
to a sudden change in batch normalization statistics and gradients caused by
pruning. They also use a non-gradient based importance so the impact on the
importance of the remaining parameters is somewhat subdued. Since we are
adaptively adjusting the sparsity and want to preserve the ability for pruned
weights to become later unpruned, we do not want to regularize away pruned
weights. We instead adopt a scaling technique on the batch normalization weights
to stabilize training at high pruning ratios.

2.4 Parameter importance scoring

In order to decide which parameters of the network can be pruned while least
harming network accuracy, most pruning methods define an importance for each
parameter (or set of parameters) that approximates the effect of removal on
the network’s loss. Many importance scores have been proposed, largely falling
into three groups: (i) based on weight magnitude [1,11,22,25,47,51]; (ii) based
on a reconstruction-based objective [15,27]; and (iii) based on network gradi-
ents [20,29,30]. We adopt the Taylor first-order importance [29] due to its com-
putational simplicity and its strong correlation with the true impact on the
network’s loss.

3 Soft masking for cost-constrained channel pruning

We propose a novel input channel pruning approach targeted towards high prun-
ing ratios. Our method is initialized with a pretrained CNN model, and the de-
sired network cost function and target cost constraint. We first re-parameterize
the network weights with input channel masking variables, as shown in Sec. 3.1,
to enable adaptive channel pruning. Then, after a warmup period, we iteratively
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Fig. 2. Input channel pruning of a convolutional layer. Removing an input channel

from weight W (l) ∈ RC
(l)
out×C

(l)
in ×K(l)×K(l)

in layer l removes the corresponding channel
in the input feature map X and the corresponding output channel in the previous
weight W (l−1). The shape of the output feature map Y is unaffected.

prune every r minibatches by solving a resource allocation optimization prob-
lem, discussed in Sec. 3.3, to update the channel masks. After each mask update,
we apply the batch normalization scaling described in Sec. 3.2, which stabilizes
training at high pruning ratios. Finally, we fix the masks for a cooldown and
fine-tuning period. We present the full algorithm and pseudocode in Sec. 3.4.

3.1 Soft input channel pruning

We specifically consider input channel pruning, as previously done in [15] and
shown in Fig. 2, where we mask and later remove input channels to spar-
sify the CNN. As we will shortly show, channel pruning with a soft mask re-
parameterization requires it to be done along input channels, as this approach
does not work when performing output channel pruning. This is a departure from
the many output channel pruning approaches. From a global view of network
sparsity, pruning one layer’s input channel is equivalent to pruning the previous
layer’s output channel; however, the approaches are distinct when considering
the effect on each individual layer.

For soft input channel masking, we consider a neural network with weights

W = {W (l)}, where W (l) ∈ RC
(l)
out×C

(l)
in ×K(l)×K(l)

is the weight for layer l of the

network and has C
(l)
in input channels and C

(l)
out output channels. To allow input

channels to be pruned and later unpruned, we introduce an input channel mask

m(l) ∈ {0, 1}C
(l)
in for each layer l. Using these masks, we re-parameterize the

weights so that the network’s sparse weights are

W̃ (l) = W (l) ⊙m(l). (1)

where m(l) is broadcasted to match the shape of W (l). Instead of permanently
zeroing a channel when pruning, the underlying network weights can be preserved
and merely the masks set to zero. This has two distinct advantages. First, it helps
preserve the full capacity of the original model while training towards a sparse
model. Second, by allowing channels to be restored to their original values at a
later time, poor early decisions on where to allocate the sparsity across the layers
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can be undone. This is particularly important for high pruning ratios where a
large portion of the network’s channels must be removed.

As written though, our masking definition would define the gradient with
respect to W (l) as gW (l) = g

W̃ (l) ⊙m(l). This masks the gradients as they flow
back to the completely dense weightsW , rendering masked weights unused in the
forward pass and left untouched by the backward pass. Following the argument
by Stosic and Stosic [39] that updating parameters not currently participating
in the forward pass offers additional optimization paths that improve training of
sparse networks, we adopt the Straight-through Estimator (STE) [2]. The STE
has been successfully used in model quantization [35] and Ampere 2:4 structured
pruning [53] for sparse parameter updates. The STE defines the gradient as

gW (l) = g
W̃ (l) , (2)

where gradients on the sparse weights pass straight through to the underlying,
dense weights. Note that we still use the masks when computing the gradient
with respect to the input feature map of the layer.

