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1 Clipping Threshold Behavior

1.1 Clipping Threshold on Training

Fig. 1: Clipping thresholds in 2-
bit MobileNet-v2 on training

Figure 1 illustrates how the clipping thresh-
olds of BASQ change during the training of
(block-1 of) 2-bit MobileNet-v2 [16]. They
tend to become larger (smaller) as the associ-
ated L2 decay weights (λ) get smaller (larger)
and stabilize early in the training.

1.2 Coverage of Clipping Threshold

Figure 2 illustrates the clipping thresholds of
BASQ (orange dots) and LSQ [5] (red dots).
The blue rectangle represents the range of
minimum to maximum values of seven clip-
ping thresholds since we used seven L2 decay
weights as selection candidates in MobileNet-
v2. The orange dots represent the average
clipping thresholds of BASQ obtained in our 10-fold evaluation.

The figure shows that BASQ tends to give larger clipping thresholds than
LSQ, which demonstrates that the clipping of LSQ is sub-optimal (too aggressive
in this experiment), possibly due to the fact that only a single clip value is
optimized per block, thereby incurring too much truncation error and finally
losing accuracy in low-bit precisions. On the contrary, our proposed BASQ can
explore the design space of clipping thresholds over multiple branches and thus
obtain better clipping solutions (larger clip values in this experiment) which
offer better balance between truncation and rounding errors thereby improving
accuracy.
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(a) 2-bit MobileNet-v2
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(b) 3-bit MobileNet-v2
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(c) 4-bit MobileNet-v2

Fig. 2: Average clipping thresholds of BASQ obtained on evaluation (orange
dots), LSQ clipping thresholds (red dots), and minimum to maximum clip value
ranges of BASQ (blue rectangles)
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Algorithm 1 Search strategy of BASQ

1. Supernet Training
Input: iteration T , uniform sampling N , λ-super-set Λ, α-super-set A, supernet weight
W , train dataset Dtrain, teacher network weight WT , kl-divergence loss L
Output: trained supernet

for i = 1 : T do
{(λb1, αb1), · · · , (λbn, αbn)} = N (Λ,A) ▷ sample selection from block-1 to n
outs = Forward(W,Dtrain, {(λb1, αb1), · · · , (λbn, αbn)}) ▷ student: supernet
outt = Forward(WT , Dtrain) ▷ teacher: ResNet-50
Backward(L(outs, outt))

end for
Return W

2. Architecture Search
Input: fold number K = 10, iteration T = 20, uniform sampling N , λ-super-set Λ,
α-super-set A, supernet weight W , validation dataset Dval, population number p = 45,
crossover number c = 15, mutation number m = 15, mutation probability prob = 0.1
Output: K best clip value selections

{Dval,fold,1, · · · , Dval,fold,K} = Divide fold(Dval,K) ▷ divide into K subsets
Top1 = ∅
for k = 1 : K do

Fold ACC,Fold Topn, P = ∅
P0 = Initialize population(p, Λ,A,Dval,fold,k)
for i = 1 : T do

Fold ACCi−1 = Inference(W,Dval,fold,k, Pi−1)
Fold Topn = Update topn(Fold Topn, Pi−1, Fold ACCi−1)
Pcrossover = Crossover(Fold Topn, c)
Pmutation = Mutation(Fold Topn,m, prob)
Prandom = N (Λ,A, p− c−m)
Pi = Pcrossover ∪ Pmutation ∪ Prandom

end for
Fold ACCT = Inference(W,Dval,fold,k, PT )
Fold Topn = Update topn(Fold Topn, PT , Fold ACCT )
Top1k = Fold Topn1 ▷ select best architecture in k-th subset

end for
Return Top1

3. Finetuning
Input: fold number K = 10, iteration T = 3, selected top1 architectures Top1, super-
net weight W , train dataset Dtrain, validation dataset Dval

Output: accuracy of K-fold result from finetuned selections

{Dval,fold,1, · · · , Dval,fold,K} = Divide fold(Dval,K) ▷ divide into K subsets
for k = 1 : K do

for parameter /∈ batch normalization or clip value do
parameter.learning rate = 0 ▷ freeze except batch norm and clip value

end for
for i = 1 : T do

Train(W,Dtrain, T op1k)
end for
ACCk = Inference(W,Dval −Dval,fold,k, T op1k) ▷ avoid using same data

end for
ACC = Average(ACC1, · · · , ACCK)
Return ACC ▷ final accuracy of BASQ
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2 Search Strategy

We explain the detailed search process of Section 4.2 in the main paper in Al-
gorithm 1. First, the base network with various quantization operators is jointly
trained as a supernet covering all possible configurations. Then, we explore the
search space to make selections among candidates. Finally, we apply finetuning
for stabilizing batch statistics.

