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Abstract. Most state-of-the-art deep neural networks use static infer-
ence graphs, which makes it impossible for such networks to dynamically
adjust the depth or width of the network according to the complexity
of the input data. Different from these static models, depth-adaptive
neural networks, e.g. the multi-exit networks, aim at improving the com-
putation efficiency by conducting adaptive inference conditioned on the
input. To achieve adaptive inference, multiple output exits are attached
at different depths of the multi-exit networks. Unfortunately, these ex-
its usually interfere with each other in the training stage. The interfer-
ence would reduce performance of the models and cause negative influ-
ences on the convergence speed. To address this problem, we investigate
the gradient conflict of these multi-exit networks, and propose a novel
meta-learning based training paradigm namely Meta-GF(meta gradi-
ent fusion) to harmoniously train these exits. Different from existing
approaches, Meta-GF takes account of the importances of the shared
parameters to each exit, and fuses the gradients of each exit by the
meta-learned weights. Experimental results on CIFAR and ImageNet
verify the effectiveness of the proposed method. Furthermore, the pro-
posed Meta-GF requires no modification on the network structures and
can be directly combined with previous training techniques. The code is
available at https://github.com/SYVAE/MetaGF.
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1 Introduction

Deep neural networks have achieved tremendous progress in many applications
such as recognition[8, 18] and detection[3, 13]. Due to the implicit regularization
caused by over-parameterization[16, 9], the very deep networks with large num-
ber of parameters empirically have stronger representation capacity and more
robust generalization ability compared with the small ones. Yet they are always
much more computationally expensive, especially when deployed on resource-
constrained platforms. Furthermore, due to the varying complexity of input
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data, hence not every input requires the same network depth. To realize bet-
ter accuracy with efficient inference speed, network pruning approaches[37] and
various lightweight networks[41, 45] are proposed for obtaining lightweight mod-
els. However, the capacity of the resulting small networks is limited, and they
cannot dynamically extend their depth or width for dealing with more compli-
cated input. Both the large networks and the small ones perform static inference
graphs, which limits the efficiency of the large models and the representation
ability of the small models respectively. To sum up, the large networks cannot
dynamically reduce their computation complexity to efficiently deal with easy in-
puts, and the capacity of the small ones are limited which cannot be dynamically
extended to handle challenging inputs.

Recently, numerous researches[20, 47, 26, 39, 25, 49, 48] propose solutions to
achieving robust and efficient prediction via implementing depth-adaptive infer-
ence, such as the MSDnet[20] and SDN[26]. The inference depth of the above
mentioned adaptive networks are conditioned on the input. As the most popu-
lar adaptive architecture, multi-exit networks[20, 39, 25] realize depth-adaptive
inference by early exiting, i.e. allowing the result of ”easy” inputs to be out-
put from the shallow exits without executing deeper layers[17]. Toward this
end, multiple intermediate output exits are attached to the networks at differ-
ent depths. In the inference stage, the multi-exit models dynamically decide to
stop inference at which output exit based on the predefined exit-policy such as
the confidence[20] or learned policy[4]. Depth-adaptive inference is a valuable
mechanism for networks to save unnecessary computation costs while keeping
prediction performance.

Existing works mainly focus on designing more excellent adaptive struc-
tures[26, 39, 23, 54] or better inference algorithms[4], but the interference between
different intermediate exits have attracted less attention. To be specific, large
numbers of model parameters are shared by these exits, and in the training stage,
these shared parameters always receive conflicted gradients from different exits.
As defined in [55], ”gradients conflict” in this work represents that two gradients
have a negative cosine similarity value i.e. the conflicted update directions. The
interference between different exits degrades the overall performance and the
convergence speed of the multi-exit networks.

To alleviate such a interference, specially designed networks such as the MSD-
net[20] were proposed. In [20], they added dense connections between the deeper
exits and the early modules of the networks to reduces the negative impact of
the early exits on the deeper exits. Knowledge-distillation based approaches[49,
40] are also proposed to align the learning targets of shallow exits with the
deeper exits. Another kind of solution is performed by gradient adjustment. The
Gradient Equilibrium(GE) proposed in [29] reduces the gradient variance of the
deeper exits, which is useful for reducing the negative impact of the deep exits on
shallow exits. In the works of the [55] and [48], when two gradients conflict with
each other, they project each gradient onto the normal plane of the other for
suppressing the interfering components of the gradients. This kind of gradient
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surgery method is termed Pcgrad, and it was verified in [55, 48] that Pcgrad can
reduce the conflict between different tasks.

