
Real Spike: Learning Real-valued Spikes for
Spiking Neural Networks

Yufei Guo⋆, Liwen Zhang⋆, Yuanpei Chen, Xinyi Tong, Xiaode Liu, YingLei
Wang, Xuhui Huang�, and Zhe Ma�

Intelligent Science & Technology Academy of CASIC, Beijing 100854, China
yfguo@pku.edu.cn, lwzhang9161@126.com, starhxh@126.com, mazhe thu@163.com

Abstract. Brain-inspired spiking neural networks (SNNs) have recently
drawn more and more attention due to their event-driven and energy-
efficient characteristics. The integration of storage and computation para-
digm on neuromorphic hardwares makes SNNs much different from Deep
Neural Networks (DNNs). In this paper, we argue that SNNs may not
benefit from the weight-sharing mechanism, which can effectively reduce
parameters and improve inference efficiency in DNNs, in some hard-
wares, and assume that an SNN with unshared convolution kernels could
perform better. Motivated by this assumption, a training-inference de-
coupling method for SNNs named as Real Spike is proposed, which
not only enjoys both unshared convolution kernels and binary spikes in
inference-time but also maintains both shared convolution kernels and
Real-valued Spikes during training. This decoupling mechanism of SNN
is realized by a re-parameterization technique. Furthermore, based on the
training-inference-decoupled idea, a series of different forms for imple-
menting Real Spike on different levels are presented, which also enjoy
shared convolutions in the inference and are friendly to both neuromor-
phic and non-neuromorphic hardware platforms. A theoretical proof is
given to clarify that the Real Spike-based SNN network is superior to its
vanilla counterpart. Experimental results show that all different Real
Spike versions can consistently improve the SNN performance. More-
over, the proposed method outperforms the state-of-the-art models on
both non-spiking static and neuromorphic datasets.

Keywords: Spiking neural network; Real spike; Binary spike; Training-
inference-decoupled; Re-parameterization.

1 Introduction

Spiking Neural Networks (SNNs) have received increasing attention as a novel
brain-inspired computing model that adopts binary spike signals to communi-
cate between units. Different from the Deep Neural Networks (DNNs), SNNs
transmit information by spike events, and the computation dominated by the
addition operation occurs only when the unit receives spike events. Benefitting

⋆ Equal contribution.

2 Guo, Y. et al.

* =

×

=

The Convolution of SNNs Implemented on Neuromorphic Hardwares

Input Map Convolution Kernel Output Map

Convolution
Kernel Vector Input Map Matrix

Output Map Vector

Input Map
 Neurons

Convolution Kernel
Connections

Ouput Map
 Neurons

A Neuromorphic
Hardware

The Convolution of DNNs Implemented on Deep Learning hardwares

The Convolution

Fig. 1. The difference of convolution computing process between DNNs and SNNs. For
DNNs, the calculation is conducted in a highly-paralleled way on conventional hard-
wares. However, for SNNs, each connection between neurons will be mapped into a
synapse on some neuromorphic hardwares, which cannot benefit from the advantages
of the weight-shared convolution kernel, e.g., inference acceleration and parameter re-
duction.

from this characteristic, SNNs can greatly save energy and run efficiently when
implementing on neuromorphic hardwares, e.g., SpiNNaker [17], TrueNorth [1],
Darwin [28], Tianjic [32], and Loihi [5].

The success of DNNs inspires the SNNs in many ways. Nonetheless, the rich
spatio-temporal dynamics, event-driven paradigm, and friendly to neuromor-
phic hardwares make SNNs much different from DNNs, and directly applying
the successful experience of DNNs to SNNs may limit the performance of SNNs.
As one of the most widely used techniques in DNNs, the weight-shared con-
volution kernel shows great advantages. It can reduce the parameters of the
network and accelerate the inference. However, SNNs show great advantages in
the condition of being implemented on neuromorphic hardwares which is very
different from DNNs being implemented on deep learning hardwares. As shown
in Fig. 1, in DNNs, the calculation is carried out in a highly-paralleled way on
deep learning hardwares, thus sharing convolution kernel can improve the com-
puting efficiency by reducing the data transferring between separated memory
and processing units. However, for an ideal situation, to take full advantage of
the storage-computation-integrated paradigm of neuromorphic hardwares, each
unit and connection of the SNNs in the inference phase should be mapped into
a neuron and synapse in neuromorphic hardware, respectively. Though these
hardwares could be multiplexed, it also increases the complexity of deploymen-
tion and extra cost of data transfer. As far as we know, at least Darwin [28],

