
Explicit Model Size Control and Relaxation via
Smooth Regularization for Mixed-Precision

Quantization

Vladimir Chikin1⋆, Kirill Solodskikh1⋆, and Irina Zhelavskaya2

1 Huawei Noah’s Ark Lab
{vladimir.chikin,solodskikh.kirill1}@huawei.com

2 Skolkovo Institute of Science and Technology (Skoltech)
irina.zhelavskaya@skolkovotech.ru

Abstract. While Deep Neural Networks (DNNs) quantization leads to
a significant reduction in computational and storage costs, it reduces
model capacity and therefore, usually leads to an accuracy drop. One
of the possible ways to overcome this issue is to use different quanti-
zation bit-widths for different layers. The main challenge of the mixed-
precision approach is to define the bit-widths for each layer, while staying
under memory and latency requirements. Motivated by this challenge,
we introduce a novel technique for explicit complexity control of DNNs
quantized to mixed-precision, which uses smooth optimization on the
surface containing neural networks of constant size. Furthermore, we
introduce a family of smooth quantization regularizers, which can be
used jointly with our complexity control method for both post-training
mixed-precision quantization and quantization-aware training. Our ap-
proach can be applied to any neural network architecture. Experiments
show that the proposed techniques reach state-of-the-art results.

Keywords: neural network quantization, mixed-precision quantization,
regularization for quantization

1 Introduction

Modern DNNs allow solving a variety of practical problems with accuracy com-
parable to human perception. The commonly used DNN architectures, however,
do not take into account the deployment stage. One popular way to optimize
neural networks for that stage is quantization. It significantly reduces memory,
time and power consumption due to the usage of integer arithmetic that speeds
up the addition and multiplication operations.

There are several types of quantization that are commonly used. The fastest
in terms of application time and implementation is post-training quantization
[1], [7], [17], [3], in which the weights and activations of the full-precision (FP)
network are approximated by fixed-point numbers. While being the quickest
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approach, it usually leads to the decrease in accuracy of a quantized network. To
reduce the accuracy drop, quantization-aware training (QAT) algorithms can be
used [15], [9], [26], [5]. QAT employs stochastic gradient descent with quantized
weights and activations on the forward pass and full-precision weights on the
backward pass of training. It usually leads to better results but requires more
time and computational resources than PTQ.

One technique to make QAT converge faster to the desired quantization
levels is regularization. Periodic functions, such as mean squared quantization
error (MSQE) or the sine function, are typically used as regularizers [6], [18],
[11]. The high-precision weights are then naturally pushed towards the desired
quantization values corresponding to the minima of those periodic functions.
The sine function is smooth and therefore has advantages over MSQE, which
is not smooth. The sine function has an infinite number of minima, however,
which may lead to a high clipping error in quantization, and therefore, can have
a negative impact on the model accuracy.

Fig. 1. Illustration of the proposed pipeline. Parameters θ are mapped to the ellipsoid
of constant-size DNNs. Each point of this ellipsoid defines the bit-width distribution
across different layers in order to obtain the model size pre-defined by the user. Next,
the bit-widths are passed to a DNN for the forward pass. Our special smooth mixed-
precision (MP) regularizers are computed jointly with the task loss and help reduce
the gradient mismatch problem. The DNN parameters, quantization parameters, and
θ are updated according to the calculated loss on the backward pass.

If a trained quantized network still does not reach an acceptable quality,
mixed-precision quantization may be applied. Such algorithms allocate differ-
ent bit-widths to different layers and typically perform better than the fixed
bit-width counterparts. At the same time, it is also important to keep the mem-
ory and latency constraints in mind, so that a quantized model meets specific
hardware requirements. Too much compression may lead to a significant loss in
accuracy, while not enough compression may not meet the given memory budget.
Many existing studies use gradient descent to tune the bit-width distribution,
but this approach inherently does not have the ability to explicitly set the re-
quired compression ratio of the model. One way to constrain the model size is to
use additional regularizers on the size of weights and activations [22]. However,
regularizers also do not allow setting the model size, and hence the compression
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ratio, explicitly, and multiple experiments may still be needed to obtain a desired
model size. Other state-of-the-art methods are based on reinforcement learning
[23], [12], or general neural architecture search (NAS) algorithms [24], [4], [27],
where the search space is defined by the set of possible bit-widths for each layer.
However, such methods imply training of multiple instances of a neural network,
which usually require large computational and memory resources.