Despite the effectiveness of existing approaches, there’s room for improve-
ment. Firstly, approaches based on knowledge-distillation and network architec-
ture designs conduct less necessary analysis about the interference at gradient
level, and it’s considered that gradient directly participates in the model opti-
mization. Secondly, GE controls the gradient variance but doesn’t take account
of adjusting gradient direction. However, gradient direction decides the update
trend of the networks, and the gradient direction conflict is one of the essence
of the interference. Thirdly, we find that not all shared parameters are equally
important to each exit. The over-parameterization of networks have adequate ca-
pacity to allow different exits to own their preferred parameters. Unconstrained
gradient re-projection policy might hinder the convergence of the networks. To
be specific, when gradients of two exits conflict with each other, the re-projection
policy is supposed to take account of the importances of the shared parameters
for different exits, instead of simply suppressing the interfering components in
the two conflicted gradients.

To tackle the above mentioned issues, we propose a novel gradient fusion
method named Meta-GF for training the multi-exit networks. In contrast to
the previous approaches, the proposed Meta-GF takes a meta-learned weighted
fusion policy to combine the gradients of each exit, while taking account of
the different importances of the shared parameters for different exits. Due to
the over-parameterization, there are adequate model capacity, which makes the
Meta-GF could implicitly disentangle the shared parameters of different tasks as
more as possible, e.g. finding exit-specific parameters for each exit by the learned
fusion weights. By fusing the gradient of different exits with the meta-weight
fusion policy, the proposed approach achieves more harmonious training of the
multi-exit networks. Extensive experiments have been conducted on CIFAR and
ImageNet datasets. The experimental results demonstrate the effectiveness of the
proposed approach. We investigate the gradient conflict problem and introduce
Meta-GF in Sec.3. The experimental results are introduced in Sec.4.

2 Related works

2.1 Dynamic deep neural networks

Dynamic deep neural network is a promising research field, where the networks
take conditional computation by using adaptive parameters[36, 31, 53, 5, 56], net-
works width or networks depth[26, 39, 25, 23]. Specially, the depth-adaptive deep
neural networks aim at achieving trade-off between the robustness and efficiency
by dynamically adjusting the network inference depth. To be specific, the net-
works conditionally adjust their inference depth according to the complexity of
inputs. There are mainly two kinds of depth-adaptive neural network structures:
the multi-exit networks and the skip-style networks.



4 Yi. Sun et al.

Fig. 1. Meta-Gradient Fusion: given an over-parameterization networks, of which
two task exit:{θ1,θ2} are linearly combined by six learnable parameters:
{w1,w2, (a1, a2), (b1, b2)}. The total loss surface of both two tasks is f1(θ1) + f2(θ2),
which is shown in the middle subfigure. When jointly training the two tasks, the gra-
dients of two tasks conflict with each other, i.e gw1

1 · gw1
2 < 0 and gw2

1 · gw2
2 < 0. The

proposed Meta-GF takes a meta-weight fusion policy to combine the expected gradients
of two tasks, which takes account of the different importances of the shared parameters
for different exits. Due to the over-parameterization, there are adequate model capac-
ity, which makes the Meta-GF could disentangle the shared parameters of different
tasks as more as possible, and achieve harmonious joint training process. In the right
subfigure, the model convergence trajectory when using the Meta-GF are more close to
the trajectories when training the two tasks independently. It indicates the Meta-GF
achieves more harmoniously training, and verifies the effectiveness of Meta-GF.

multi-exit networks multi-exit structure is commonly adopted to construct infer-
ence depth-adaptive networks. The most intuitive approach to designing multi-
exit networks are attaching different output exits at different depth of the model.
[26, 39, 25, 23]. By designing early-exiting policy such as the confidence-based cri-
terion[26, 52, 42, 20, 50] or the learned policy networks[25, 19, 19] for evaluating
the complexity of inputs, the multi-exit networks can adaptively select the out-
put exits and thus adjust the inference depth according to the input complexity.
In [57], they force the networks to exit when the predicted confidence score
doesn’t change for a predefined depth. Compared with the confidence-based cri-
terion, the learned policy networks trained by reinforcement learning[25, 19, 2,
7] or variational Bayes optimization[4] have better expandability that can be
transferred to other tasks such as the object tracking[19]. Besides, Liu et al.[35]
propose an approach to estimate the complexity of the input according to the
reconstruction loss of the data. To make the shallow module of the multi-exit
networks can obtain multi-scale receptive fields, the MSDnet proposed in [20]
adopts parallel multi-resolution calculation. Recently, the transformer-style net-
works have shown powerful and robust representation ability, and it’s also can be
modified into multi-exit style[1, 11] to improve the efficiency of the transformer-
style networks.