However, for this STE to have a useful impact in a modern CNN with the
ubiquitious Conv-BN-ReLU pattern, it requires that channel pruning must be
posed as input-oriented. Since g

W̃ (l) is defined by a matrix multiplication using
the input feature map and the gradient of the output feature map, a masked
input channel still receives non-zero gradients, except under a few edge cases. If
we had instead masked output channels, the elements of gW (l) would be either 0
or ∞, depending on the value of the batch normalization bias. Alternatively, if
we instead tried to directly mask the batch normalization weight γ(l) and bias
β(l) to emulate pruning the channel, we would get gγ(l) = gβ(l) = 0 due to the
ReLU. In either of these cases, the gradient gW (l) is not useful.

Finally then, for input channel pruning with soft masking, we define the im-
portance of each input channel, a proxy for the effect of removing this channel on
the network’s loss, according to the group first-order Taylor importance of [29]:

I(l)i =

∣∣∣∣∣∑
o,r,s

W
(l)
o,i,r,sgW (l)

o,i,r,s

∣∣∣∣∣ (3)

where I(l)i is the importance of the ith input channel to layer l. Under certain
conditions, this is in fact equivalent to the first-order batch normalization-based
Taylor importance of [29], as shown in the supplementary materials.

3.2 Batch normalization scaling

When channel pruning at high ratios, there are many layers where a significant
number of channels must be pruned. As a result of pruning these channels, either
by zeroing them out or by applying masking, the subsequent gradient magni-
tudes to the remaining unpruned channels can be excessively large, which we
show in the supplementary materials. We propose a batch normalization scaling
technique that adjusts the batch normalization weight γ(l) of layer l to mitigate
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large gradients and stabilize the network sparsity and training. Specifically, we
scale γ(l) according to the fraction of channels left unpruned by the current input

channel mask m(l) ∈ {0, 1}C
(l)
in

γ(l) ← γ
(l)
orig

∑
i m

(l)
i

C
(l)
in

. (4)

In practice, we always treat γ
(l)
orig as the parameter under optimization and vary

a scaling variable s(l) to adjust the weight used by the network.
Moderating gradient magnitudes is particularly consequential since we em-

ploy the gradient-based importance score shown in Eq. (3). Even without soft
masking and the STE, the large gradients cause importance accumulation in the
remaining channels as pruning iteratively proceeds, artificially inhibiting addi-
tional channels in the layer from being pruned. When employing soft masking
without this scaling technique, the large gradients cause large network sparsity
thrashing. For example, if at one pruning iteration a large number of the chan-
nels are pruned, the importance to every channel, not only those left unpruned,
is boosted by the resulting large gradient magnitudes. At the very next prun-
ing iteration, those channels appear quite important and are restored to the
network, causing other portions of the network to be pruned to still meet the
cost constraint. This can oscillate, inhibiting network convergence and the final
network accuracy. Moreover, for architectures in which pruning entire layers is
possible, such as ResNet due to the skip connections, the infinite gradient mag-
nitudes cause numerical overflow in updating the weights or even calculating the
importance of channels. As shown in our experiments in Sec. 4, the proposed
batch normalization scaling is crucial to overcome these training issues.

3.3 Cost-constrained channel pruning

At each pruning iteration, we seek to both minimize the impact on the net-
work’s loss as a result of pruning and sparsify the network towards the final
cost constraint (e.g., latency constraints). We therefore formulate pruning as a
cost-constrained importance maximization problem

max
m(2),...,m(L)

L∑
l=1

C
(l)
in∑

i=1

I(l)i m
(l)
i (5)

s.t.

