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Abstract. Quantization is a very effective optimization technique to re-
duce hardware cost and memory footprint of deep neural network (DNN)
accelerators. In particular, post-training quantization (PTQ) is often pre-
ferred as it does not require a full dataset or costly retraining. However,
performance of PTQ lags significantly behind that of quantization-aware
training especially for low-precision networks (<= 4-bit). In this pa-
per we propose a novel PTQ scheme1 to bridge the gap, with minimal
impact on hardware cost. The main idea of our scheme is to increase
arithmetic precision while retaining the same representational precision.
The excess arithmetic precision enables us to better match the input
data distribution while also presenting a new optimization problem, to
which we propose a novel search-based solution. Our scheme is based
on logarithmic-scale quantization, which can help reduce hardware cost
through the use of shifters instead of multipliers. Our evaluation results
using various DNN models on challenging computer vision tasks (image
classification, object detection, semantic segmentation) show superior
accuracy compared with the state-of-the-art PTQ methods at various
low-bit precisions.

Keywords: Deep neural networks, Logarithmic-scale quantization, Post-
training quantization, Subset quantization

1 Introduction

As deep learning becomes the highest performing method for many machine
learning tasks, there is a growing interest in hardware DNN (Deep Neural Net-
work) accelerators. DNNs of computer vision tasks such as image enhancement
and super-resolution applications [2,20] often have very high compute and mem-
ory requirement. To reduce the hardware cost and memory footprint of such
DNN accelerators, quantization can be a very effective approach [13,14,6]. In
particular, post-training quantization (PTQ) is preferred for DNN deployment
as it requires no costly retraining or large dataset. However, the performance of
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PTQ lags behind that of quantization-aware training especially for low-precision
networks (e.g., < 4-bit).

In this paper we propose a novel PTQ scheme to bridge the gap, with min-
imal impact on the cost of a DNN hardware accelerator. Our scheme is based
on logarithmic-scale quantization [16,17,18], which can help minimize hardware
cost through the use of shifters instead of multipliers. The main idea of our
scheme is to use an arithmetic precision that is higher than the representational
precision. In linear (i.e., uniform step size) quantization, the two are the same.
For instance, 3-bit quantized neural network would use 3-bit multipliers. How-
ever, for logarithmic-scale quantization [16], they are not always the same. For
instance, 3-bit log-quantized data can have the same arithmetic precision as 4-bit
linear-quantized data. Moreover, recent advanced logarithmic-scale quantization
methods [17,8,18,25] often represent input data as a sum of two log-quantized
words, which further disconnects arithmetic precision from representational pre-
cision.

Thus there is a new optimization problem: given a representational precision
(Pr) and an arithmetic precision (Pa) where Pa > Pr, how to design a quantizer
function such that it can maximize quantization performance for a given data
distribution. Quantization performance can be defined in terms of quantization
error or inference accuracy of a quantized DNN. We study this problem in the
context of two-word log-scale quantization [17,8,18,25], for which we find the set
of all possible quantization points, with each subset of the quantization points
defining a new quantizer function. In other words, a quantizer may be specified
as a subset of quantization points instead of an arithmetic function, and this
extended view leads to a new category of quantizers that can make a more
efficient use of the limited arithmetic precision than is possible otherwise. We
call our quantization scheme subset quantization, which is more formally defined
in Defining Quantizer for Subset Quantization Section.

In this paper we make the following contributions.

– We propose subset quantization (SQ), a novel quantization scheme for PTQ.
– We present a method to find the best subset and scale factor for subset

quantization, for a given data distribution.
– We evaluate our method on image classification using ResNet models show-

ing that our method outperforms state-of-the-art PTQ methods in most
cases.

– We evaluate our method on another vision tasks such as object detection
and semantic segmentation, demonstrating our method can achieve close to
FP32 accuracy at ultra-low-bit weight precision.