However, different exits might interfere with each other. Specifically speaking,
the model parameters shared by these intermediate exits always receive conflicted
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update gradients from different exits in the training stage. To address this in-
terference, some recent works[40, 49, 32] proposed training algorithms based on
knowledge distillation to align the learning objective of each exit. Differently,
the gradient-surgery approaches such as the Pcgrad [55, 48] reduce the conflict
between different exits by performing gradient re-projection policy. Gradient
equilibrium[29] or weighted-loss [10] is applied to adjust the gradient norm of
each exit for optimizing the training progress.

skip-style networks In addition to the multi-exit networks, the skip-style net-
works dynamically adjust the inference depth of the networks by adaptively skip
the non-linear neural modules. Early works like the stochastic depth networks[21]
randomly skip the residual modules in ResNet[18] in the training stage. In [12],
Angela et al. applied a learned drop-out rate to randomly skip transformer lay-
ers in the testing stage. To achieve more controllable depth-adaptive inference
in the testing stage, the networks proposed in [24, 47, 51, 46] set series of gating
modules in the position of skip-connections. The Skipnet[47] and Blockdrop[51]
adopt reinforcement learning to make the gating modules learn discrete deci-
sion strategies, i.e ”skip” or ”not skip”. Instead of skipping the whole layer,
the fractional skipping policies proposed in [30, 44, 28] dynamically select part
of the layer channels to execute, which can be also regarded as dynamic channel
pruning approaches[14]. In this work, we mainly focus on the multi-exit depth
adaptive networks.

2.2 Gradient de-conflict in multi-task learning

The gradient conflict problems also exist in the regime of multi-task learning,
because different task heads shared the models. If the gradients of different task
objectives are not well aligned[33], the average gradients would not provide a well
convergence direction for the multi-task networks. To tackle this issue, different
gradient adjustment approaches were proposed[6, 34, 15, 43, 33, 22]. Magnitude-
rescaling algorithm such as the GradNorm[6] or IMTL[34], is one kind of the
gradient adjustment strategies, which aims at balancing the gradient magnitudes
of different tasks. In [15], they propose an adaptive loss-weighting policy to
prioritize more difficult tasks. The MGDA-UB[43] and CAGrad[33] optimize the
overall objective of the multi-task models to find a Pareto optimal solution.
In order to reduce the level of gradient conflict, the PCgrad[55] projects each
conflict gradient onto the normal plane of the other for suppressing the interfering
components. These methods mentioned above all concentrate on solving the
task conflicts on the shared parts of the multi-task models. In contrast to these
gradient-adjustment approaches, the proposed Meta-GF takes a meta-learned
weighted fusion policy to combine the gradients of each exit, while taking account
of the different importances of the shared parameters for different exits.
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3 Method

In this section, we firstly investigate the gradient conflict by using a toy experi-
ment as shown in Fig.1.Then we introduce details of the proposed Meta-GF.

3.1 Gradient Conflict

Without loss of generality, we make analysis of the gradient conflict problems
on the two-exit over-parameterization networks :M = {θ1,θ2}. The {θ1,θ2}
are the parameters of the two exits respectively. Defining the shared parameters
are {w1,w2}, and the objective function of the two exits are {f1(θ), f2(θ)}
as shown in Fig.1. We initialize the model M with {w1,w2, a1, a2, b1, b2} =
{(5, 1.5), (5, 0.5), 1, 1, 1, 1}.We take the gradient conflict on w1 as example
when ∇w1

f1 · ∇w1
f2 < 0. The loss degradation of f1 can be approximately by

the First-order Taylor expansion as shown in Eq.(1) when the learning rate ϵ is
small:

∆fg1+g2
1 ≈ −ϵ

(
g21 + g1g2

)
+ o(ϵ2)

≤ −ϵ
(
g21
)
+ o(ϵ2) ≈ ∆fg1

1

, g1 · g2 < 0, (1)

where (g1, g2) denote (∇w1
f1,∇w1

f2), and ϵ is the low learning rate(ϵ =
0.001). Obviously, the convergence of f1 is negatively influenced by the gradi-
ent of exit-2: g2. The total loss degradation when updating w1 is calculated as
follows:

∆L = ∆fg1+g2
1 +∆fg1+g2

2 ≈ −ϵ
(
g21 + g22 + 2g1g2

)
+ o(ϵ2). (2)

The gradient de-conflict approach Pcgrad proposed in [55] projects each con-
flict gradient onto the normal plane of the other for suppressing the interfering
components, which improves the performance of multi-task networks. The gra-
dient re-projection can be formulated as:

ĝ1 = (g1 −
g1g2
∥g2∥2

g2), ĝ2 = (g2 −
g1g2
∥g1∥2

g1). (3)

The loss degradation ∆L by re-projecting both two gradients is:

∆Lg2⇋g1 = −ϵ

(
g21 + g22 −

(g1g2)
2

∥g1∥2
− (g1g2)

2

∥g2∥2
+ 2g1g2((cosα)

2 − 1)

)
+ o(ϵ2).