Real Spike 3

Tianjic [32], and other memristor-enabled neuromorphic computing systems [41]
adopt this one-to-one mapping form at present. Hence, all the components of
an SNN will be deployed as a fixed configuration on these hardwares, no matter
they share the same convolution kernel or not. Unlike the DNNs, the shared con-
volution kernels will not bring SNNs the advantages of parameter reduction and
inference acceleration in this situation. Hence we argue that it would be better
to learn unshared convolution kernels for each output feature map in SNNs.

Unfortunately, whether in theory or technology, it is not feasible to directly
train an unshared convolution kernels-based SNN. First, there is no obvious proof
that learning different convolution kernels directly will surely benefit the network
performance. Second, due to the lack of mature development platforms for SNNs,
many efforts are focusing on training SNNs with DNN-oriented programming
frameworks, which usually do not support the learning of unshared convolution
kernels for each feature map directly. Considering these limitations, we focus on
training SNNs with unshared convolution kernels based on the modern DNN-
oriented frameworks indirectly.

Driven by the above reasons, a training-time and inference-time decoupled
SNN is proposed, where a neuron can emit real-valued spikes during training
but binary spikes during inference, dubbed Real Spike. The training-time real-
valued spikes can be converted to inference-time binary spikes via convolution
kernel re-parameterization and a shared convolution kernel, which can be de-
rived into multiples then (see details in Sec. 3.3). In this way, an SNN with
different convolution kernels for every output feature map can be obtained as
we expected. Specifically, in the training phase, the SNN will learn real-valued
spikes and a shared convolution kernel for every output feature map. While in
the inference phase, every real-valued spike will be transformed into a binary
spike by folding a part of the value to its corresponding kernel weight. Due to
the diversity of the real-valued spikes, by absorbing part of the value from each
real spike, the original convolution kernel shared by each output map can be
converted into multiple forms. Thus different convolution kernels for each fea-
ture map of SNNs can be obtained indirectly. It can be guaranteed theoretically
that the Real Spike method can improve the performance due to the richer
representation capability of real-valued spikes than binary spikes (see details in
Sec. 3.4). Besides, Real Spike is well compatible with present DNN-oriented
programming frameworks, and it still retains the advantages of DNN-oriented
frameworks in terms of the convolution kernel sharing mechanism in the train-
ing. Furthermore, we extract the essential idea of training-inference-decoupled
and extend Real Spike to a more generalized form, which is friendly to both
neuromorphic and non-neuromorphic hardwares (see details in Sec. 3.5). The
overall workflow of the proposed method is illustrated in Fig. 2.

Our main contributions are summarized as follows:

– We propose the Real Spike, a simple yet effective method to obtain SNNs
with unshared convolution kernels. The Real Spike-SNN can be trained in
DNN-oriented frameworks directly. It can effectively enhance the information
representation capability of the SNN without introducing training difficulty.

4 Guo, Y. et al.

1.9

0.7

1.0

1.2

Real Spikes Convolution
kernel

Input Feature
Map

Output Map

1.0

1.0

1.0

1.0

Binary Spikes Convolution
kernel

Input Feature
Map

Output Map

Convolution kernel

Re-parameterization

Training Phase Inference Phase

Fig. 2. The overall workflow of Real Spike. In the training phase, the SNN learns
real-valued spikes and the shared convolution kernel for each output feature map. In
the inference phase, the real spikes can be converted to binary spikes via convolution
kernel re-parameterization. Then an SNN with different convolution kernels for every
feature map is obtained.

