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A Quantization regularizers as an estimate of the
quantization error

Let x ∈ Rk be a vector that we want to quantize, s – the scale parameter
(that is scalar), b – the quantization bit-width, and t = 2b−1. The mean squared
quantization error is defined as follows:
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In this case, uniform quantization function Qb
U is applied element-wise. We

will denote MSQE(x, 1, 1) by MSQE(x). Note that the following equality holds:

MSQE(x, s, t) = s2

t2 MSQE
(
t·x
s

)
.

The proposed regularizers have the following property: for small quantization
errors, the values of regularizers can be used as an estimate of the quantization
error. Based on this property, we propose to use the proposed regularizer ϕ

multiplied by s2

t2 to train quantized models. We assume that the second deriva-
tive ϕ′′(x, t) is continuous in the neighborhood of integer points from the range
[−⌊t⌋, ⌊t⌋− 1]. It is easy to verify that this requirement is satisfied for all integer
points of this range for the regularizer we use, except for the extreme integer
points when t is integer.

Proposition 1. For each regularizer ϕ from the proposed class of regularizers,
in the neighborhood of each integer point from the range [−⌊t⌋, ⌊t⌋ − 1], there
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exists a constant C, such that

s2

t2
ϕ

(
t · x
s

, t

)
= C ·MSQE(x, s, t) + o(MSQE(x, s, t)),

for MSQE(x, s, t) → 0. (A.2)

Proof. The value of MSQE(x, s, t) is zero only when the value of t·x
s falls into

the integer points from [−⌊t⌋, ⌊t⌋−1]. Let n be some integer from [−⌊t⌋, ⌊t⌋−1].
By definition of the proposed regularizers, all integers from this segment are the
roots and minima of function ϕ(·, t), in particular, ϕ(n, t) = 0 and ϕ′(n, t) = 0.
Consider the Taylor series of function ϕ(x, t) at the point n for a fixed value of
t. Since ϕ(x, t) is twice differentiable in the neighborhood of n, we have

ϕ(x, t) =
1

2
ϕ′′(n, t)(x− n)2 + o
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)
, x → n. (A.3)

But MSQE(x) = (x− n)2 for any x ∈ [n− 1
2 , n+ 1

2 ], and therefore we get that
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MSQE(x) → 0. (A.4)

Let us denote 1
2ϕ

′′(n, t) by C. In the last equality, replace x with t·x
s , and

multiply this equality by s2

t2 . Considering that function ϕ(x) of the vector x is
equal to the average of the outputs of such functions applied to the components of

vector x, as well as that MSQE(x, s, t) = s2

t2 MSQE
(
t·x
s

)
, we obtain the required

statement. □

B Pseudocode of the proposed algorithm and
quantization of continuous distributions

Algorithm 1 summarizes our training approach for mixed-precision quantiza-
tion. Note that during minimization of LQ relative to its variables, we compute
gradients of activation regularizers relative only to scale parameters sa. This
is possible due to the properties of function La(sa) with fixed W and sw and
allows for faster convergence of sa to the global minimum of La(sa). We discuss
this in detail below. Also, we compute gradients of the weight regularizers Lw

relative only to scales sw and bit-widths θ during some time at the beginning
of training. We do this in order to weaken the effect of tuning the weights to
bit-widths, which will change during training.

Let ξ be a random variable with density pξ, the first and second moments
of which are finite. Let us consider the mean squared quantization error for a
random variable ξ as a function of the scale parameter s for fixed bit-width and
parameter t:

MSQE[ξ](s) =
s2

t2

∫
R

(
t · x
s

−QU

( t · x
s

))2

pξ(x)dx. (B.5)



Explicit Model Size Control for Mixed-Precision Quantization 3

Algorithm 1

Require: W, sw, sa – trainable parameters (model and scale parameters).
Require: θ – trainable bit-width parameters.
Require: λw, λa – regularization coefficients.
Require: binit – initial bit-width of the quantized layers.
Require: lr, Ntrain, Ninit – learning rate, epoch size, the number of initialization

batches.
1: Initialize bit-width parameters θ.
2: Initialize sw using the current weight tensors.
3: Initialize sa by sampling statistics evaluating F on Ninit batches from X.
4: for Ntrain times do
5: Sample a random batch from the training dataset.
6: Evaluate quantization loss function LQ.
7: Evaluate gradient parameters:

Gw =
∂ LQ

∂W
+ λw

∂ Lw
∂W

, Gsw =
∂(LQ +λw Lw)

∂sw
,

Gsa =
∂(LQ +λa La)

∂sa
, Gθ =

∂(LQ +λw Lw)

∂θ
.

8: Update parameters by calculating gradients and learning rate lr.
9: end for
10: Validate quantized model Fq.
11: return W, sw, sa, θ.