(4)
The (cosα) is the cosine similarity between g1 and g2((cosα) < 0).

If we only re-project the gradient g1, then the total loss degradation ∆Lg1→g2

is:

∆Lg1→g2 = −ϵ

(
g21 + g22 −

(g1g2)
2

∥g2∥2

)
+ o(ϵ2). (5)

Similarly, when we only re-project the g2:

∆Lg2→g1 = −ϵ

(
g21 + g22 −

(g1g2)
2

∥g1∥2

)
+ o(ϵ2). (6)
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It’s obvious that ∆Lg2⇋g1 isn’t always larger than ∆Lg1→g2 or ∆Lg2→g1 . Specifi-
cally, assuming ∥g1∥ > ∥g2∥, the following inequation only holds when the norms
of two gradients have a limited difference (please refer to ??):

∆Lg2⇋g1 > ∆Lg2→g1 , when
∥g2∥
∥g1∥

>
−0.5(cosα)

(sinα)2
. (7)

Otherwise, re-projecting the small one gradient g2 is better than adjusting both
gradients. This analysis indicates that the shared parameters are sometimes
not actually ”shared” equally, i.e. the importances of the shared parameters for
different exits are different. In conclusion, it would be better to take account of
the importances of the shared parameters for different exits when jointly training
multi-exit networks. The toy experiment in Fig.1 verifies this assumption.

3.2 Meta Weighted Gradient Fusion

Assuming ∥g1∥ > ∥g2∥ and g1 · g2 < 0, our previous analysis indicates that the
optimal gradient fusion policy for w1 is:

gf =


(1− ∥g1∥

∥g2∥
cosα)g1 + (1− ∥g2∥

∥g1∥
cosα)g2, if ∥g2∥

∥g1∥ > −0.5(cosα)
(sinα)2

(1− ∥g1∥
∥g2∥

cosα)g1 + g2, otherwise.
(8)

It can be seen in Eq.(8) that the larger gradient is always enhanced, which
illustrates the preference of the networks to the dominant gradient in fusing
gradients of different exits. The above mentioned analysis suggests that it’s an
potential solution to gradient conflict by weighting the gradients from different
exits according to their importances. Hence, we further describe the fusion policy
in a weighted-fusion policy:

gf = η1g1 + η2g2, η1 > η2 > 0. (9)

The Meta-GF algorithm Considering there are always millions of parameters
in nowadays deep neural networks, it’s computationally expensive to calculate
the inner production between gradients and their norms. Inspired by the meta-
learning approaches, we instead learn the fusion weights of gradients in a data-
driven manner. The number of exits is referred to as n, and the parameter set
of the networks is referred to as W. For a given shared parameters w ∈ W, the
fusion gradient is:

gwf =

∑n
i=1 e

ηw
i gwi∑n

i=1 e
ηw
i

. (10)

The η = {ηw1 , ..., ηwn |w ∈ W} are the learnable fusion weights, which are dynam-
ically optimized to minimize the cost of the objective functions F :

η = argmin
η

F (W− ϵ

∑n
i=1 e

ηigi∑n
i=1 e

ηi
). (11)
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The default values of the fusion weights are all set to 1 in the initialization
stage. The objective function F is the cross-entropy loss function because we ver-
ify the proposed approach on the multi-exit classification network: MSDnet[20]
and SDN[26].

It’s also important to reduce the noises in the gradients of each exit. In the
current mini-batch training settings, the gradient variance in each mini-batch
should be considered. The uncertainty of each gradient will cause negative in-
fluence on the gradient de-conflict performance. There exists an easy method
to estimate the expected gradient of each exit. Inspired by the Reptile algo-
rithm[38], the expected gradient Eg of each task is obtained by training the task
independently for one epoch, where the independent training process share the
same initial model W0. This method can be formulated as:

Wtask = argmin
W

Ftask(W;W0, D), (12)

Egtask = Wtask −W0, (13)

where D is the training set and Ftask is the objective function. The details of
the proposed Meta-GF approaches are illustrated in Algorithm 1.