In this paper, we address the problems mentioned above. First, we show that
models of the same size quantized to different mixed-precision lie on the surface
of a multi-dimensional ellipsoid. We suggest a parametrization of this ellipsoid by
using latent continuous trainable variables, using which the discrete problem of
quantized training can be reformulated to a smooth one. This technique imposes
almost no computational overhead compared to conventional QAT algorithms
and certainly requires much less computational time and resources compared to
reinforcement or NAS algorithms. Furthermore, we suggest a universal family of
smooth quantization regularizers, which are bounded, and therefore reduce the
clipping error and lead to better performance. Our main contributions are the
following:

1. We propose a novel method of mixed-precision quantization that strictly
controls the model size. It can be applied to both weights and activations.
To the best of our knowledge, this is the first method of mixed-precision
quantization that allows explicit model size control.

2. We construct a family of bounded quantization regularizers for smooth op-
timization of bit-width parameters. It allows for faster convergence to the
discrete values and avoids high clipping error. It also avoids difficulties of
the discrete optimization.

3. We validate our approach on image classification and image super-resolution
tasks and compare it to the recent methods of mixed-precision quantization.
We show that the proposed approach reaches state-of-the-art results.

Notation We use x,x,X to denote a scalar, a vector and a matrix (or a tensor,
as is clear from the context). ⌊.⌋, ⌈.⌉ and ⌊.⌉ are the floor, ceiling, and round
operators. E[·] denotes the expectation operator. We call the total model size
the following value:

∑n
i=1 ki · bi+32 · k0, where {ki}ni=1 and {bi}ni=1 are the sizes

of weight tensors of quantized layers and the corresponding bit-widths, and k0
is the number of non-quantized parameters.

2 Related work

Quantization-aware training Many existing quantization techniques, such as
[15], [9], [26], [5] train quantized DNNs using gradient descent-based algorithms.
QAT is based on the usage of quantized weights and activations on the forward
pass and full-precision weights on the backward pass of training. It is difficult to
train the quantized DNNs, however, as the derivative of the round function is
zero almost everywhere. To overcome this limitation, straight-through estimators
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(STE) were proposed [2]. They approximate the derivative of the round function
and allow backpropagating the gradients through it. In that way, the network
can be trained using standard gradient descent [15].
Quantization through regularization These methods involve additional reg-
ularization for quantized training. [6] used mean squared quantization error
(MSQE) regularizer to push the high-precision weights and activations towards
the desired quantized values. [18], [11] employed the trigonometric sine function
for regularization. Sinusoidal functions are differentiable everywhere and have
periodic minima which can be utilized to drive the weights towards the quan-
tized values. However, the sine function has an infinite number of minima points,
which may lead to a high clipping error.
Mixed-precision quantization In some cases, quantization of the whole net-
work to low bit-width could produce unacceptable accuracy drop. In such cases,
some parts of a network could be quantized to a higher precision. Mixed-precision
quantization algorithms are used to obtain a trade-off between quality and accel-
eration. This task involves searching in a large configuration space. The state-of-
the-art methods are based on reinforcement learning [23], [12], or general neural
architecture search algorithms [24], [4], [27], where the search space is defined by
the set of possible bit-widths for each layer. Such methods imply training of mul-
tiple instances of a neural network, which may require large memory resources.
Differently in [22], the bit-width is learned from the round function parameter-
ized by quantization scale and range. The derivative of this parametrization is
obtained using STE. In all these studies, an additional complexity regularizer is
used to control the compression ratio of the model. This technique does not al-
low to specify the desired compression ratio explicitly, and multiple experiments
may be needed to obtain a desired model size.