– The convolution kernel re-parameterization is introduced to decouple a training-
time SNN with real-valued spikes and shared convolution kernels, and an
inference-time SNN with binary spikes and unshared convolution kernels.

– We extend the Real Spike to other different granularities (layer-wise and
channel-wise). These extensions can keep shared convolution kernels in the
inference and show advantages independent of specific hardwares.

– The effectiveness of Real Spike is verified on both static and neuromorphic
datasets. Extensive experimental results show that our method performs
remarkably.

2 Related Work

This work starts from training more accurate SNNs with unshared convolu-
tion kernels for each feature map. Considering the lack of specialized suitable
platforms that can support the training of deep SNNs, powerful DNN-oriented
programming frameworks are adopted. To this end, we briefly overview recent
works of SNNs in three aspects: (i) learning algorithms of SNNs; (ii) SNN pro-
gramming frameworks; (iii) convolutions.

2.1 Learning Algorithms of SNNs

The learning algorithms of SNNs can be divided into three categories: convert-
ing ANN to SNN (ANN2SNN) [2,13,36,25], unsupervised learning [6,14], and
supervised learning [16,29,26,37,12]. ANN2SNN converts a pre-trained ANN to
an SNN by transforming the real-valued output of the activation function to bi-
nary spikes. Due to the success of ANNs, ANN2SNN can generate an SNN in a
short time with competitive performance. However, the converted ANN inherits
the limitation of ignoring rich temporal dynamic behaviors from DNNs, it can-
not handle neuromorphic datasets well. On the other hand, ANN2SNN usually

Real Spike 5

requires hundreds of timesteps to approach the accuracy of pre-trained DNNs.
Unsupervised learning is considered a more biologically plausible method. Un-
fortunately, the lack of sufficient understanding of the biological mechanism pre-
vents the network from going deep, thus it is usually limited to small datasets and
non-ideal performance. Supervised learning trains SNNs with error backpropa-
gation. Supervised learning-based methods can not only achieve high accuracy
within very few timesteps but also handle neuromorphic datasets. Our work falls
under this category.

2.2 SNN Programming Frameworks

There exist several specialized programming frameworks for SNN modeling.
However, most of them cannot support the direct training of deep SNNs. NEU-
RON [3], a simulation environment for modeling computational models of neu-
rons and networks of neurons, mainly focuses on simulating neuron issues with
complex anatomical and physiological characteristics, which is more suitable for
neuroscience research. BRIAN2 [11] and NEST [10], simulators for SNNs, aim at
making the writing of simulation code as quick and easy as possible for the user,
but they are not designed for the supervised learning for deep SNNs. Spiking-
Jelly [7], an open-source deep learning framework for SNNs based on PyTorch,
provides a solution to establish SNNs by mature DNN-oriented programming
frameworks. However, so far most functions of the SpikingJelly are still under
development. Instead of developing a new framework, we attempt to investigate
an ingenious solution to develop the SNNs that have unshared convolutional ker-
nels for each output feature map in the DNN-oriented frameworks, which have
demonstrated an easy-to-use interface.

2.3 Convolutions

Convolutional Neural Networks have recently harvested a huge success in large-
scale computer vision tasks [22,20,38,39,15,35]. Due to the abilities of input
scale adaptation, translation invariance, and parameter reduction, the stacked
convolution layers help train a deep and well-performed neural network with
fewer parameters compared to dense-connected fully connected layers. For a
convolution layer, feature maps of the previous layer are convolved with some
learnable kernels and presented through the activation function to form the
output feature maps as the current layer. Each learnable kernel is corresponding
to an output map. In general, we have that

Xi,j = f(Ij ∗Ki), (1)

where Ij ∈ Rk×k×C denotes j-th block of the input maps with total C channels,
Ki ∈ Rk×k×C is the i-th convolution kernel with i = 1, . . . , C, then Xi,j ∈ R is
the j-th element in i-th output feature map. It can be seen that all the outputs
in each channel share a same convolution kernel. However, when implementing
a convolution-based SNN on above mentioned neuromorphic hardwares, all the