Consider the problem of minimizing MSQE[ξ](s) w.r.t the scale parameter s. We
compare MSQE[ξ](s) to the following function:

ϕ[ξ](s) =
s2

t2

∫
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)
pξ(x)dx, (B.6)

where ϕ is the regularizer that we use. We investigated the behavior of these
functions for various distributions of ξ. In our investigation, we used distribu-
tions that suit well for modeling the weights and activations of neural networks.
In particular, we used normal and Laplace distributions, as well as normal and
Laplace distributions with the subsequent use of ReLU. Figure B.1 shows the
plots of ϕ[ξ](s) and MSQE[ξ](s) for different bit-widths and distributions. Note
that we scale MSQE[ξ](s) using a special scalar coefficient for the correct repre-
sentation of functions MSQE[ξ](s) and ϕ[ξ](s) on the same plot. It can be seen
from Figure B.1 that the optimal value of s for MSQE[ξ](s) → min is quite
close to the optimal value of s for ϕ[ξ](s) → min. Therefore, we can conclude
that ϕ[ξ](s) is a good estimate of MSQE[ξ](s). Thus, for a more thorough tuning
of the activation scale parameters, we propose to compute the gradients of the
activation regularizers only with respect to scale factors sa during minimization
of the loss with the proposed quantization regularizers.

C Training protocols for the experiments

We have performed all experiments using PyTorch 1.9.1, Torchvision 0.10.1, and
GPU: NVIDIA Tesla V100 32GB.
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Image classification: ResNet-20 on CIFAR-10 For the ablation study in section
5.1 of the paper, we quantize the weights of all layers and do not quantize activa-
tions. Quantized models are trained for 100 epochs, using SGD with momentum
0.9 and a learning rate schedule starting with 0.01 and reducing it by a factor
of 10 every 25 epochs.

In the experiments in section 5.2, the quantized models are trained for 200
epochs, using SGD with momentum 0.9 and a learning rate schedule starting
with 0.01 and reducing it by a factor of 10 after 120 and 160 epochs.

In all these experiments, we use λw = 0.01 and λa = 0.01. We collect statistics
for the initialization of activation scale parameters during 50 batches of size 100
and start computing the gradients of regularizers w.r.t. weights after 20 epoch.
We quantize the weights of the first and last layers to 4 bits, and the weights
of the remaining layers to mixed-precision. In the case of quantization without
using the proposed regularizers, parameter binit is equal to 1.7. In the case of
quantization using the proposed regularizers, parameter binit is equal to 1.9 for
the weights-only quantization, and to 1.8 when activations are quantized to 4
bits. Weight decay is 10−8.

Image classification: ResNet-18, ResNet-50, and MobileNet-V2 on Imagenet In
these experiments, the models quantized to near W8A8 are trained for 15 epochs,
using SGD with momentum 0.9 and a learning rate schedule starting with 10−4

and reducing it to 10−5 after 1500 batches. The models quantized to near W4A4
are trained for 32 and 99 epochs for ResNet-18 and ResNet-50 respectively.
Learning rate is not reduced for ResNet-18 in this case and reduced after 20000
batches for ResNet-50.

For near W8A8, we quantize activations of all layers of the models to 8
bits and use the proposed quantization regularizers. Initially, we set λw = 0
and λa = 10−4. We collect statistics for the initialization of activation scale
parameters during 100 batches (the batch size differs depending on the model
and is noted below). After 20000 batches, we start computing the gradients of
regularizers w.r.t. weights. We increase λw to 1 after 40000 batches, and after
80000 batches we increase it to 10. Weight decay is 10−8. Parameter binit is equal
to 7.2. We quantize weights of the first and last layers of all models to 8 bits,
and weights of the remaining layers are quantized to mixed-precision. In the case
of ResNet-18, the batch size is 64, for ResNet-50 the batch size is 26, and for
MobileNet-V2 the batch size is 46.

For near W4A4, we quantize activations of all layers of the models to 4 bits
(except for the first and last layers, which are quantized to 8 bits) and use the
proposed quantization regularizers. Initially, we set λw = 0 and λa = 0.1. We
collect statistics for the initialization of activation scale parameters during 100
batches (the batch size differs depending on the model and is noted below). After
2000 batches, we start computing the gradients of regularizers w.r.t. weights. We
increase λw to 1 after 40000 batches, and after 80000 batches we increase it to
10. Weight decay is 10−8. Parameter binit is equal to 3.5. We quantize weights
of the first and last layers of all models to 8 bits, and weights of the remaining
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layers are quantized to mixed-precision. In the case of ResNet-18, the batch size
is 32 and for ResNet-50 the batch size is 16.

Image super-resolution: ESPCNN on Vimeo-90K All super-resolution networks
are trained on the Vimeo-90K dataset by randomly picking the 126× 126 crops
from a frame. As a downsampling operator we use a Gaussian blur followed by
a bicubic downsampling. We use Adam optimizer with batches of size 32. Single
epoch is 128 batches. We use L1 loss for training the models.