L∑
l=1

T (l)
(∥∥∥m(l)

∥∥∥
1
,
∥∥∥m(l+1)

∥∥∥
1

)
≤ τ∥∥∥m(l)

∥∥∥
1
∈ P(l),

where L is the number of layers in the network, layer l has C
(l)
in input channels,

I(l)i is the importance of input channel i of layer l, m(l) ∈ {0, 1}C
(l)
in is the
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input channel mask for layer l, T (l) is the cost function for layer l, τ is the cost
constraint, and P(l) is the set of permitted values for the number of channels

kept by mask m(l). By definition, m
(1)
i = 1 and m

(L+1)
i = 1 since those are the

unprunable inputs and outputs of the network. A complete derivation of Eq. (5)
can be found in the supplementary materials, as well as a discussion on how to
handle skip connections in architectures like ResNet [13].

The final constraint, on the set of permitted values P(l), is optional but use-
ful in several situations. First, it can be used to disallow pruning the entire
layer: by omitting 0 from P(l) we prevent m(l) = 0. As explained in the sup-
plementary materials, layer pruning violates a key assumption of the derivation
of Eq. (5). Second, it can be used to ensure the number of remaining chan-
nels is hardware-friendly, such as 8× multiples for GPU tensorcores [32] with

P(l) = {0, 8, 16, . . . , ⌊C(l)
in /8⌋}.

We can further reduce this to an optimization over only the number of chan-
nels p(l), as the most important channels will always be kept in each layer:

max
p(2),...,p(L)

L∑
l=1

p(l)∑
i=1

I(l)(i) (6)

s.t.

L∑
l=1

T (l)
(
p(l), p(l+1)

)
≤ τ

p(l) ∈ P(l)

where p(l) =
∥∥m(l)

∥∥
1
and I(l)(i) is the ith largest value in I(l). We also approxi-

mated the constraint using the current channel counts p(l) to decouple the cost
impact of masks in consecutive layers, which is required to pose this as an ex-
ample of the following class of optimization problems.

Multiple-choice knapsack problem The optimization problem in Eq. (6)
is an example of a generalization of the classic 0-1 knapsack problem called
the multiple-choice knapsack (MCK) problem [38]. We show this connection
explicitly in the supplementary materials. The MCK problem takes the form

max
x

L∑
l=1

nl∑
i=1

vl,ixl,i (7)

s.t.

L∑
l=1

nl∑
i=1

cl,ixl,i ≤ C

xl,i ∈ {0, 1},
nl∑
i=1

xl,i = 1

where L is the number of groups, group l has size nl, and the items have value vl,i
and cost cl,i ≥ 0. The additional constraint relative to the classic 0-1 knapsack
problem enforces that we select exactly one item from each group.
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Algorithm 1 Soft masking for cost-constrained channel pruning

Inputs: Pretrained network weights W , training set D, total number of epochs E,
pruning schedule (r,Kw,Kt,Kc), target cost τ

1: Initialize masks m(l) = 1
2: Re-parameterize the weights (Eq. (1))
3: Train the network as usual for Kw epochs
4: Calculate the pruning schedule {τe}
5: for epoch e ∈ [Kw, E −Kc) do
6: for step s in epoch e do
7: Perform the forward pass and backward pass, using Eqs. (1) and (2)

8: Calculate and accumulate I(l)
i (Eq. (3))

9: if s%r = 0 then
10: Solve the optimization problem (Eq. (6)) using target cost τe
11: Update the masks m(l) accordingly
12: Scale the BN weights γ(l) (Eq. (4))
13: Reset the accumulated importance
14: end if
15: end for
16: end for
17: Train the network as usual for Kc epochs
18: Apply the masks to the weights permanently
19: return Sparse network weights W

We solve Eq. (7) with a GPU-implemented meet-in-the-middle algorithm,
presented in full in the supplementary materials. Our approach generalizes the
standard meet-in-the-middle algorithm for the classic 0-1 knapsack problem,
does not require integer costs, and very efficiently solves the MCK problem for
our use cases. For example, for a ResNet50 [13], our approach solves the MCK
problem in under 1 second. We present more complete timing details in the
supplementary materials.