3 Detailed Analysis

3.1 Effects of Components

As a complement to Section 6.3 in the main paper, we evaluate 2-bit MobileNet-
v2 model on ImageNet. Table 1 shows that BASQ proves better (57.48%) than
LSQ (46.7%) for activation quantization on large scale dataset. It also demon-
strates that the new components of our proposed method (new building block
and flexconn) make a significant contribution (64.71%) to the accuracy improve-
ment in the 2-bit MobileNet-v2 on ImageNet.

Table 1: Effects of BASQ and our proposed block structure in 2-bit MobileNet-v2
on ImageNet

Method

Configurations

Accuracy (%)
BASQ

Our block structure
(New building block

& Flexconn)

LSQ [5] 46.7

BASQ
(without our block structure)

✓ 57.48

BASQ
(with our block structure)

✓ ✓ 64.71

3.2 Effects of BASQ

BASQ offers an automated per-layer optimization of clip value via controlling
L2 decay weight. As shown in Figure 3, the resulting feature-map of activation
highly relies on clip value (α) learned via L2 decay weight (λ). PACT [3] applies
a single global L2 decay weight to the entire network and, thus, exhibits sub-
optimal results on highly optimized networks, e.g. MobileNet-v2. It is mainly
because activation distributions vary across layers, and thus a single global L2
decay weight fails to achieve per-layer optimization of clip value.
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(a) (b) λ = 0.01 (c) λ = 0.001 (d) λ = 0.00001

Fig. 3: Effect of clipping threshold (α) learned via L2 decay weight (λ) on feature-
map: (a) real valued input activation, (b-d) 2-bit quantized activations in BASQ
branches

3.3 Effects of Our Block Structure

Our proposed block structure is adopted for bringing stabilization effect to ac-
tivation distribution on training branch-wise searching structure with low-bit
quantization. To demonstrate the effect of our block structure, we evaluate ac-
tivation distribution behavior of BASQ without and with our block structure in
2nd and 3rd row of Table 1, respectively. Figure 4 (a) shows the original block
structure and the distributions of output activation on two BASQ branches.
Without the proposed block structure, the output distributions of the two BASQ
branches having different L2 decay weights tend to have different value ranges.
As Figure 4 (b) shows, the proposed block structure makes the distributions sim-
ilar to each other, i.e., more consistent. The experiments demonstrate that our
block structure gives stabilization effect on training branch-wise searching struc-
ture with low-bit precision. Also, having consistent output distributions across
BASQ branches contributes to better convergence as shown in the Table 1.

(a) without our block structure (b) with our block structure

Fig. 4: Block structures and output distributions of 2-bit MobileNet-v2 BASQ
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4 Evaluation Methods

4.1 k-fold Evaluation

In BASQ, we evaluate our accuracy with k-fold (k=10) evaluation method on
ImageNet validation dataset [4]. Since the fixed amount of dataset for architec-
ture selection and accuracy evaluation could introduce the variance of results,
we apply 10-fold evaluation and average 10 results for the final accuracy.

Table 2: ImageNet top-1 accuracy of MobileNet-v2 on 10-fold evaluation

Bit set-1 set-2 set-3 set-4 set-5 set-6 set-7 set-8 set-9 set-10 Average

A2/W2 63.95 64.02 64.28 63.89 65.46 65.1 65.23 65.32 65.4 64.49 64.71
A3/W3 69.48 69.72 69.68 69.52 70.87 70.63 70.88 70.84 70.74 70.18 70.25
A4/W4 71.22 71.30 71.57 71.21 72.65 72.31 72.63 72.53 72.55 71.86 71.98

Table 2 shows the accuracy results on the 10-fold evaluation. Our 10-fold
results demonstrate that the dataset dependency for architecture selection exists.
Set-5 shows the highest accuracy in all available bit precisions while set-1 and
set-4 shows the lowest accuracy among candidates. This indicates that 10-fold
validation is beneficial for minimizing the statistical disturbance of the results
induced by the dataset dependency.