Algorithm 1 Meta Weighted Gradient Fusion:
Input: Initial parameters:W0, training dataset:D, learning rate:ϵ, fusion weight:η. The number of

exits is n. F = {F1, ..., Fn} is the objective function of the exits.

Output: W

1: while i < MaxIter do

2: ▼ 1. Calculating expected gradients:

3: for j=1,...,n do

4: Ŵ = W0

5: Wj = argmin
W

Fj(W;Ŵ, D)

6: gj = Wj − Ŵ,

7: end for

8: ▼ 2. Meta Weighted Gradient Fusion:

9: η = argmin
η

F (W0 − ϵ
∑n

i=1 eηi gi∑n
i=1

eηi
;D).

10: W = W0 − ϵ
∑n

i=1 eηi gi∑n
i=1

eηi

11: W0 = W

12: end while

13: return Y

4 Experiments

To verify the effectiveness of the proposed Meta-GF, we conduct extensive exper-
iments on the representative image classification dataset CIFAR[27] and ILSVRC
2012(ImageNet). Besides, we make detailed analysis of the proposed meta-fusion
method. For fair comparison, all of the methods for comparison in this work use
the same multi-exit networks: MSDnet[20] and SDN[26].
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Datasets. CIFAR100 and CIFAR10 both contain 60000 RGB images of size
32×32. 50000 of them are applied for training and 10000 for test in the two
datasets. The images in CIFAR10 and CIFAR100 are corresponding to 10 classes
and 100 classes respectively. We adopt the same data augmentation policy as
introduced in [29], which includes random crop, random flip and data normaliza-
tion. We select 5000 of the training sets on CIFAR100 and CIFAR10 respectively
for validation. The ImageNet dataset contains 1000 classes, where the input size
of images is set to 224×224. The training set have 1.2 million images and we
select 50000 of them for validation, where the public validation set of the Ima-
geNet is referred to as the test set in this work because the true test set has not
been made public.

Implementation Details. We optimize all models by using stochastic gradient
descent with batch size of 64 on CIFAR and 512 on ImageNet. The momentum
weight and weight decay are set to 0.9 and 10−4 respectively. We train the
MSDnet for maxiter = 300 epochs on both CIFAR datasets and for maxiter =
90 epochs on ImageNet. For the SDN, the maximum epoch is set to 100 on
CIFAR datasets. The adjustment of the learning rate is achieved by multi-step
policy, where we divide the learning rate by a factor of 10 after 0.5 ×maxiter
and 0.75×maxiter epochs. The initial learning rate is 0.1.

The fusion weights are all initialized as 1. Those fusion weights are optimized
by Adam optimizer, of which initial learning rate is set to 10−1, and we take the
same multi-step policy as above to adjust the learning rate. During an training
epoch, we first train each exit independently for estimating the expected updat-
ing directions. However, we find that independently training each exit without
optimizing other exits might cause negative influence on the Batch Normaliza-
tion layers of the deeper exits. Therefore, except for the current selected exit,
we actually train other exits with a very small learning rate. Then we train the
fusion weights with the training sets for one iteration. Finally ,we merge the
expected gradients of each task with the proposed Meta-GF.

Compared methods. We compare the proposed Meta-GF with four representa-
tive approaches. The Pcgrad[55] and Cagrad[33] are proposed for the multi-task
learning problem, and we apply them to the multi-exit neural networks.

– MSDnet[20]/SDN[26]. In this work, the proposed method and other com-
pared training methods all adopt the MSDNet/SDN as the network struc-
ture. It serves as a baseline in the experiments. It takes the SGD as the
optimizer for training.

– Gradient Equilibrium(GE)[29]. It rescales the magnitude of gradients along
its backward propagation path. It helps to reduce gradient variance and
stabilize the training procedure.

– Pcgrad[55]. When two gradient conflict with each other, it projects each
gradient onto the normal plane of the other for suppressing the interfering
components of the gradients.

– Cagrad[33]. To regularize the algorithm trajectory, it looks for an gradient
fusion policy that maximizes the worst local improvement of any objective
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in the neighborhood of the average gradient. Different from Pcgrad, it aims
at forcing the models to converge to a Pareto set of the joint objectives. As
same as Pcgrad, we implement the Cagrad on the MSDnet and the SDN to
adjust the direction of gradients.