6 Guo, Y. et al.

kernels will be mapped as synapses no matter they are shared or not. Hence,
keeping shared convolution kernel cannot show the same advantages for SNNs as
DNNs. We argue that learning different convolution kernels for each output map
may improve the performence of the SNN further. In this case, a convolution
layer for SNNs can be written as

Xi,j = f(Ij ∗Ki,j), (2)

where Ki,j ∈ Rk×k×C is the j-th convolution kernel for i-th output map. Unfor-
tunately, it is not easy to directly implement the learning of unshared convolution
kernel for SNNs in the DNN-oriented frameworks. And dealing with this issue is
one of the important works in this paper.

3 Materials and Methodology

Aiming at training more accurate SNNs, we adopt the explicitly iterative leaky
Integrate-and-Fire (LIF) model, which can be implemented on mature DNN-
oriented frameworks easily to simulate the fundamental computing unit of SNNs.
Considering that it is not easy to realize unshared convolution kernels for each
output feature map with existing DNN-oriented frameworks, a modified LIF
model that can emit the real-valued spike is proposed first. By using this modified
LIF model, our SNNs will learn real spikes along with the shared convolution
kernel for every output channel as DNNs during training. While for the inference
phase, real spikes will be transformed into binary spikes and each convolution
kernel will be re-parameterized as multiple different convolution kernels, so the
advantages of SNNs can be recovered and unshared convolution kernel for each
output map can be obtained. Then, to make the proposed design more general,
we also propose layer-wise and channel-wise Real Spike, which can keep shared
convolution kernels in both training phase and inference phase and will introduce
no more parameters than its vanilla counterpart. In this section, we will introduce
explicitly iterative LIF model, Real Spike, re-parameterization, and extensions
of Real Spike successively.

3.1 Explicitly Iterative Leaky Integrate-and-Fire Model

The spiking neuron is the fundamental computing unit of SNNs. The LIF neuron
is most commonly used in supervised learning-based methods. Mathematically,
a LIF neuron can be described as

τ
∂u

∂t
= −u+ I, u < Vth (3)

u = urest & fire a spike, u ≥ Vth (4)

where u, urest, τ , I, and Vth represent the membrane potential, membrane resting
potential, membrane time constant that controls the decaying rate of u, pre-
synaptic input, and the given firing threshold, respectively. When u is below

Real Spike 7

Vth, it acts as a leaky integrator of I. On the contrary, when u exceeds Vth, it
will fire a spike and propagate the spike to the next layer, then it will be reset
to the resting potential, urest, which is usually set as 0.

The LIF model has a complex dynamics structure that is incompatible with
nowadays DNN-oriented framework. By discretizing and transforming the LIF
model to an explicitly iterative LIF model, SNNs can be implemented in these
mature frameworks. The hardware friendly iterative LIF model can be described
as

u(t) = τu(t− 1) + I(t), u(t) < Vth (5)

o(t) =

{
1, if u(t) ≥ Vth,
0, otherwise.

(6)

where Vth is set to 0.5 in this work. Up to now, there is still an obstacle for
training SNNs in a direct way, i.e., Eq. (6) is non-differentiable. As in other
work [33,40,4], we appoint a rectangular function as the particular pseudo deriva-
tive of spike firing as follows,

do

du
=

{
1, if 0 ≤ u ≤ 1,
0, otherwise.

(7)

With all these settings, now we can train an SNN on DNN-oriented frame-
works.