3 Motivation and preliminaries

In this section, we briefly describe the quantization process of neural networks
and the motivation for the proposed methods. Consider a neural network with
n layers parameterized by weights Ŵ = {Wi}ni=1. Let each layer correspond to
some function Fi(Wi,Ai), where Wi are the weights of layer i, and Ai are the
input activations to a layer.
Quantization Quantization of a neural network implies obtaining a model,
whose parameters belong to some finite set. As a rule, this finite set is specified
by a function that maps the model parameters to this set. We can define the
following uniform quantization function:

Qb
U (x) = clip(⌊x⌉,−2b−1, 2b−1–1) (1)

where [−2b−1, 2b−1−1] is the quantization range, b is the quantization bit-width.
Under the assumption that layer Fi(Wi,Ai) commutes with scalar multiplica-
tion, quantization is reduced to optimizing the quality of a quantized model
relative to its parameters Ŵ and quantization scale parameters sw = {swi

}ni=1

and sa = {sai
}ni=1. The scale parameters determine the quantization range; if all
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FP values of weights are covered, then si = max |Wi|/(2b−1) for the symmetric
quantization scheme. Layers Fi(Wi,Ai) are then replaced with quantized layers:

Fq
i = swi

sai
Fi

(
Qbw

U

(
Wi

swi

)
,Qba

U

(
Ai

sai

))
, (2)

where bw is the quantization bit-width of the weight tensor and ba is the quanti-
zation bit-width of the activation tensor. The most commonly used layers, such
as convolutional and fully-connected layers, satisfy this assumption.
Backpropagation through quantization To train such a quantized network,
we need to pass the gradients through the quantization function on the back-
ward pass. Since the derivative of the round function is zero almost everywhere,
straight-through estimators (STE) are used to approximate it. The following
STE was proposed in [2] and is commonly used (we will use it in this paper as
well):

dQU (x)

dx
=

{
1, if − 2b−1 ≤ x ≤ 2b−1 − 1,

0, otherwise.
(3)

Model complexity control The problem of training a quantized model using
STE is reduced to optimization of the loss function LQ:

LQ = E[L(Fq(Ŵ,X))]. (4)

Some modern quantization methods optimize LQ relative to variables (Ŵ, sw, sa),
that is, the scale parameters and weights are tuned as trainable variables. In the
case of traditional quantization, the bit-width values are fixed during training.
In mixed precision quantization, bit-widths of different layers can change during
training. A number of modern mixed-precision quantization methods use gradi-
ent descent to tune the bit-width distribution, but they do not have the ability
to explicitly set the required compression ratio of the model. In this paper, we
propose a method for training the mixed-precision quantized models with the
explicit, user-defined total model size. In the proposed framework, bit-widths
are tuned as trainable variables in addition to the scale parameters and weights.
We describe it in detail in the next section.
Soft regularization In training of (4), high-precision weights are used in the
backward pass of gradient descent, and low-precision weights and activations are
used in the forward pass. To reduce the discrepancy in the backward and for-
ward passes, regularization can be utilized. A possible choice for the regularizer
is MSQE [6]. However, it has a non-stable behavior of gradients in the neighbor-
hood of the transition points. It can be seen from Fig. 2 that the derivative of
MSQE changes drastically in the transition points and pushes the points in the
opposite direction due to the large derivative there. In this paper, we propose
to use smooth quantization regularizers instead of MSQE. Fig. 2 also shows an
example of the sinusoidal regularizer, which has a more stable gradient behavior
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in the neighborhood of the transition points. In particular, the gradient of the
main loss (4) has a larger impact than the regularization loss there. It is worth
noting that some previous works [11], [18] also employed smooth quantization
regularizers. However, they were unbounded (see Fig. 2), which led to accumu-
lation of a clipping error due to the points outside the quantization range. We
propose to use bounded smooth regularizers, which we describe in detail next.

Fig. 2. Comparison of MSQE and smooth bounded (proposed in this work) and un-
bounded (e.g., SinReQ [11]) regularizers. Smooth quantization regularizers have similar
properties to MSQE but different behavior close to the transition points.