On the CIFAR datasets, we set the exit number of the MSDnet to 7. The
depth of 7 exits are {4, 6, 8, 10, 12, 14, 16} respectively. The input size of the
image is 32 × 32. We train the MSDnet with three-scale features, i.e, 32 × 32,
16× 16 and 8× 8. On the ImageNet, there are 5 exits in the MSDnet, which are
respectively inserted at the depth of {4, 8, 12, 16, 20}. The input size on ImageNet
datasets is 224× 224, and we use four-scale MSDnet, i.e the multi-scale feature
maps are {56× 56, 28× 28, 14× 147× 7}. All of the compared methods use the
same MSDnet architectures on the CIFAR and ImageNet. For the SDN-style
networks, we take the same training settings as described in [26], and conduct
experiments on the Resnet-SDN and Vgg-SDN.

4.1 Prediction accuracy of each exit

In the anytime prediction setting[20], the model maintains a progressively up-
dated distribution over classes, and it can be forced to output its most up-to-date
prediction at an arbitrary time[19]. Therefore, the prediction accuracy of differ-
ent exits is much significant for the performance of anytime prediction.

As illustrated in Table 1, we compare the prediction top-1 accuracy of the
MSDnet when using different training approaches on CIFAR. On CIFAR100,
the previous gradient adjustment approaches: GE, Cagrad and Pcgrad perform
better than the baseline model, which indicates that the adjustment of gradient
can effectively alleviate the conflicts between different exits. Especially, Cagrad
performs better than other methods at shallow exits which demonstrates that
Cagrad successfully maximizes the worst local improvement of any objective in
the neighborhood of the average gradient. But it hurts the performance of the
deeper exits.

Params(M) flops(M)
CIFAR100 CIFAR10

MSDnet GE Cagrad Pcgrad ours MSDnet GE Cagrad Pcgrad ours
Exit-1 0.90 56.43 66.41 67.74 68.78 67.06 67.97 91.13 92.02 92.19 91.66 92.38
Exit-2 1.84 101.00 70.48 71.87 72.55 71.37 72.27 92.91 93.53 93.49 93.59 94.22
Exit-3 2.80 155.31 73.25 73.81 74.23 74.86 75.06 93.98 94.14 94.47 94.32 94.49
Exit-4 3.76 198.10 74.02 75.13 74.97 75.78 75.77 94.46 94.49 94.45 94.60 94.96
Exit-5 4.92 249.53 74.87 75.86 75.35 76.25 76.38 94.68 94.73 94.48 94.81 94.82
Exit-6 6.10 298.05 75.33 76.23 75.82 76.95 77.11 94.78 94.89 94.53 94.83 94.97
Exit-7 7.36 340.64 75.42 75.98 76.08 76.71 77.47 94.64 94.96 94.48 94.82 94.97

Average - - 72.83 73.80 73.96 74.14 74.57 93.80 94.11 94.01 94.09 94.54

Table 1. Classification accuracy of individual classifiers in multi-exit MSDnet on
CIFAR-100 and CIFAR10.

Different from the Pcgrad and Cagrad, which treat all the shared parameters
as a whole and manipulate the gradients, the Meta-GF aims at softly weighting
the gradients of each shared parameter by considering its importance for each
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exit. As shown in Table.1, despite that our approach doesn’t always achieve the
highest score at each exit, the proposed Meta-GF enables the multi-exit MSDnet
obtain the best overall accuracy on both the CIFAR10 and CIFAR100 datasets.

To further verify the effectiveness of the proposed Meta-GF, we compare
the existing approaches and our method on the ImageNet. The MSDnet trained
on the ImageNet have 5 exits. As shown in Table 2, the overall performance
of the proposed Meta-GF outperforms GE, Pcgrad and the baseline. The shal-
low exits of the baseline achieve the best prediction accuracy, but interfere the
performance of the deeper exits.

Params(M) flops(M)
ImageNet

MSDnet GE Pcgrad ours
Exit-1 4.24 339.90 58.48 57.75 57.62 57.43
Exit-2 8.77 685.46 65.96 65.54 64.87 64.82
Exit-3 13.07 1008.16 68.66 69.24 68.93 69.08
Exit-4 16.75 1254.47 69.48 70.27 71.05 71.67
Exit-5 23.96 1360.53 71.03 71.89 72.45 73.27

Average - - 66.72 66.94 66.98 67.25

Table 2. Classification accuracy of individual classifiers on ImageNet.

We also conduct experiments on two shallow depth networks proposed in
[26], i.e. the Resnet-SDN and the Vgg-SDN. We take the same training settings
as described in [26]. The results shown in Table 3 and Table 4 demonstrate that
the proposed Meta-GF not only works in the well-designed multi-exit networks–
MSDnet, but can also improve the performance of other multi-exit networks. It’s
worthy noting that we regarded all the filters of each layer as one parameter in
the MSDNet and Resnet-SDN, however in the Vgg-SDN, we regard the filters
belong to each output channel as a parameter. Because the structure of Vgg is
flat-style without skip-connection, if the middle-layers become very task-specific,
the performance of the deeper exits will inevitably influenced.