3.2 Real Spike

As aforementioned, driven by the suppressed advantages of the shared convolu-
tion kernel and the expectation of enhancing the capacity of information rep-
resentation for SNNs, we turn the problem of learning unshared convolution
kernels to learning real spikes. To be more specific, the output of our modified
LIF model in Eq. (6) is further rewritten as

õ(t) = a· o(t) (8)

where a is a learnable coefficient. With this modification, our LIF model can
emit a real-valued spike, dubbed Real Spike. Then we train SNNs with this
modified LIF model along with the shared convolution kernel for each output
map, which can be easily implemented in DNN-oriented frameworks. Obviously,
unlike the binary spike, the real-valued spike will lose the advantage of com-
putation efficiency of SNNs, since the corresponding multiplication cannot be
substituted to addition. And another problem is that the learned convolution
kernels for each output map are still shared at this time. Therefore, to jointly
deal with these problems, we propose a training-inference decoupled framework,
which can transform real spikes into binary spikes and convert the shared con-
volution kernel as different kernels by using re-parameterization, which will be
introduced in the next subsection.

8 Guo, Y. et al.

1.2 1.5

0.2 2.7

1.6 1.3

0.5 0.5

2.5

2.2

0.6

1.2

2.0 0.3

1.4 1.8

1.0

2.0 8.13.0

4.6

8.8

3.62.0

1.0 1.0

1.0 0.0

0.0 1.0

1.0 0.0

1.0

1.0

1.0

0.0

0.0 1.0

1.0 1.0

1.0

2.0
8.1

3.0

4.6

8.8

3.62.0

1.2 3.0

0.4 8.4

1.6 2.6

1.0 1.5

2.5

4.4

1.2

3.6

2.0 0.6

2.8 5.4

The Shared Convolution
kernel for An Output Map

Output Map

Input Feature Map
with Binary Spikes O

Unshared Convolution
kernels for An Output Map

Training Phase

Re-parameterization

1.0 1.0

1.0 0.0

0.0 1.0

1.0 0.0

1.0

1.0

1.0

0.0

0.0 1.0

1.0 1.0

* =·

O a

* =

Inference Phase

 Output Map

Input Feature Map with Binary Spikes �

K

1.2 1.5

0.2 2.7

1.6 1.3

0.5 0.5

2.5

2.2

0.6

1.2

2.0 0.3

1.4 1.8

1.0

2.0 3.0

2.0

1.0

2.0 3.0

2.0

1.2 3.0

0.4 8.4

1.6 2.6

1.0 1.5

2.5

4.4

1.2

3.6

2.0 0.6

2.8 5.4

Re-parameterization

a K

�

1.2 1.5

0.2 2.7

1.6 1.3

0.5 0.5

2.5

2.2

0.6

1.2

2.0 0.3

1.4 1.8

1.0

2.0 3.0

2.0

a

1.0

2.0 3.0

2.0

1.0

2.0 3.0

2.0

1.0

2.0 3.0

2.0

�

·

K K

K K

Fig. 3. The diagram of re-parameterization by a simple example.

3.3 Re-parameterization

Consider a convolution layer, which takes F ∈ RDF×DF×M as input feature
maps, and generates the output feature maps, G ∈ RDG×DG×N , where DF

and M denote the size of the square feature maps and the number of channels
(depths) for the input, respectively; DG and N denote the size of the square fea-
ture maps and the number of channels (depths) for the output, respectively. The
convolution layer is actually parameterized by a group of convolution kernels,
which can be denoted as a tensor, K ∈ RDK×DK×M×N with a spatial dimension
of DK . Then, each element in G is computed as

Gk,l,n =
∑
i,j,m

Ki,j,m,n·Fk+i−1,l+j−1,m (9)

For standard SNNs, the elements of input maps are binary spikes, while in this
work, the SNN is trained with real-valued spikes for the purpose of enhancing the
network representation capacity. In this case, we can further denote the input
feature map, F, according to Eq. (8) as follows

F = a⊙B (10)

where B and a denote a binary tensor and a learnable coefficient tensor, respec-
tively. With this element-wise multiplication in Eq. (10), we can extract a part of
the value from each element in F, and fold it into the shared convolution kernel
one-by-one according to the corresponding position during inference. Then the
single shared convolution kernel can be turned into multiples without changing
the values of the output maps. Through this decoupling process, a new SNN that
can emit binary spikes and enjoy different convolution kernels will be obtained.
This process can be illustrated from Eq. (11) to Eq. (13) as follows:

Gk,l,n =
∑
i,j,m

Ki,j,m,n· (ak+i−1,l+j−1,m·Bk+i−1,l+j−1,m) (11)

Gk,l,n =
∑
i,j,m

(ak+i−1,l+j−1,m·Ki,j,m,n)·Bk+i−1,l+j−1,m (12)

Real Spike 9

Gk,l,n =
∑
i,j,m

K̃k,l,i,j,m,n·Bk+i−1,l+j−1,m (13)

where K̃ is the unshared convolution kernel tensor.
The whole process described above is called re-parameterization, which allows

us to convert a real-valued-spike-based SNN into an output-invariant binary-
spike-based SNN with unshared convolution kernels for each output map. That
is, re-parameterization provides a solution to obtain an SNN with unshared
convolution kernels under DNN-oriented frameworks by decoupling the training-
time SNN and inference-time SNN. Figure 3 illustrates the details of re-parameterization
by a simple example.

3.4 Analysis and Discussions

In this work, we assume that firing real-valued spikes during training can help
increase the representation capacity of the SNNs. To verify our assumption, a
series of analyses and discussions are conducted by using the information entropy
concept. Given a scalar, vector, matrix, or tensor,X, its representation capability
is denoted as R(X), which can be measured by the information entropy of X,
as follows

R(X) = maxH(X) = max(−
∑
x∈X

pX(x)logpX(x)) (14)

where pX(x) is the probability of a sample from X. When pX(x1) = · · · =
pX(xn), H(X) reaches its maximum (see Appendix A.1 for detailed proofs). For
a binary spike o, it can be expressed with 1 bit, and the number of samples
from o is 2. While the real-valued spike õ needs 32 bits, which consists of 232

samples. Hence, R(o) = 1 and R (õ) = 32 according to Eq. (14). Obviously, the
representation capability of real spikes far exceeds that of binary spikes. This
indicates that real spikes will enhance the information expressiveness of SNNs,
which accordingly benefit the performance improvement. To further show the
difference between real spikes and binary spikes intuitively, the visualizations of
some channels expressed by real spikes and binary spikes are given respectively
in the appendix.

Another intuitive conjecture to explain why the SNN with real-valued spikes
performs better than its counterpart with binary spikes is that, for the former
one, the information loss can be restrained to some extent by changing the fixed
spike value to an appropriate value with a scalable coefficient, a; while for the
later one, the firing function would inevitably induce the quantization error.

It can be concluded from the above analysis that, learning real-valued spikes
instead of the binary spikes in the training phase, enables us to train a more
accurate SNN. And by performing re-parameterization in the inference phase,
real spikes can be converted to binary spikes and unshared convolution kernels
can be obtained. In another word, learning Real Spike is actually used to gener-
ate a better information encoder, while the re-parameterization will transfer the

10 Guo, Y. et al.

Input Map Neuron

Before transformation

Output Map Neuron Synaptic Connection

After transformation

Fig. 4. The difference of adjacent layers in SNNs implemented on neuromorphic hard-
wares before re-parameterization and after re-parameterization. The convolution ker-
nel re-parameterization will only change the values of the connections between neurons
without introducing any additional computation and storage resource since the entire
architecture topology of an SNN must be completely mapped into the hardwares.

rich information encoding capacity from Real Spike into information decod-
ing. Moreover, the transformed model after re-parameterization can also retain
the advantage coming from the binary spike information processing paradigm in
standard SNNs. As shown in Fig. 4, when deploying an SNN into some neuro-
morphic hardwares, all the units and their connections of the network will be
mapped as neurons and synaptic connections one by one. Hence, the SNN with
multiple different convolution kernels will not introduce any computation and
storage resource.