4 Methodology

In this section, we first describe the proposed method of mixed-precision QAT
with explicit model size control. Then, we describe the proposed family of smooth
regularizers that allow faster convergence to quantized values. Finally, we de-
scribe an additional technique for bit-widths stabilization during training. We
provide a description for the case of symmetric mixed-precision quantization
of weights into int scheme. The proposed method can be easily generalized to
the case of mixed-precision quantization of activations without any additional
constraints and other quantization schemes.

4.1 Explicit model size control using surfaces of constant-size
neural networks

We propose to use a special parametrization of the bit-width parameters of
the model layers. This parametrization imposes restrictions on the size of the
quantized model. To do this, we build a surface of neural networks of the same
size in the bit-width space. We parameterize this surface using latent independent
variables, which are tuned during training. The proposed technique is applicable
to any layer of a DNN.
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Suppose that we want to quantize n layers of a DNN. For simplicity, we
assume that activations of those layers are quantized to fixed bit-width ba. We
denote by {ki}ni=1 and {bi}ni=1 the sizes of weight tensors of those layers and
their corresponding quantization bit-widths. The size of the quantized part of
the network is

∑n
i=1 kibi. Our goal is to preserve it during training.

Consider the n-dimensional ellipsoid equation:

n∑
i=1

kix
2
i = C. (5)

We can parameterize the surface of an ellipsoid in the first orthant (xi > 0)
using n− 1 independent variables θ = {θi}n−1

i=1 , each from segment [0, 1]:

x1 =
√

C
k1
θ1,

. . . ,

xn−1 =
√

C
kn−1

θn−1,

xn =

√
C−

∑n−1
i=1 kix2

i

kn
.

(6)

Fig. 1 illustrates the process of mapping trainable parameters θi to the ellipsoid of
models with the same size. We do not consider other orthants for parametrization
as they are redundant and increase the search space during the bit-width tuning.
It is important to note that such parametrization does not satisfy the ellipsoid
equation for all possible θ in [0, 1]n−1 (see Fig. 1). In particular, during training
we clamp the outliers. From our empirical evaluation, such outliers appear with
almost zero probability.

Additionally, let us define variables ti = 2x
2
i−1. We can use xi and ti for

weight quantization of the i-th layer by replacing the bit-width parameter bw
by x2

i and the maximum absolute value of the quantization range 2bw−1 by ti in
eq. (2):

Fq
i =

s̃wi

ti

s̃ai

2ba−1
Fi

(
Qx2

i

U

(
ti ·

Wi

s̃wi

)
,Qba

U

(
2ba−1 · Ai

s̃ai

))
, (7)

where s̃ corresponds to absolute maximum values of FP weights/activations (see
(3)).

As a result,Wi is quantized using a grid of integers from the range [−⌊ti⌉, ⌊ti⌉−
1] consisting of 2⌊ti⌉ integers. If x2

i is an integer, the value of 2⌊ti⌉ equals to 2x
2
i

– an integer power of two, which corresponds to quantization to x2
i bits. For

example, if x2
i = 8, then ti = 128 and the corresponding tensor Wi is quantized

using a grid of integers consisting of 256 elements, or to 8 bits. Thus, x2
i serves as

a continuous equivalent of the bit-width of the weights of the i-th layer. To esti-
mate the real bit-width of the i-th layer during the training, we use the smallest
sufficient integer value, namely:

bi = ⌈log2(2 · ⌊2x
2
i−1⌉)⌉ ≈ x2

i . (8)
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We propose to train the quantized model by minimizing loss LQ (4) relative
to variables (W, sw, sa, θ). Thus, we can train quantized models, whose mixed-
precision bit-widths are tuned during model training in a continuous space. De-
spite the fact that parameters θ, and hence the bit-widths of the layers, change
during training, it follows from the definition of the ellipsoid parametrization
that (5) is always satisfied, which means that the size of a model is preserved
during training. Due to the error of rounding the bit-widths to integer values
(8), the size of the quantized model may differ from C, but not significantly.

Fig. 3. The proposed family of smooth quantization regularizers. It can be implemented
as a multiplication of the periodic function by the hat function, and then adding a
function, which is square outside and zero inside the quantization range.