2 Related Work

2.1 Uniform vs. Non-Uniform Quantization

A quantizer is defined as a function from the set of real numbers R to the set of
integers. But in the context of DNN quantization, we are often interested in a
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simulated quantizer, which is a function that simulates the effect of quantization
by applying a quantizer and a de-quantizer in a row [15]:

Q : R → R = dequantizer ◦ quantizer. (1)

where ◦ represents function composition, and the input and output values have
the same domain and the same scale. In this case, the essential role of a quantizer
is to approximate a real value to one of a finite set of values, which we call
quantization points.2

Linear quantization [13,14,6,9] uses quantization points that are spaced lin-
early. An example linear quantizer is:

q = Qu(x) = clip(
⌊x
s

⌉
, L, U). (2)

where s is step size, L,U are the lower and upper limits of the quantized values,
and clip(x, a, b) = min(max(x, a), b). In the above quantizer, the step size, or the
distance from one quantization point to the next, is constant for all quantization
points; hence, it is uniform step size quantization. By using clip we can focus
on the more interesting range of input, i.e., [sL, sU ], which can result in a more
efficient allocation of the limited number of quantization points as in ACIQ-
Mix [1].
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Fig. 1: Non-uniform step-size quantization example: selective two-word log-scale
quantization [17,8,25]. Its processing element hardware (right) uses shifters in-
stead of multipliers as in log-scale quantization.

There are a few quantization schemes that have non-uniform step size. Log-
arithmic-scale (log-scale for short) quantization [16] is an example, in which
quantization points are spaced geometrically. Usually the base of exponent is set
to 2, which enables very efficient arithmetic hardware using shifters instead of
costly multipliers. Log-scale quantization is also motivated by the bell-shaped
distribution of weight/activation values [16,18], which can, in certain cases, lead

2 Quantization points are similar to quantization levels but there are some differences.
Whereas quantization levels are often integers and may have a different scale than
quantization thresholds, quantization points have the same scale as quantization
thresholds and can be used as a substitute for them.
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to lower expected quantization error than in linear quantization, since the former
allocates more quantization points for common, low-magnitude values.

On the other hand, log-scale quantization may allocate too many quantiza-
tion points near zero, which is especially true at high precision. Selective two-
word log-scale quantization (STLQ) schemes [17,8,25] address this problem by
employing another round of quantization step for those values that have high
quantization error in the first round. In other words, each input value may be
quantized with one or two quantized words, depending on the residual in the
first round (see Figure 1). APoT [18] is another solution, which is based on a
similar idea but always uses two shifters. The APoT quantizer maps an input
value to the sum of two terms, each of which is a power-of-two. Our subset quan-
tization, which may be seen as an evolution of log-based quantization schemes,
further extends the set of quantization points while not affecting representational
precision.

2.2 Determining Quantization Parameters

The main problem of quantization is that of determining quantization param-
eters such as step size s and lower and upper bounds L,U in the case of the
linear quantizer in (2). Quantization parameters may be determined through
training or other means (e.g., statistics). State-of-the-art performances in DNN
quantization are often obtained by determining quantization parameters through
training. This kind of training usually involves training of both weight and quan-
tization parameters, hence called joint-training. However, even if quantization
parameters are not trained, quantization-aware training, which trains weight pa-
rameters only (in this case, quantization parameters may be fixed or determined
by other means, e.g., by statistics) can still outperform post-training quanti-
zation [15]. Post-training quantization (PTQ) is any method that determines
quantization parameters for a given set of (fixed) weight parameters. Despite its
lower performance, PTQ is often preferred for deployment as it does not require
retraining or a full dataset.

2.3 Post-Training Quantization Methods

Here we briefly review recent PTQ methods. For image classification tasks, re-
cent state-of-the-art PTQ methods have shown accuracy close to that of FP32
(32-bit floating-point precision) at low bits such as 4-bit for both weight and
activation [28,23,12,10,19].