3.4 Overall method

We present our full method in Algorithm 1. We start with a pretrained network,
layer-wise cost functions T (l), and a global cost constraint τ . We define our prun-
ing schedule by: (i) Kw: the number of warmup epochs before starting pruning;
(ii) Kt: the number of epochs after the warmup to reach the target cost τ ; (iii)
r: the number of steps between recomputing the channel masks; and (iv) Kc:
the number of cooldown epochs where the masks are kept fixed. During those
Kt epochs to reach the target cost, we define intermediate cost constraints {τe}
using the exponential scheduler of [17]. Additionally, to stabilize the importance
scores, which can be noisy due to the stochastic minibatches, we calculate and
accumulate the importance score in Eq. (3) every minibatch between pruning
iterations according to the exponential momentum approach of [29].
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4 Results

We evaluate our method on both the ImageNet and PASCAL VOC benchmark
datasets3. Full details on training settings and architectures can be found in the
supplementary materials. We use a latency cost constraint, defined by a layer-
wise lookup table (LUT) as previously described in [48,37,45]. We target and
measure latency speed on a NVIDIA TITAN V GPU with cudNN V7.6.5 [4].

4.1 ImageNet results

We compare SMCP with several prior works on the ImageNet ILSVRC2012 [36]
classification dataset. In Tab. 1, we compare the results of pruning ResNet50,
ResNet101 [13], and MobileNet-V1 [16] at a number of pruning thresholds. We
refer to SMCP-X% as retaining X% of the full model’s original latency and
calculate the frames per second (FPS) and speedup of the final network. For
ResNet50, we show results for two different baseline models for a better com-
parison with prior works. The first baseline is from the PyTorch [34] model hub,
with a Top-1 accuracy of 76.15%; the second baseline is the one used as a baseline
for EagleEye [21] and has a Top-1 accuracy of 77.2%. We prune and fine-tune
following the training setup of [33].

Our method performs comparably to prior works at low pruning ratios and
outperforms them for large pruning ratios. For the PyTorch ResNet50 baseline
model, we achieve a 0.3% higher Top-1 accuracy with a higher FPS at 2G and
1G FLOPs with an additional 0.04× and 0.19× speedup respectively. For the
EagleEye [21] baseline, our method produces models near 1G FLOPs that have a
0.6% higher Top-1 accuracy for nearly the same FPS or a similar Top-1 accuracy
while being 19% (or 0.5×) faster. The results are similar for ResNet101, which is
based on the PyTorch model hub baseline model. At 2G FLOPs, we get a 0.3%
higher Top-1 accuracy and an additional 0.03× speedup. On the already compact
MobileNet-V1 model, where the desired pruning ratios are smaller, our method
performs comparably to prior works; at the highest pruning ratio, we show a
minor FPS improvement of 0.07× despite a higher FLOPs count, demonstrating
the ability of the optimization problem in Sec. 3.3 to choose cost-constraint
aware masks.

The benefits of our method, particularly at high pruning ratios, are possibly
more easily seen when plotting the tradeoff curve for Top-1 accuracy versus FPS,
as shown in Fig. 1 for the PyTorch baseline and Fig. 3 for the EagleEye baseline.
For example in Fig. 3, at the 75% latency reduction level (or 3102 FPS), our
method outperforms the nearest HALP [37] model with a 0.2% higher Top-1
accuracy and a 15% higher FPS; compared to EagleEye [21], we show a 0.23%
higher Top-1 accuracy and a 26% higher FPS.

Moreover, our method can aggressively prune large, over-parameterized mod-
els to outperform smaller unpruned models. As shown in Tab. 1 and Fig. 3, a 50%
pruned ResNet101 achieves a 1.6% Top-1 improvement over a baseline ResNet50,

3 Our code can be accessed at https://github.com/NVlabs/SMCP.

https://github.com/NVlabs/SMCP
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Table 1. Pruning results on the ImageNet classification dataset considering two dif-
ferent ResNet50 baseline models as well as ResNet101 and MobileNetV1. We group
results by those with similar FLOP counts, and refer to SMCP-X% as retaining X%
of the full model’s original latency. Results for prior works are as shown in [37].