4.2 Smooth bounded regularization as a booster for quantized
training

Additional regularization is often used as a special technique for training quan-
tized models, see (2) and (3). We propose to use special regularizers that allow
improving the quality of bit-width tuning and training of mixed-precision quan-
tized models. We consider a family of smooth bounded regularizers ϕ(x, t) that
smoothly depend on parameter t determining the width of the quantization
range. We require the following from those regularizers:

– For fixed t, integers from the range [−⌊t⌋, ⌊t⌋ − 1] are the roots and minima
of function ϕ(·, t), in particular, functions ϕ and ϕ′ are zero in these points.

– If t ∈ Z, then there are no other minima.
– If t ̸∈ Z, then a maximum of 2 more local minima outside [−⌊t⌋, ⌊t⌋ − 1] are

possible.

There are various types of regularizers satisfying the above conditions. In our
quantization experiments, we use an easy-to-implement function (shown in Fig. 3):

ϕ(x, t) = sin2(πx) · σ(x+ t) · σ(t− 1− x)+

+


π2(x+ t)2, x ≤ −t,

0, x ∈ [−t, t− 1],

π2(x− t+ 1)2, x ≥ t− 1,

(9)
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where σ is the sigmoid function. For quantization of weights of the i-th layer,
scaled tensor Wi must be passed to regularizer ϕ as argument x, and parameter
ti = ti(θ) as argument t. For quantization of activations of the i-th layer, scaled
tensor Ai must be passed to the regularizer as argument x, and the maximum
absolute value of the activation quantization grid 2ba−1 as argument t.

Analysis of the Taylor series expansion of function s2

t2 ϕ
(
t · x

s , t
)
shows that

this function is a good estimate of the mean squared quantization error in the
neighborhood of integer points of the range [−⌊t⌋, ⌊t⌋ − 1] (see Appendix A
for a detailed proof). Therefore, we propose to use the following functions as
regularizers:

Lw =
∑
i

s2wi

t2i (θ)
ϕ

(
ti(θ) ·

Wi

swi

, ti(θ)

)
(10)

La =
∑
i

E
[
s2ai

2ba
ϕ

(
2ba−1 · Ai

sai

, 2ba−1

)]
(11)

As a result, training of a mixed-precision quantized model can be done by opti-
mizing the following loss function relative to parameters (W, sw, sa, θ):

LQ = E
[
L
(
Fq(W,X)

)]
+ λw Lw +λa La . (12)

The proposed family of smooth regularizers also allows tuning the bit-widths
as a post-training algorithm without involving other parameters in the training
procedure (see section 5.1 for an example).

4.3 Regularizers for bit-width stabilization

During training, parameters ti can converge to values that are not degree of
2, corresponding to non-integer bit-widths. For example, if x2

i = 3.2, then the
scaled tensor is quantized to a grid of integers consisting of 2 · ⌈23.2−1⌉ = 10
elements. In this case, 3 bits are not sufficient to perform the calculations (for
this, there should be not more than 8 elements), and we do not fully use 4
bits (only 10 from 16 possible elements are used). In order for the bit-widths to
converge to integer values, we add a sinusoidal regularizer for bit-width values
Lb =

∑n
i=1 sin

2(πx2
i ) to loss LQ (12).

In some tasks, we may need the ability to use a specific set of bit-width values
for mixed-precision quantization, for example, 4, 8 or 16 bits. In this case, we
add a special regularizer for bit-widths values to the loss LQ (12), which is aimed
at contracting them to the required set. We propose smooth regularizers that
have local minima at the points from the required set of bit-widths and have no
other local minima. Using such regularizers during training makes the bit-width
parameters converge to a given set of values. We normalize these regularizers
using regularization parameter λb.
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4.4 Algorithm overview

Here, we describe the overall algorithm combining the proposed techniques. A
pseudo code for the algorithm and more specifics are given in Appendix B. We
minimize loss function LQ (12) relative to trainable variables (W, sw, sa, θ) using
stochastic gradient descent. We quantize weights and activations of a model
on the forward pass of training. We use a straight-through estimator (3) to
propagate through round function QU on the backward pass.