BitSplit [28] splits the n-bit binary sequence (e.g., power-of-two value of
weight including sign bit) into n − 1 ternary bits, then minimizes quantization
error via calibration set and alpha scaling factor. It shows highly competitive
results at various precision settings including 3-bit. AdaRound [23] subdivides
the round operation of quantization process into floor and ceiling, and finds the
favorable selection in terms of quantization error. It proposes an approximated
per-layer quadratic task loss for the relaxation of selections, and shows result
close to FP32 at 4-bit precision. AdaQuant [12] proposes a joint optimization
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method for weight and activation including layer-wise integer programming that
searches bit combinations, followed by parameter tuning for batch normalization
and bias. It shows performance close to FP32 at 4-bit for image classification.

PWLQ [10] divides bell-shaped distribution into two symmetric regions by
using a breakpoint, and equally divides quantization points into each region, so
that step size can be determined according to data density. It can search multiple
breakpoints (up to 3) and shows close to FP32 performance at 4-bit precision.
BRECQ [19] minimizes quantization error in various granularities such as model,
stage, block, and layer. It uses a sigmoid-like trainable parameter for the round
operation, and searches bit combinations using the genetic algorithm.

3 Our Proposed Method
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Fig. 2: Overview of our proposed quantization scheme (N = 8, 4-bit quantization
including the sign bit). In the quantizer graph, black circles and red plus signs
represent a universal set and a quantization point set (QPS), respectively.

3.1 Overview

Figure 2 illustrates our proposed quantization scheme. First we design a universal
set SU such that the set is rich enough to represent any given input distribution
but each element in the set can be efficiently generated by hardware. We present
one such set in Section 3.4. Due to the encoding restriction (i.e., limited weight
precision) we cannot use all the elements in SU at least simultaneously. Instead
we select N values, where N is determined by the quantization precision (i.e.,
representational precision).

For n-bit quantization (including the sign bit), we select N = 2n−1 values on
the non-negative side, which may or may not include zero. (If zero is included, it
means that we are wasting one code word, since the negation of zero is also zero,
but we see that this rarely happens.) For instance, if n = 4, then N = 8, and if
n = 3, N = 4. There are many ways to choose N elements out of SU , and this
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flexibility affords us a degree of freedom by which we can better approximate
any input data distribution.

Once we select the set of N points, which we call quantization point set
(QPS), the negative values are defined simply as the negation of the non-negative
values. The symmetricity in the quantizer reduces QPS exploration time (see
Optimization for Subset Quantization Section) as well as hardware complexity.
Finally, from the chosen QPS directly follows a quantizer/dequantizer definition,
in which we include a scale factor α, which plays a similar role as in previous
work [18,28]. Note that scale factors can be implemented as part of the succeeding
layer, where it is combined with input quantization computation, thus having
negligible cost [13,30]. We next present a generalized quantizer framework based
on QPS, followed by our quantization parameter determination algorithm and
universal set design.

3.2 Defining Quantizer for Subset Quantization

Quantization Point Set: Quantization point set (QPS) of a quantizer is the
range of its simulated quantizer function. Since simulated quantizer [15] is a
function that applies a quantizer and a de-quantizer in a row (see (1)), its input
domain has the same scale as the output domain. Therefore, QPS is also the set
of points in the input domain that can be quantized with no quantization error.

Then one can view all quantization schemes as approximating an input to the
nearest3 element in a QPS, with the only difference among different quantization
schemes being the definition of QPS. Accordingly, we can write a fairly general
quantizer definition that takes as parameter a QPS (SQ) in addition to an input
value (x). Its simulated quantizer is as follows:

Q(x, SQ) = arg min
p∈SQ

|x− p|. (3)

Examples: The QPS for linear quantization such as (2) can be defined as follows,
where α is a step size and 2N is the number of quantization points; that is, for
k-bit quantization, N = 2k−1. For brevity we assume that input is symmetric
around zero.