Method
FLOPs Top1 Top5 FPS

Speedup
(G) (%) (%) (im/s)

ResNet50
No pruning 4.1 76.2 92.87 1019 1×

ThiNet-70 [27] 2.9 75.8 90.67 - -
AutoSlim [50] 3.0 76.0 - 1215 1.14×
MetaPruning [26] 3.0 76.2 - - -
GReg-1 [42] 2.7 76.3 - 1171 1.15×
HALP-80% [37] 3.1 77.2 93.47 1256 1.23×
SMCP-80% (Ours) 3.0 77.1 93.43 1292 1.27×

0.75× ResNet50 [13] 2.3 74.8 - 1467 1.44×
ThiNet-50 [27] 2.1 74.7 90.02 - -
AutoSlim [50] 2.0 75.6 - 1592 1.56×
MetaPruning [26] 2.0 75.4 - 1604 1.58×
GBN [49] 2.4 76.2 92.83 - -
GReg-2 [42] 1.8 75.4 - 1414 1.39×
HALP-55% [37] 2.0 76.5 93.05 1630 1.60×
SMCP-55% (Ours) 2.0 76.8 93.22 1673 1.64×

0.50× ResNet50 [13] 1.1 72.0 - 2498 2.45×
ThiNet-30 [27] 1.2 72.1 88.30 - -
AutoSlim [50] 1.0 74.0 - 2390 2.45×
MetaPruning [26] 1.0 73.4 - 2381 2.34×
GReg-2 [42] 1.3 73.9 - 1514 1.49×
HALP-30% [37] 1.0 74.3 91.81 2755 2.70×
SMCP-30% (Ours) 1.0 74.6 92.00 2947 2.89×

ResNet50 - EagleEye [21] baseline
No pruning 4.1 77.2 93.70 1019 1×

EagleEye-3G [21] 3.0 77.1 93.37 1165 1.14×
HALP-80% [37] 3.0 77.5 93.60 1203 1.18×
SMCP-80% (Ours) 3.1 77.6 93.61 1263 1.23×

EagleEye-2G [21] 2.1 76.4 92.89 1471 1.44×
HALP-55% [37] 2.1 76.6 93.16 1672 1.64×
SMCP-50% (Ours) 1.9 76.6 93.17 1706 1.67×

EagleEye-1G [21] 1.0 74.2 91.77 2429 2.38×
HALP-30% [37] 1.2 74.5 91.87 2597 2.55×
SMCP-30% (Ours) 1.1 75.1 92.29 2589 2.51×
SMCP-25% (Ours) 0.9 74.4 91.98 3102 3.01×

Method
FLOPs Top1 FPS

Speedup
(G) (%) (im/s)

ResNet101
No pruning 7.8 77.4 620 1×

Taylor-75% [29] 4.7 77.4 750 1.21×
HALP-60% [37] 4.3 78.3 847 1.37×
SMCP-60% (Ours) 4.0 78.1 951 1.53×
HALP-50% [37] 3.6 77.8 994 1.60×
SMCP-50% (Ours) 3.6 77.8 1016 1.64×

Taylor-55% [29] 2.9 76.0 908 1.47×
HALP-40% [37] 2.7 77.2 1180 1.90×
SMCP-30% (Ours) 2.6 77.3 1273 2.05×
HALP-30% [37] 2.0 76.5 1521 2.45×
SMCP-25% (Ours) 2.0 76.8 1535 2.48×

Method
FLOPs Top1 FPS

Speedup
(M) (%) (im/s)

MobileNet-V1
No pruning 569 72.6 3415 1×

0.75× MobileNetV1 325 68.4 4678 1.37×
NetAdapt [45] 284 69.1 - -
MetaPruning [26] 316 70.9 4838 1.42×
EagleEye [21] 284 70.9 5020 1.47×
HALP-60% [37] 297 71.3 5754 1.68×
SMCP-60% (Ours) 356 71.0 5870 1.72×

MetaPruning [26] 142 66.1 7050 2.06×
AutoSlim [50] 150 67.9 7743 2.27×
HALP-42% [37] 171 68.3 7940 2.32×
SMCP-40% (Ours) 208 68.3 8163 2.39×

with no performance loss, and a 80% pruned ResNet50 achieves a similar Top-1
to an unpruned MobileNet-V1 while achieving a 10% FPS speedup.