Params(M) flops(M)
CIFAR100 CIFAR10

SDN-vgg GE Cagrad Pcgrad ours SDN-vgg GE Cagrad Pcgrad ours
Exit-1 0.05 39.76 44.42 44.46 53.08 43.59 49.91 69.03 68.97 76.27 67.41 74.92
Exit-2 0.29 96.52 61.08 61.0 61.39 63.02 61.09 84.72 84.52 86.3 85.28 88.69
Exit-3 1.22 153.25 69.8 69.54 70.9 70.04 71.38 92.15 92.02 92.4 91.8 92.75
Exit-4 1.85 191.08 72.23 72.11 71.55 73.14 75.77 92.5 92.62 92.79 92.74 93.07
Exit-5 5.47 247.81 72.48 72.32 72.41 72.59 74.12 92.46 92.78 92.99 92.75 93.13
Exit-6 7.86 285.68 72.63 72.38 72.45 72.54 74.23 93.59 92.83 93.07 92.7 93.12
Exit-7 15.47 314.45 71.76 71.58 71.43 71.39 73.1 92.61 92.85 93.0 93.69 93.07

Average - - 66.34 66.19 67.60 66.61 68.51 88.15 88.08 89.54 88.05 89.82

Table 3. Classification accuracy of individual classifiers in multi-exit Vgg-SDN[26] on
CIFAR-100 and CIFAR10.

We take further comparisons with the distillation-based works proposed in
[3] as shown in Table 5. The knowledge distillation-based methods are mainly
applied to provide soft target distributions, or in other words, distill the knowl-
edge by deeper networks for improving the generalization ability of shallow net-
works. The distillation-based works is complementary to the gradient-adjust ap-
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Params(M) flops(M)
CIFAR100 CIFAR10

SDN-Resnet GE Cagrad Pcgrad ours SDN-Resnet GE Cagrad Pcgrad ours
Exit-1 0.02 19.50 40.20 42.10 48.73 40.10 44.41 71.64 71.37 80.94 69.74 76.04
Exit-2 0.04 38.54 45.45 46.91 47.05 45.67 47.17 78.10 77.11 80.24 77.24 78.11
Exit-3 0.10 56.47 59.08 59.85 57.77 60.04 59.70 87.32 87.21 86.31 87.75 86.43
Exit-4 0.18 75.43 62.40 63.81 62.62 63.47 63.25 89.85 89.63 88.62 89.79 89.09
Exit-5 0.36 93.32 67.88 68.52 67.16 67.78 68.38 91.45 91.51 90.73 91.53 91.48
Exit-6 0.67 112.25 70.06 69.88 69.26 69.70 70.25 92.26 92.33 91.31 92.17 92.33
Exit-7 0.89 126.44 70.02 69.63 68.40 70.07 70.08 92.33 92.21 91.19 92.09 92.87

Average - - 59.29 60.10 60.14 59.54 60.32 86.13 85.91 87.04 85.76 86.62

Table 4. Classification accuracy of individual classifiers in multi-exit Resnet-SDN[26]
on CIFAR-100 and CIFAR10.

Params(M) flops(M)
CIFAR100

MSDnet Meta-GF KD Meta-GF(KD)
Exit-1 0.90 56.43 50.82 52.44 56.66 57.43
Exit-2 1.84 101.00 54.38 55.37 58.35 59.05
Exit-3 2.80 155.31 56.29 57.51 59.39 60.10
Exit-4 3.76 198.10 57.54 58.83 60.05 60.23
Exit-5 4.92 249.53 58.42 60.28 60.35 60.78
Exit-6 6.10 298.05 58.28 60.55 60.2 61.02
Exit-7 7.36 340.64 58.96 60.55 59.66 60.54

Average - - 56.38 57.93 59.23 59.87

Table 5. Classification accuracy of individual classifiers on CIFAR100(150).

proaches[29, 55, 33], and thus is also complementary to the proposed Meta-GF.
For simplicity, we takes 150 samples per class on CIFAR100 datasets for training.
As shown in Table 5, by integrating the knowledge distillation with the proposed
Meta-GF, the performance of the multi-exit networks can be further improved.