Slin
Q (α) = {α · i | i = −N,−N + 1, · · · , N − 1}. (4)

Note that the above is the QPS of (2) if we set α = s, L = −sN , U = s(N − 1).
Similarly, the QPS for log-scale quantization can be defined as follows, where α
is a scale factor.

Slog
Q (α) = {−α 2−i | i = 0, 1, · · · , N − 1} ∪ {0}

∪ {α 2−i | i = 0, 1, · · · , N − 2}. (5)

3 One may design a quantizer to output a non-nearest element, which is suboptimal but
may be motivated by computational efficiency. An example is log-scale quantization,
which was defined [16] as doing a round operation in the logarithmic domain, which
is not necessarily the nearest one in the linear domain.
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One way to enhance the accuracy of log-scale quantization is to use two words
[17,18], the QPS for which can be defined as follows.

S2log
Q (α) = {q1 + q2 | q1 ∈ Slog

Q (α), q2 ∈ Slog
Q (α)}. (6)

Subset Quantization: The idea of subset quantization (SQ) is to define
SQ not as a fixed set of numbers or variables but as an arbitrary subset (with
a size limit of 2N) of a larger set. The larger set is called universal set, denoted
by SU .

Ssq
Q (α) = {any qi ∈ SU (α) | i = 1, · · · , 2N}. (7)

which says Ssq
Q is any subset of SU with 2N or fewer elements. Note that quan-

tization precision restricts only the size of a QPS, but not that of a universal
set. While (7) and (3) define the simulated quantizer for SQ, the definition is
undeterministic. Exactly which subset to choose is left for optimization (see
next section), much like determining the value of α. A quantization scheme may
choose a different subset for each layer (per-layer quantization) or for each chan-
nel (per-channel quantization).

While any set may be used as the universal set, in this paper we use one that is
similar to the QPS of the two-word log-scale quantization scheme as our universal
set (i.e., S2log

Q ) due to its low hardware complexity and rich expressiveness (see
Section 3.4).

3.3 Optimization for Subset Quantization

Minimizing Quantization Error Optimization for SQ needs to determine (i)
the value of α and (ii) which subset of SU to choose as QPS. For PTQ we are
given all weight values ({wi}), and the objective is to minimize L2 quantization
error.

Finding Optimal Scale Factor Given a QPS, the optimal scale factor can
be found efficiently. Let {qj} be the given QPS (before applying a scale factor).
After applying scale factor α, the final QPS can be written as SQ = {αqj}.
To calculate quantization loss between {wi} and SQ, let αqi be the nearest
quantization point in SQ for wi. Then,

∀i, αqi = arg min
p∈SQ

|p− wi|. (8)

L =
∑
i

(wi − αqi)
2. (9)

To find α that minimizes L, we set the derivative of L w.r.t. α to zero, which
gives

α∗ =

∑
i wi · qi∑
i qi

2
. (10)

Since finding αqi (the nearest quantization point for wi) in (8) depends on the
current value of α, the above procedure (8)∼(10) is repeated until α converges.
We initialize α to 1. We find empirically that this iterative method converges
usually fast, at the average within 17 iterations (when tolerance for α is 1e-5).
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Proof of Convergence To find the optimal scale factor α for a given quanti-
zation point set S(α) = {αqj} that minimizes L2 quantization error, we use this
iterative procedure, as explained in previous section.

– First, initialize α to 1.
– Second, update α using the (10) until α does not change any more.

Note that qi on the right hand side of the (10) is a short-hand notation of a
function q(wi, α) defined below:

qi := q(wi, α) =
1

α
· arg min

p∈S(α)

|p− wi|. (11)

We argue that updating α using (10) converges. Recall (9) which is the L2
quantization error. When α is updated according to (10), qi = q(wi, α) may or
may not be updated. If no qi is updated (i.e., ∀i, q(wi, α) = q(wi, α

∗)), then (9)
is a simple 2nd order function on α, and the optimal value of α can be found in
one step by (10), after which α remains unchanged.