In the case of MixPr1 model, parameter binit is equal to 7.31, and in the
case of MixPr2 model, it is equal to 5.94. We start regularizing the bit-widths
using a special regularizer for bit-widths values for a set of 4 and 8 bits from
the beginning of training. We collect statistics for the initialization of activation
scale parameters over 64 batches. We train these models during 5 epochs using
regularization parameters λw = 103, λa = 0.1 and learning rate 10−3 without
computing the gradients of regularizers w.r.t. weights. After that, we start com-
puting the gradients of regularizers w.r.t. weights and train these models during
10 epochs with λw = 10, λa = 1 and learning rate 10−4, and then we train them
during 200 epochs using λw = 103, λa = 1 and learning rate 10−5. Weight decay
is 10−6.

D Additional examples for image super-resolution task

We provide additional examples of images produced by the quantized ESPCNN
model in Figures D.1, D.2 and D.3.

E Obtained bit-width distributions

We provide the bit-width distributions obtained by the proposed quantization
method for ResNet-20 on CIFAR-10, ResNet-18, ResNet-50, and MobileNet-V2
on ImageNet in Figures E.1-E.8.
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N(0, 1), 4-bit scheme.
N(0, 1) followed by ReLU, 4-bit
scheme.

Laplace(0, 1), 4-bit scheme.
Laplace(0, 1) followed by ReLU, 4-
bit scheme.

N(0, 1), 8-bit scheme.
N(0, 1) followed by ReLU, 8-bit
scheme.

Laplace(0, 1), 8-bit scheme.
Laplace(0, 1) followed by ReLU, 8-
bit scheme.

Fig. B.1: Functions ϕ[ξ](s) and MSQE[ξ](s) for different bit-widths and for nor-
mal and Laplace distributions ξ, as well as for normal and Laplace distributions
with subsequent use of ReLU.
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Original Full precision Quantization to 8 bits

Mixed precision: MixPr1 Mixed precision: MixPr2 Quantization to 4 bits

Original Full precision Quantization to 8 bits

Mixed precision: MixPr1 Mixed precision: MixPr2 Quantization to 4 bits

Fig.D.1: Mixed-precision quantization of the image super resolution task.
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Original Full precision Quantization to 8 bits

Mixed precision: MixPr1 Mixed precision: MixPr2 Quantization to 4 bits

Original Full precision Quantization to 8 bits

Mixed precision: MixPr1 Mixed precision: MixPr2 Quantization to 4 bits

Fig.D.2: Mixed-precision quantization of the image super resolution task.
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Original Full precision Quantization to 8 bits

Mixed precision: MixPr1 Mixed precision: MixPr2 Quantization to 4 bits

Original Full precision Quantization to 8 bits

Mixed precision: MixPr1 Mixed precision: MixPr2 Quantization to 4 bits

Fig.D.3: Mixed-precision quantization of the image super resolution task.
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Fig. E.1: Bit-width distribution of quantized ResNet-20 on CIFAR-10 obtained
using regularizers without quantization of activations. Accuracy of the obtained
model is equal to 91.97%.

Fig. E.2: Bit-width distribution of quantized ResNet-20 on CIFAR-10 obtained
using regularizers with quantization of activations to 4 bits. Accuracy of the
obtained model is equal to 91.62%.

Fig. E.3: Bit-width distribution of quantized ResNet-20 on CIFAR-10 obtained
without using regularizers with quantization of activations to 4 bits and without
quantization of activations. Accuracy of the obtained model with quantization
of activations to 4 bits is equal to 91.55%, and accuracy of the obtained model
without quantization of activations is equal to 91.75%.



Explicit Model Size Control for Mixed-Precision Quantization 11

Fig. E.4: Bit-width distribution for quantized ResNet-18 on Imagenet model ob-
tained using regularizers with quantization of activations to 8 bits. Accuracy of
the obtained model is equal to 71.81%.

Fig. E.5: Bit-width distribution for quantized ResNet-50 on Imagenet model ob-
tained using regularizers with quantization of activations to 8 bits. Accuracy of
the obtained model is equal to 79.45%.

Fig. E.6: Bit-width distribution for quantized MobileNet-v2 on Imagenet model
obtained using regularizers with quantization of activations to 8 bits. Accuracy
of the obtained model is equal to 71.90%.
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Fig. E.7: Bit-width distribution for quantized ResNet-18 on Imagenet model ob-
tained using regularizers with quantization of activations to 4 bits. Accuracy of
the obtained model is equal to 70.68%.

Fig. E.8: Bit-width distribution for quantized ResNet-50 on Imagenet model ob-
tained using regularizers with quantization of activations to 4 bits. Accuracy of
the obtained model is equal to 77.45%.
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