4.2 Adaptive inference

In budgeted batch prediction mode[20], the computational budget is given in ad-
vance and the model is supposed to allocate different resources according to the
complexity of inputs. For example, ”easy” inputs are usually predicted by the
shallow exits for saving the computation resources. When the multi-exit network
conducts budgeted batch prediction, it forwards the input through the interme-
diate exits from the shallow ones to the deep ones. If the prediction confidence
at certain exit, which is the highest softmax probability in this experiment, is
higher than a threshold, then the inference stops at this exit and the network
outputs the prediction of this exit as the result. Otherwise, the subsequent exits
is evaluated, until a sufficient high confidence has been obtained, or the last exit
is evaluated[29]. The threshold is calculated on the validation set as described in
[20]. We refer the readers to the work proposed in [20] for more details. As shown
in Fig.2, the proposed Meta-GF achieves competitive performance on three kinds
of multi-exit networks when compared with other approaches. These results are
consistent with the anytime prediction experiments, and demonstrate that the
Meta-GF effectively balance the learning behavior of each exit.

4.3 Analysis about Meta-GF

In this section, we first make analysis about the convergence speed of the multi-
exit networks when using the proposed Meta-GF. Then we investigate whether
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(a) MSDnet (b) Vgg-SDN (c) Resnet-SDN

Fig. 2. Performance comparison: classification accuracy of budgeted batch classifica-
tion as a function of average computational budget per image on the CIFAR-100.

(a) MSDnet (b) Vgg-SDN (c) Resnet-SDN

Fig. 3. The accuracy of the multi-exit networks in the training stage on CIFAR100.

the learned fusion weights have the ability to reflect the importances of the
shared parameters for the corresponding exits.

The convergence speed when using the proposed approach As shown in
Fig.3, the solid line represents the accuracy of the last exit on the training set.
Note that the convergence speed in this work is evaluated by the training ac-
curacy at the specific training iterations. Compared with the previous methods,
the proposed Meta-GF obviously improve the convergence speed of the model,
which benefits from the meta-learned expected gradient fusion. Yet for the Vgg-
SDN, the convergence speed of the model when using the Meta-GF falls behind
using the Cagrad at the first 50 epochs, but exceed it at the last 50 epochs. The
final performance by using the Meta-GF stills surpass the Cagrad as shown in
Table.3.

Analysis about the learned fusion weights We further make analysis of the
learned fusion weights on CIFAR100. As mentioned above, the gradient fusion
weights ηi of each exit are supposed to reflect the importances of the shared-
parameters for the exit. We preliminarily define the parameter w with large ηwi
as the important parameter for the ith exit, where eη

w
i∑n

j=1 e
ηw
j

> 0.5. As shown

in Fig.4, we iteratively prune the important parameters of each exit from the
1st exit to the 7th exit, the relative accuracy degradation is shown along the
horizontal axis. It can be seen that when we prune the important parameters of
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(a) Resnet-SDN (b) MSDnet (c) Vgg-SDN

Fig. 4. The accuracy degradations when pruning the important shared parameters of
different exits.

one exit, it mainly reduces the accuracy of this exit. This result in Fig.4 indicates
that the learned fusion weights effectively capture the importances of the share-
parameters for each exit. Therefore, it’s feasible to use the Meta-GF to alleviate
the interference between different exits. It’s worthy noting that not all exits in
these multi-networks can own sufficient task-specific shared-parameters. Hence
in Fig.4, we can still see that pruning the important parameters of some exits
doesn’t cause the largest accuracy degradation to the associated exits.

5 Conclusion and discussion

In this work, we propose a meta gradient fusion approach to tackle the gra-
dient conflict problems when training multi-exit depth adaptive networks. The
proposed Meta-GF takes a meta-learned weighted fusion policy to combine the
expected gradients from each exit. We conduct extensive experiments on CIFAR
and ImageNet, and the experimental results demonstrate the effectiveness of our
approach.

However there is still room for improvement, we will further develop the
Meta-GF through three aspects. Firstly, the meta fusion progress, in the cur-
rent settings, doesn’t take account of the parameters of the BatchNorm layer,
and we will extend the Meta-GF to effectively fuse the BatchNorm layer either.
Secondly, we plan to explicitly design objective functions for alleviating the gra-
dient conflicts between different exits, which is not used in this work. Finally,
we believe that the idea of the Meta-GF can be relevant to the network pruning
researches to some extent. Though the learned fusion weights by the Meta-GF
cannot be directly applied to prune the multi-exit networks for each exit, the re-
sults in Fig.4 demonstrate a promising direction for our future researches, which
means that we can combine the Meta-GF with the network pruning approaches
for better disentangling the shared parts of the multi-exit networks, and also for
alleviating the interference between different exits.
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