αq1= α αq2= 2α

α'q1= α' α'q2= 2α'

Δα

1.5α

1.5α'

Δ1.5α

A
B

C
t=1

t=2

Fig. 3: The nearest quantization point may change when α is increased by ∆α =
α′ − α. In this example, q1 = 1, q2 = 2.

If some qi are updated (i.e., ∃i, q(wi, α) ̸= q(wi, α
∗)), it leads to either (a)

a decreased or the same value of L or (b) temporarily increased value of L but
afterwards L is reduced. To see this, let us consider an example illustrated in
Figure 3. In this example, we only consider one weight value w, which is quantized
in the first iteration (t=1) using S(α) = {αq1, αq2} as the quantization point set.
The first iteration updates α to α′ (assume α′ > α). Then in the second iteration
(t=2), w is quantized using S(α′) = {α′q1, α

′q2}. To further simplify, let us
assume that the two quantization points q1, q2 are given as follows: q1 = 1, q2 = 2.
In the figure, A = 1.5α, C = 1.5α′, and B = A + 0.5∆α, where ∆α = α′ − α.
There are three cases as follow.

Case 1: All the points between α′ and 1.5α (= A) will be quantized to αq1
(at t=1) or α′q1 (at t=2). In this case, q(w,α) is not updated.

Case 2: Similarly, all the points between 1.5α′ (= C) and 2α will be quantized
to αq2 (at t=1) or α′q2 (at t=2). In this case also, q(w,α) is not updated.
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Case 3: If w is between points A and C, q(w,α) is updated from q2 to q1.
There are two sub-cases. If w is greater than B, then the quantization error
at t=2 is reduced compared with that of t=1. However, if w is less than B,
the quantization error is increased compared with that of t=1. Because of this
last case, we cannot say that (10) monotonically decreases L. Now, in order
for our procedure to oscillate and not converge, the update rule (10) should
decrease α, so that we can go back to the situation of t=1, which however
cannot happen. This is because when w is less than B, the quantization error
is w − α′, which is minimized when α increases. Therefore, there cannot be an
indefinite oscillation between two α values, and L is only temporarily increased,
but eventually converges to a minimum value.

The above is for the case of α′ > α, but the convergence of the other case,
α′ < α, can be shown in a similar way.

Algorithm 1: FindBestQPS

Input: w: pretrained weight, SU : universal set, N : 2k−1, loss(w, S): loss
function

Result: SQ: the QPS that minimizes loss
1 lmin ←∞
2 for S in each N -element subset of SU do
3 α← FindScaleFactor(S,w)
4 lcurr ← loss(w, αS)
5 if lcurr < lmin then
6 SQ ← αS
7 lmin ← lcurr
8 end

9 end
10 return SQ

Finding the Best Subset There are only
(|SU |
|SQ|

)
number of subsets to consider.

Thus we can search exhaustively all cases for the one that gives the minimum
quantization error (see Algorithm 1). We do this for each layer or each output
channel, depending on the quantization granularity.

3.4 Designing a Universal Set

Our initial candidate for SU is S2log
Q , which is rich and simple enough to im-

plement in hardware, requiring just two shifters and one adder for the multi-
plication. But in order to further optimize the multiplication hardware design,
we explore the following design options. They all have the form of a+ b, where
a and b are either zero or 2k as listed in Table 1. Note that thanks to a scale
factor the sets are equivalent to their scaled versions, thus we assume that they
are scaled such that the maximum value is one.
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Table 1: Exploring universal set design, SU = {a+ b | a ∈ A, b ∈ B}.
Option A B