We initialize the scale parameters of the weight tensors with their maximum
absolute values. To initialize the scale parameters of the activation tensors, we
pass several data samples through the model and estimate the average maximum
absolute values of inputs to all quantized layers. To set the required model size,
a user must specify parameter binit – an initial value of the continuous bit-widths
x2
i of the quantized layers. Using equations (6), we initialize parameters θi so

that continuous bit-widths x2
i of all quantized layers are equal to binit. Parameter

binit determines the total size of the quantized part of the model using equation
(5), which means that it determines the ellipsoid that is used for training.

Table 1. Influence of the proposed techniques. Weights only quantization of ResNet-
20 on CIFAR-10. MC – model compression ratio (times), Top 1 – Top-1 quantized
accuracy in %, MP – mixed precision.

Quantization # bits W/A
No regularizers With regularizers

Top-1 MC Top-1 MC

Full precision 32/32 91.73 - 91.73 -

Post-training 2/32 19.39 14.33 - -
BN tuning 2/32 64.34 14.33 - -
Bit-widths tuning MP/32 65.94 14.55 77.05 14.55
Bit-widths and scales tuning MP/32 79.20 15.02 86.85 14.55
All model parameters tuning MP/32 91.27 14.55 91.57 14.55

Post-training 3/32 75.57 9.92 - -
BN tuning 3/32 89.58 9.92 - -
Bit-widths tuning MP/32 89.70 10.11 90.13 10.05
Bit-widths and scales tuning MP/32 90.65 10.19 90.70 10.19
All model parameters tuning MP/32 91.69 10.16 91.89 10.25

5 Experiments

We evaluate the performance of the proposed techniques on several computer
vision tasks and models. In section 5.1, we study how each of the proposed tech-
niques influences the quality of mixed precision quantization. In section 5.2, we
compare the proposed algorithm to other QAT methods for image classification.
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Experimental setup In our experiments, we quantize weights and activations
only, and some of the parameters of the models remain non-quantized (for ex-
ample, biases and batch normalization parameters). The bit-width of the non-
quantized parameters is 32. All quantized models use pre-trained float32 net-
works for initialization. As a model compression metric, we use the compression
ratio of the total model size (not just weights), and as an activation compression
metric, we use the mean input compression ratio over a set of model layers (same
metric as in [22]). We set a specific value for the model compression by setting
the corresponding value for the parameter binit in each of the tasks. We normalize
the quantization regularizers to have the same order as the main loss LQ (4) by
using coefficients λw, λa, which are chosen as powers of 10. After some number of
epochs, we adjust λw by multiplying it by 10 to reduce the weights quantization
error; λa does not change during training. The corresponding training strategy
for each experiment is described in Appendix C.

5.1 Ablation study

Impact of the proposed techniques The proposed method is based on sev-
eral techniques described above and involves tuning bit-widths, scale parameters
and model parameters (i.e., weights). We investigate the impact of the proposed
techniques by applying them separately for quantization of ResNet-20 [14] on
the CIFAR-10 dataset [16]. We also compare the obtained results with the re-
sults of post-training quantization to fixed bit-width with and without batch-
normalization (BN) tuning. Additionally, we explore the influence of smooth
regularizers suggested in (4.2). The results are presented in Table 1.

The proposed technique of the bit-width tuning used as a PTQ without train-
ing the model parameters and scale parameters obtains a quantized model with
a better quality and the same compression ratio as post-training with BN tuning
for both 2-bit and 3-bit quantization. The subsequent addition of the proposed
methods leads to an increasing improvement in the quality of the quantized
model, and the joint training of the bit-widths, scales and model parameters
leads to the best accuracy. One can also note that the use of smooth regularizers
further improves the quality of the resulting quantized models. Thus, all of the
proposed techniques contribute to the increase of quantized model accuracy.
Optimality of the determined mixed precision We further investigate
whether the bit-widths of different layers found with our approach are optimal.
We show that on the task of 3× image super-resolution for Efficient Sub-Pixel
CNN [21] with global residual connection. We choose this task to demonstrate
the effectiveness of our approach visually as well.