Lastly, the accuracy and performance gains are in part due to the final net-
work architecture chosen by our method. In particular, since we solve a global
resource allocation problem during training, our method automatically deter-
mines the layer-wise pruning ratios for the given cost function and constraint.
For example, on ResNet50, we find that SMCP is aggressive in pruning the
early convolution layers and leaves the later layers better preserved; we provide
additional analysis and figures in the supplementary materials.
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Fig. 3. (Left) Top-1 accuracy tradeoff curve for pruning ResNet50 on the ImageNet
classification dataset using a latency cost constraint. Baseline model is from Eagle-
Eye [21]. (Right) mAP accuracy tradeoff curve for pruning SSD512-RN50 on the PAS-
CAL VOC object detection dataset using a latency cost constraint. Top-right is better.

4.2 PASCAL VOC results

To analyze our method beyond image classification, we also analyze SMCP on
the PASCAL VOC object detection dataset [9]. Specifically, we consider whether
a large model, such as SSD512 [24] with a ResNet50 backbone, can be pruned
at a high ratio to match the FPS of smaller models while retaining a superior
mAP (mean average precision). We use the “07+12” train and test setup of [24]
and prune both the backbone and feature layers.

As shown in Fig. 3, our method can prune an SSD512-RN50 to have a higher
mAP than the pretrained model and a faster FPS than the much smaller SSD300-
RN50 model, again showing the ability of our method to aggressively prune
large over-parameterized models to outperform smaller models. In particular,
our fastest pruned model has a 2.63 point higher mAP score while achieving
12% higher FPS. Critically, the latency reduction to achieve this is 75%, demon-
strating the strength of our approach in the high pruning ratio regime. We also
compare to and outperform a number of other common detector models.

4.3 Ablation study

We also study the effect of our contributions on the accuracy results shown above,
specifically at high pruning ratios. We run our method again on the ImageNet
classification dataset, starting from the ResNet50 EagleEye [21] baseline. We first
remove the batch normalization scaling technique from Sec. 3.2 while keeping the
soft input channel masking re-parameterization of Sec. 3.1. We then additionally
remove the soft input channel masking, reverting to permanent pruning. We keep
the solver and latency constraint in Sec. 3.3 unchanged. The ablation results are
shown in Fig. 4. Removing the batch normalization scaling generally leads to
marginally worse results, due to the training instability described in Sec. 3.2.
Additionally removing the soft input masking, thereby using permanent channel
pruning, degrades accuracy and performance further.
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Fig. 4. Ablation study for SMCP at high pruning ratios on ResNet50 using the Eagle-
Eye [21] baseline. We remove consecutively two major components of our method, soft
input masking and batch normalization scaling, and observed worse Top-1 accuracy
and FPS than the full SMCP method.

4.4 Choice of latency cost constraint

Although our cost-constrained formulation is general to any number of cost func-
tions, the benefits of our approach are most pronounced under challenging, non-
linear latency cost landscapes (i.e., latency cliffs for GPUs). Linear constraints
(i.e., parameter/FLOP constraints) lessen the need for soft masking and an ef-
ficient and global resource allocation: removed channels are more likely to stay
pruned once removed and the number of remaining channels in each layer tends
to change slowly. Despite training against a latency constraint, Tab. 1 shows
that SMCP is comparable to or even outperforms previous methods under low
FLOP constraints.

5 Conclusion

By applying channel pruning, modern CNNs can be significantly accelerated,
with a smaller memory footprint, computational cost, and inference time. In
this work, we presented a novel structured input channel pruning approach,
called SMCP, that combines soft masking of input channels, a batch normal-
ization scaling technique, and the solution to a resource allocation problem to
outperform prior works. We motivate the use of each component of our method
and demonstrate their effectiveness on both the ImageNet and PASCAL VOC
datasets. Although we only consider channel pruning in this work, our approach
can be extended to jointly consider both channel and N:M structured prun-
ing [28] to satisfy an explicit cost-constraint. This can be viewed as an extension
of both this work and that of [53] and is left for a future work.
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