1 {2−1, 2−2, 2−3, 0} {2−1, 2−2, 2−4, 0}
2 {1, 2−2, 2−4, 0} {2−1, 2−3, 2−5, 0}
3 {1, 2−1, 2−2, 2−3, 2−4, 0} {1, 2−1, 2−2, 2−3, 2−4, 0}
4 {1, 2−1, 2−2, 2−3, 2−4, 2−5, 0} {1, 2−1, 2−2, 2−3, 2−4, 2−5, 0}

5 (chosen) {1, 2−1, 2−3, 0} {1, 2−2, 2−4, 0}

The universal set designs differ in terms of hardware complexity as well as
expressiveness. For instance, Option 4 generates a universal set with 23 elements
whereas Option 3 and Option 5 have only 17 and 16 elements, respectively,
but Option 4 also has the highest complexity. After a careful comparison (see
Supplementary Material), we have chosen Option 5, which is rich enough yet
has the lowest hardware complexity among the options.

2b
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Fig. 4: MAC design for the proposed subset quantization (3-bit case including
sign-bit).

3.5 Hardware Design

Figure 4 illustrates the MAC (multiply-and-accumulate) hardware design for our
quantizer. We assume that activation is linear-quantized and weight is quantized
with our subset quantization. From the definition of our universal set (SU ) (i.e.,
sum of two power-of-two’s), one straightforward implementation of multiplica-
tion is to use two shifters and one adder, in which shifters are variable-amount
shifters (called barrel shifters). This näıve design, which would work for any
universal set definition, can be optimized as shown in Figure 4 exploiting our
universal set definition. In our optimized design shown in Figure 4a, each barrel
shifter is replaced with a MUX and two constant-amount shifters. Note that a
MUX is much cheaper than a barrel shifter and constant-amount shifters are just
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Table 2: Image classification results for weight-only PTQ methods. * indicates
results with the same model but different baseline. For quantized cases, we re-
port performance degradation with absolute performance numbers in parentheses
(same in later tables).

Network W-bits/A-bits 32/32 (FP) 4/32 3/32 2/32

ResNet-18

OMSE+opt [7] 69.64 2.52 (67.12) - -
AdaRound [23] 69.68/71.08* 0.97 (68.71) 3.01 (68.07*) 15.12 (55.96*)
AdaQuant [12] 71.08 2.26 (68.82) 12.96 (58.12) 70.78 (0.30)
BitSplit [28] 69.76 0.65 (69.11) 3.01 (66.75) -
BRECQ [19] 71.08 0.38 (70.70) 1.27 (69.81) 4.78 (66.30)
SQ (Ours) 69.76 0.30 (69.46) 1.00 (68.76) 4.14 (65.62)

ResNet-50

OMSE+opt [7] 76.01 1.34 (74.67) - -
AdaRound [23] 76.07/77.00* 0.84 (75.23) 3.58 (73.42*) 29.05 (47.95*)
AdaQuant [12] 77.20/77.00* 3.50 (73.70) 12.39 (67.61*) 76.51 (0.49*)
BitSplit [28] 76.13 0.55 (75.58) 2.89 (73.24) -
BRECQ [19] 77.00 0.71 (76.29) 1.39 (75.61) 4.60 (72.40)
SQ (Ours) 76.13 0.38 (75.75) 0.99 (75.14) 3.86 (72.27)

InceptionV3

OMSE+opt [7] 77.40 3.74 (73.66) - -
AdaRound [23] 77.40 1.64 (75.76) - -

OCS [29] 77.40 72.60 (4.80) - -
SQ (Ours) 77.24 0.58 (76.66) 3.61 (73.63) 11.36 (65.87)

wires, taking no logic gates. This is possible because of the way our universal set
is constructed—each term has only four cases including zero.