The full precision Efficient Sub-Pixel CNN consists of 6 convolutions. We
quantize all layers of the model except for the first layer. The bit-widths of
activations are equal to the bit-widths of the corresponding weights of each
layer. The last 4 convolutions of the model are almost the same size. We use
the proposed method to quantize all layers to 8-bit, except for one of those
4 convolutions, the size of which we set to 4 bits. Our algorithm selects the
second of these four convolutions to be quantized to 4 bits. To prove that our
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Table 2. Validation PSNR, dB, for ES-
PCN quantized to mixed-precision. MC
– model compression ratio (times).

Dataset Our Bit #1 Bit #2 Bit #3

Vimeo-90K 31.10 30.93 30.88 30.74
Set5 30.55 30.46 30.47 30.02
Set14 26.93 26.88 26.88 26.63

MC 3.37 3.37 3.37 3.34

Table 3. Validation PSNR, dB, for ES-
PCN quantized to mixed-precision (for
both weights and activations).

Network Vimeo-90K Set5 Set14

FP 31.28 30.74 27.06
8 bit 31.19 30.74 27.05
MixPr1 31.10 30.55 30.55
MixPr2 30.95 30.50 26.89
4 bit 30.62 29.84 26.53
Bicubic 29.65 28.92 25.91

Fig. 4. Ablation study for mixed precision
quantization of ESPCN.

Fig. 5. Quantization of ESPCN: compar-
ison of different bit-widths.

algorithms converges to an optimal configuration, we train other configurations
with fixed bit-widths, in which one of the last four layers is quantized to 4 bit.
The three possible configurations are denoted by Bit #1, Bit #2, Bit #3, and
their performance is shown in Table 2 and Fig. 4. We can see that the model
obtained with our method has the best perceptual quality out of other possible
model choices. The PSNR of the model obtained with our method is also larger
than PSNR of other models. This means that our algorithm determines the best
layer for 4-bit quantization while preserving the model compression rate.

Influence of model compression We test the effect of different proportion
of 4-bit and 8-bit quantization of a model on its accuracy for the same task as
in the previous experiment. To investigate that, we train several models with
different compression ratios. First, we train two mixed precision quantized mod-
els: MixPr1, in which 15.6% of model is quantized to 4 bit and 75.6% to 8 bit,
and MixPr2, in which 46.8% of model is quantized to 4 bit and 44.4% to 8 bit.
We compare these models to the ones quantized to 4 bit and 8 bit only (see
Table 3). We train these mixed-precision quantized models using a regularizer
for bit-width stabilization for 4 and 8 bits (see section 4.3).
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We observe that as the proportion of 8 bit increases, the perceptual quality of
the resulting images improves (Fig. 5). The perceptual quality of the 8-bit model
produced by our method matches the perceptual quality of the full precision
model. More examples are provided in Appendix D.

5.2 Comparison with existing studies

CIFAR-10 We compare our method to several methods for mixed-precision
quantization of ResNet-20 in Table 4. In these experiments, we quantize all
layers of the models. The first and last layers are quantized to a fixed bit-width,
and the rest of the layers are used for mixed-precision quantization. We test
cases when activations are quantized to 4 bits and when they are not quantized.

Our method leads to the best compression ratio when activations are quan-
tized to 4 bits and wins over other methods in terms of accuracy except for
HAWQ, even though we have used a weaker baseline FP model. Regarding com-
parison with HAWQ, one can note that the relative differences between the
baseline and the resulting quantized accuracies are similar: 0.16% for HAWQ
and 0.12% for our method, but the compression ratio for our method is much
higher: 15.13 vs. 13.11. The proposed method outperforms other methods when
activations are not quantized. The reason for only slight difference of models
with and without our regularizers in Table 4 may lie in that both models are
very close to the FP accuracy and therefore, are close to saturation in accuracy.
ImageNet We also test our method for quantization of ResNet-18, ResNet-50
[14], and MobileNet-v2 [20] to 4 and 8 bits on ImageNet [19], and compare it
with other methods in Table 5. The accuracies of the baseline full precision (FP)
models used by all the methods are noted in the table. We used the baseline
with the highest accuracy for comparison with other methods. The obtained
bit-width distributions are given in the Appendix E. The proposed approach
performs significantly better then the other methods both in terms of accuracy
and compression ratio. It reaches accuracy larger than the FP model for ResNet-
50 and MobileNet-V2, while all other methods do not. It is worth noting that
these results were obtained in less than 7 epochs for all the models.