3.5 Extensions of Real Spike

The key observation made in the Real Spike is that re-scaling the binary spike
of the LIF neuron with a real-valued coefficient, a, can increase the representa-
tion capability and accurancy of SNNs. As shown in Eq. (10), the default Real
Spike is performed in the element-wise way. In a similar fashion, we argue that
introducing scaling coefficent by layer-wise or channel-wise manners will also re-
tain the benefit to some extent. Then, we further propose to re-formulate Eq. (8)
for one layer as follows

õ(t) = a·o(t) (15)

With this new formulation we can explore various ways of introducing a during
training. Specifically, we propose to introduce a for each layer in the following 3
ways:
Layer-wise:

a ∈ R1×1×1 (16)

Channel-wise:
a ∈ RC×1×1 (17)

Element-wise:
a ∈ RC×H×H (18)

Real Spike 11

Table 1. Ablation study for Real Spike.

Dataset Architecture Timestep Accuracy

CIFAR10

ResNet20 w/ BS
2 88.91%
4 91.73%
6 92.98%

ResNet20 w/ RS
2 90.47%
4 92.53%
6 93.44%

CIFAR100

ResNet20 w/ BS
2 62.59%
4 63.27%
6 67.12%

ResNet20 w/ RS
2 63.40%
4 64.87%
6 68.60%

RS represents real spikes and BS represents binary spikes.

where C is the number of channels andH is the spatial dimension of a square fea-
ture map. Obviously, for layer-wise and channel-wise Real Spike, re-parameterization
will only re-scale the shared convolution kernels without transferring them to
different ones. In these two forms, our Real Spike act in the same way as con-
ventional SNNs on any hardwares. That is to say, starting from the motivation
of how to take full advantage of the integration of memory and computation, we
propose element-wiseReal Spike. Then we extract the essential idea of training-
inference-decoupled and extend Real Spike to a more generalized form, which
is friendly to both neuromorphic and non-neuromorphic hardware platforms.

4 Experiment

The performance of the Real Spike-based SNNs were evaluated on several tra-
ditional static datasets (CIFAR-10 [19], CIFAR-100 [19], ImageNet [20]) and
one neuromorphic dataset (CIFAR10-DVS [24]). And multiple widely-used spik-
ing archetectures including ResNet20 [33,36], VGG16 [33], ResNet18 [8], and
ResNet34 [8] were used to verify the effectiveness of our Real Spike. Detailed
introduction of the datasets and experimental settings are provided in the ap-
pendix. Extensive ablation studies were conducted first to compare the SNNs
with real-valued spikes and their binary spike counterpart. Then, we compre-
hensively compared our SNNs with the existing state-of-the-art SNN methods.

4.1 Ablation Study for Real Spike

The ablation study of Real Spike was conducted on CIFAR-10/100 datasets
based on ResNet20. The SNNs with real-valued spikes and binary spikes were
trained with the same configuration, with timestep varying from 2 to 6. Results in
Tab. 1 show that the test accuracy of the SNNs with real-valued spikes is always

12 Guo, Y. et al.

0 50 100 150 200 250 300 350 400
epoch

70

75

80

85

90

95

ac
cu

ra
cy

(%
)

Real spike
Binary spike

0 50 100 150 200 250 300 350 400
epoch

40

45

50

55

60

65

ac
cu

ra
cy

(%
)

Real spike
Binary spike

Fig. 5. The accuracy curves of ResNet20 with real-valued spikes and binary spikes
with a timestep = 4 on CIFAR-10(left) and CIFAR-100(right). The real-valued spikes-
based SNNs obviously enjoy higher accuracy and easier convergence.

Table 2. Performance comparison for different Real Spike versions.

Dataset Architecture version Accuracy

CIFAR10 ResNet20

Vanilla 91.73%
Layer-wise 92.12%

Channel-wise 92.25%
Element-wise 92.53%

CIFAR100 ResNet20

Vanilla 63.27%
Layer-wise 64.28%

Channel-wise 64.71%
Element-wise 64.87%

higher than that with binary spikes. This is due to the richer representation
capacity from Real Spike, which benefits the performance improvement of SNNs.
Figure 5 illustrates the test accuracy curves of ResNet20 with real-valued spikes
and its counterpart with binary spikes on CIFAR-10/100 during training. It can
be seen that the SNNs with real-valued spikes obviously perform better on the
accuracy and convergence speed.