Each MUX can select inputs independently, resulting in 16 different combi-
nations, out of which only four cases are actually used due to the limited width
of quantized weight value (which is 2 except the sign-bit in the figure). Thus the
role of QPS is to select the four cases that will be actually used, and is imple-
mented as the decoder. The decoder consists of a 16-bit register (= 4 × 4-bit)
and a 4-bit 4-to-1 MUX. The 16-bit register stores the QPS chosen by Algo-
rithm 1 (actually their 2-bit logarithm values), and can be shared among all the
MACs in the same layer or channel, depending on the quantization granularity,
thus having negligible area. Then a decoder is practically reduced to a simple
MUX, but even this MUX can often be shared among a number of MACs within
a MAC array, depending on the dataflow of the MAC array [5]. In summary,
the hardware cost of our optimized MAC is very small: two 4-to-1 MUXes, one
adder, and an accumulator, plus a 4-to-1 MUX, which could be shared among a
number of MACs depending on the hardware dataflow.

4 Experiments

4.1 Experimental Setup

For evaluation we use three applications: image classification using ImageNet
dataset [11,26], object detection [21], and semantic segmentation [4]. We perform
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Table 3: Image classification results for fully-quantized PTQ methods. * indi-
cates results with the same model but different baseline.

Network W-bits/A-bits 32/32 (FP) 4/8 4/4 3/3 2/4

ResNet-18

AdaQuant [12] 71.97/71.08* - 4.57 (67.40) - 71.08 (0.21*)
Seq. AdaQuant [12] 71.97 - 2.57 (69.40) - -

AdaRound [23] 69.68 1.13 (68.55) - - -
ACIQ-Mix [1] 69.70 - 2.70 (67.00) - -
LAPQ [24] 69.76/71.08* - 9.46 (60.30) - 70.90 (0.18*)
BitSplit [28] 69.76 0.66 (69.10) 2.20 (67.56) 8.46 (61.30) -
BRECQ [19] 71.08 0.50 (70.58) 1.48 (69.60) 5.05 (66.03) 6.28 (64.80)
SQ (Ours) 69.76 0.37 (69.39) 1.21 (68.55) 4.62 (65.14) 5.06 (64.70)

ResNet-50

AdaQuant [12] 77.20/77.00* - 3.50 (73.70) - 76.88 (0.12*)
Seq. AdaQuant [12] 77.20 - 2.10 (75.10) - -

AdaRound [23] 76.07 1.06 (75.01) - - -
OMSE+opt [7] 76.01 1.03 (74.98) 3.41 (72.60) - -
ACIQ-Mix [1] 76.10 0.80 (75.30) 2.30 (73.80) - -
LAPQ [24] 76.10/77.00* - 6.10 (70.00) - 76.86 (0.14*)
BitSplit [28] 76.13 - 2.42 (73.71) 9.91 (66.22) -
PWLQ [10] 76.13 0.51 (75.62) 1.28 (74.85) - -
BRECQ [19] 77.00 - 1.95 (75.05) 8.04 (68.96) 6.71 (70.29)
SQ (Ours) 76.13 0.46 (75.67) 1.48 (74.65) 6.80 (69.33) 5.43 (70.70)

InceptionV3

AdaRound [23] 77.40 1.68 (75.72) - - -
ACIQ-Mix [1] 77.20 9.00 (68.20) - - -
OMSE+opt [7] 76.23 1.44 (74.79) - - -
PWLQ [10] 77.49 1.04 (76.45) - - -
SQ (Ours) 77.24 0.66 (76.58) - - -

PTQ using pretrained weights; we have not modified a network or performed re-
training before PTQ in any way. We apply SQ to weight only; activation is
quantized using BRECQ [19] unless noted otherwise. We have used the frame-
work, models, and pretrained weights mainly from the official PyTorch 1.6.0 and
used Nvidia RTX Titan GPUs for experiments (CUDA 9.2, cuDNN 7.6.5).

4.2 Comprehensive Results

For all the results, we have repeated the PTQ experiments five times for each
case by changing the random seed value, and the first and last layers are set to
8-bit linear quantization. In all the cases, the granularity of SQ is per-channel
but we only use one QPS per layer. In other words, we use a scale factor for
each channel in our PTQ process, but we map all weight values with one QPS
for each layer. The per-layer QPS not only shows superior performance, but also
allows for simpler hardware implementation.