4.2 Evaluation Method Adopted in SPOS

Table 3: ImageNet top-1 accuracy of MobileNet-v2 on 10-fold evaluation and
SPOS evaluation

Method A2/W2 A3/W3 A4/W4

PACT [3] 61.4
DSQ [6] 64.8
QKD [10] 45.7 62.6 67.4
LSQ [5] 46.7 65.3 69.5

LSQ + BR [8] 50.6 67.4 70.4
LCQ [19] 70.8

PROFIT [13] 61.9 69.6 71.56

BASQ (10-fold) 64.71 70.25 71.98

BASQ (SPOS [7]) 64.85 70.24 71.95
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As mentioned in the main paper, SPOS [7] use 16% of the validation set
for architecture selection. The test set is constructed using the entire validation
set. Our main results are obtained under 10-fold evaluation to avoid such a
duplicated usage of the same data in both architecture selection and evaluation.

In order to investigate the difference between the two evaluation methods,
we also evaluate our method following the evaluation method of SPOS. Table 3
shows that the duplicated usage (BASQ (SPOS) in the last row) gives slightly
better accuracy in 2-bit precision, possibly due to the duplicated usage of a
portion (16%) of validation data.

5 Binary (1-bit) BASQ

Our network structure is motivated by previous works related to the binary
neural network (BNN). BNN is quite different from the other low-bit quantized
networks in various aspects. BNN uses the sign function as a quantization func-
tion without allowing mapping value to zero. In addition, the representative
study [11] uses the PReLU activation function with shift terms. Note that the
low-bit networks (2-bit or more) adopt rounding and clipping for quantization
and ReLU activation.

BNN uses a back propagation gradient function with a limited value range.
Specifically, it suffers from a zero gradient problem for the values outside of
STE [1] (from -1 to 1). To resolve the zero gradient problem, IR-Net [14], for
example, proposes adopting a large value range for gradients in the early stage
of training while gradually shrinking its range in the later training steps. Our
BASQ addresses the zero gradient problem by training with multiple clip values
which offer various sizes of value ranges for gradient flow.

In order to investigate the difference between BNN and BASQ, we set the
precision of BASQ as 1-bit and evaluate it on ImageNet [4]. We use the sign
function as a weight quantization function. For activation quantization, we use
the linear quantization function ranging from zero to clip value which is com-
monly used for the 2-bit to 4-bit models as in the main paper. As a result, our
activation quantization of 1-bit gives only two values, zero and the clip value.

Table 4: Binary BASQ in ResNet-18 on ImageNet

Method A1/W1 (binary)

Xnor-Net [15] 51.2
Bi-real-Net [12] 56.4
Xnor-Net++ [2] 57.1

IR-Net [14] 58.1
CI-Net [17] 59.9

ReActNet [11] 65.9

BASQ (Ours) 64.60
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Table 4 compares our binary BASQ (under 10-fold evaluation) with the exist-
ing BNNs based on ResNet-18 [9]. Our binary BASQ offers 1.3% lower accuracy
than ReActNet [11] while showing superior accuracy to the other binary net-
works. Considering that ReActNet benefits most of accuracy improvement from
PReLU activation with shift terms, it is quite promising that our binary model
shows 1.3% difference with ReLU activation and without sign activation func-
tion. We leave further investigation on the potential of BASQ on binary neural
networks as our future work.

6 Comparison with NAS Method

Table 5 compares BASQ with the neural architecture search (NAS) methods for
mixed-precision. We utilize BitOPs metric as in [7]. For example, in the case of
the 2-bit model, we multiply the BitOPs from the network with binary precision
by 22 (2-bit for activation and weight each). The table shows that our method
outperforms the existing NAS methods with similar BitOps.

Table 5: Comparison of BASQ and NAS methods for mixed precision in ResNet-
18 operation scale on ImageNet

Method BitOPs Accuracy(%)

SPOS [7] 6.21G 66.4
BASQ (2-bit) 6.70G 68.60

DNAS [18] 15.62G 68.7
SPOS [7] 13.49G 69.4

BASQ (3-bit) 15.08G 71.40

DNAS [18] 25.70G 70.6
SPOS [7] 24.31G 70.5

BASQ (4-bit) 26.82G 72.56
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