6 Conclusions

In this paper, we propose a novel technique for mixed-precision quantization with
explicit model size control, that is, the final model size can be specified by a user
unlike in any other mixed-precision quantization method. In particular, we define
the mixed-precision quantization problem as a constrained optimization problem
and solve it together with soft regularizers, as well as a bit-width regularizer
to constrain the quantization bit-widths to a pre-defined set. We validate the
effectiveness of the proposed methods by conducting experiments on CIFAR10,
ImageNet, and an image super resolution task, and show that the method reaches
state-of-the-art results with no significant overhead compared to conventional
QAT methods.



14 V. Chikin, K. Solodskikh, I. Zhelavskaya

Table 4. Quantization of ResNet-20 on CIFAR-10. MC – model compression ratio
(times), AC – activation compression ratio (times), FP Top-1 – the baseline FP model
accuracy in %, Quant. Top-1 – Top-1 quantized accuracy in %, Difference – difference
between quantized and FP Top-1 accuracy in %.

Method MC AC
FP

Top-1
Quant.
Top-1

Difference

MP DNNs [22] 14.97 8 92.71 91.40 -1.31
HAWQ [10] 13.11 8 92.37 92.22 -0.15
PDB [8] 11.94 8 91.60 90.54 -1.06
Ours (no regularizers) 16.17 8 91.73 91.55 -0.18
Ours (with regularizers) 15.13 8 91.73 91.62 -0.11

MP DNNs [22] 14.97 1 92.71 91.41 -1.3
DoReFa + SinReQ [11] 10.67 1 93.50 88.70 -4.8
Ours (no regularizers) 16.19 1 91.73 91.75 +0.02
Ours (with regularizers) 14.73 1 91.73 91.97 +0.24

Table 5. Quantization of ResNet-18, ResNet-50 and MobileNet-v2 on ImageNet. MC –
model compression ratio (times), AC – activation compression ratio (times), FP Top-1
– the baseline FP model accuracy in %, Quant. Top-1 – Top-1 quantized accuracy in
%, Difference – difference between quantized and FP Top-1 accuracy in %.

Method MC AC
FP

Top-1
Quant.
Top-1

Difference

ResNet-18

MP DNNs [22] 4.24 2.9 70.28 70.66 +0.38
LSQ [13] 4.00 4 70.50 71.10 +0.6
HAWQ-V3 [25] 4.02 4 71.47 71.56 +0.09
Ours 4.40 4 71.47 71.81 +0.34

DoReFa + WaveQ 7.98 8 70.10 70.00 -0.1
FracBits-SAT 7.61 8 70.20 70.60 +0.4
MP DNNs 8.25 8 70.28 70.08 -0.2
DoReFa + SinReQ 7.61 8 70.50 64.63 -5.87
HAWQ-V3 7.68 8 71.47 68.45 -3.02
Ours 8.57 8 71.47 70.64 -0.83

ResNet-50

LSQ [13] 4.00 4 76.90 76.80 -0.1
HAWQ-V3 [25] 3.99 4 77.72 77.58 -0.14
Ours 4.33 4 79.23 79.45 +0.22

HAWQ-V3 7.47 8 77.72 74.24 -3.48
Ours 8.85 8 79.23 76.38 -2.85

MobileNet-V2

MP DNNs [22] 4.21 2.9 70.18 70.59 +0.41
HAQ [23] 4.00 4 71.87 71.81 -0.06
Ours 4.13 4 71.87 71.90 +0.03
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(eds.) Advances in Neural Information Processing Systems. vol. 32. Curran
Associates, Inc. (2019), https://proceedings.neurips.cc/paper/2019/file/

c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf
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