Image Classification For image classification, we use the ImageNet dataset
and present the results for ResNet series [11] and InceptionV3 [27]. We compare
with various state-of-the-art PTQ methods [23,12,28,10,19], and our SQ, as ap-
plied to weight quantization. We have mainly referred to BRECQ4 for our code
implementation.

4 https://github.com/yhhhli/BRECQ
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Table 2 and 3 show the results. When only weight is quantized and activation
is floating-point, our SQ shows consistently and significantly better performance
than other PTQ methods and we see a similar trend when activation is quan-
tized as well.5 In particular, our SQ shows superior results in the ultra-low-bit
condition for both 3-bit and 2-bit.

Semantic Segmentation For semantic segmentation task, we have applied our
SQ method to the official DeepLabV3+ [4] source code6 and compared it with
other PTQ methods. We use MobileNetV2 [26] as the encoder backbone, and
use ASPP [3] as the decoder. SQ is applied to all layers with weight parameters,
and activation is quantized to 8-bit using linear quantization. Table 4 shows the
results. We have conducted experiments on low-bit cases less than or equal 4-
bit in consideration of performance and search time efficiency of SQ. The 4-bit
result clearly shows the superior performance of our method compared with the
previous PTQ method. The previous PTQ methods do not report the result
of 3-bit or lower, but our 3-bit SQ result shows relatively small performance
degradation, and is even better than that of 4-bit uniform quantization.

Table 4: PTQ methods on semantic segmentation with the MobileNetV2 [26]
backbone.

Network W-bits/A-bits 32/32 (FP) 4/8 3/8

DeepLabV3+

(mIoU%)

Uniform 70.81 20.76 (50.05) -
PWLQ [10] 70.81 3.15 (67.66) -
SQ (Ours) 70.81 1.85 (68.96) 8.87 (61.94)

Object Detection We have evaluated our SQ method using object detection
task, SSD-Lite [21]. We have modified the author’s official PyTorch source code7,
and used MobileNetV2 [26] as the backbone network. Again we have applied SQ
to all layers with weight parameters and 8-bit linear quantization is applied to
activation. Table 5 shows the results. In the case of 4-bit, SQ shows a similar
level of performance as that of the current state-of-the-art. In the 3-bit case,
the performance trend is similar to that of the semantic segmentation results,
but the performance degradation is smaller and again our 3-bit SQ result shows
lower performance degradation than 4-bit uniform quantization.

5 For InceptionV3 4-bit in Table 3, we only present the result with 8-bit linear quanti-
zation because our implementation for low-bit activations [19] did not work properly
in this case.

6 https://github.com/jfzhang95/pytorch-deeplab-xception
7 https://github.com/qfgaohao/pytorch-ssd
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Table 5: PTQ methods on object detection with the MobileNetV2 [26] backbone.

Network W-bits/A-bits 32/32 (FP) 4/8 3/8

SSD-Lite
(mAP%)

Uniform 68.70 3.91 (64.79) -
DFQ [22] 68.47 0.56 (67.91) -
PWLQ [10] 68.70 0.38 (68.32) -
SQ (Ours) 68.59 0.38 (68.21) 3.87 (64.72)

5 Conclusion

We presented a novel non-uniform quantization method called subset quantiza-
tion (SQ), which is a high-performing PTQ methods at extreme low-precision
while remaining hardware-friendly. Subset quantization adds a new dimension
to quantizer definition by allowing quantization points to be defined as a subset
of a larger pool called universal set. This view allows a quantization point set to
be defined in a more flexible fashion so that it can adapt to diverse input statis-
tics, which is very useful for deep neural networks. Our experimental results
with challenging vision tasks demonstrate that our SQ results for ultra low-bit
weight quantization outperform state-of-the-art quantizers of the same precision.
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