4.2 Ablation Study for Extensions of Real Spike

The performance of SNNs with different extensions of Real Spike was evaluated
on CIFAR-10(100). Results in Tab. 2 show that element-wise Real Spike always
outperforms the other versions. But all the Real Spike-based SNNs conformably
outperform the vanilla (standard) SNN. Another observation is that the accuracy
difference between layer-wise Real Spike and the binary spike is greater than
that between layer-wise Real Spike and element-wise Real Spike. This shows
that our method touches on the essence of improving the SNN accuracy and is
very effective.

4.3 Comparison with the State-of-the-art

In this section, we compared the Real Spike-based SNNs with other state-of-
the-art SNNs on several static datasets and a neuromorphic dataset. For each

Real Spike 13

Table 3. Performance comparison with SOTA methods.

Dataset Method Type Architecture Timestep Accuracy

CIFAR-10

SpikeNorm [36] ANN2SNN VGG16 2500 91.55%
Hybrid-Train [34] Hybrid VGG16 200 92.02%
SBBP [23] SNN training ResNet11 100 90.95%
STBP [40] SNN training CIFARNet 12 90.53%
TSSL-BP [42] SNN training CIFARNet 5 91.41%
PLIF [9] SNN training PLIFNet 8 93.50%

Diet-SNN [33] SNN training
VGG16

5 92.70%
10 93.44%

ResNet20
5 91.78%
10 92.54%

STBP-tdBN [43] SNN training ResNet19
2 92.34%
4 92.92%
6 93.16%

Real Spike SNN training

ResNet19
2 94.01%±0.10
4 95.60%±0.08
6 95.71%±0.07

ResNet20
5 93.01%±0.07
10 93.65%±0.05

VGG16
5 92.90%±0.09
10 93.58%±0.06

CIFAR-100

BinarySNN [27] ANN2SNN VGG15 62 63.20%
Hybrid-Train [34] Hybrid VGG11 125 67.90%
T2FSNN [31] ANN2SNN VGG16 680 68.80%
Burst-coding [30] ANN2SNN VGG16 3100 68.77%
Phase-coding [18] ANN2SNN VGG16 8950 68.60%

Diet-SNN [33] SNN training
ResNet20 5 64.07%
VGG16 5 69.67%

Real Spike SNN training
ResNet20 5 66.60%±0.11
VGG16 5 70.62%±0.08
VGG16 10 71.17%±0.07

ImageNet

Hybrid-Train [34] Hybrid ResNet34 250 61.48%
SpikeNorm [36] ANN2SNN ResNet34 2500 69.96%
STBP-tdBN [43] SNN training ResNet34 6 63.72%

SEW ResNet [8] SNN training
ResNet18 4 63.18%
ResNet34 4 67.04%

Real Spike SNN training
ResNet18 4 63.68%±0.08
ResNet34 4 67.69%±0.07

CIFAR10-DVS

Rollout [21] Streaming DenseNet 10 66.80%
STBP-tdBN [43] SNN training ResNet19 10 67.80%

Real Spike SNN training
ResNet19 10 72.85%±0.12
ResNet20 10 78.00%±0.10

14 Guo, Y. et al.

run, we report the mean accuracy as well as the standard deviation with 3 trials.
Experimental results are shown in Tab. 3.

CIFAR-10(100). On CIFAR-10, our SNNs achieve higher accuracy than
the other state-of-the-art methods, and the best result of 95.71% top-1 accu-
racy is achieved by ResNet19 with 6 timesteps. And even trained with much
fewer timesteps, i.e., 2, our ResNet19 still outperforms the STBP-tdBN under 6
timesteps with 0.85% higher accuracy. This comparison shows that our method
also enjoys the advantage of latency reduction for SNNs. On CIFAR-100, Real
Spike also performs better and achieves a 2.53% increment on ResNet20 and a
0.95% increment on VGG16.

ImageNet. The ResNet18 and ResNet34 were selected as the backbones.
Considering that the image size of the samples is much larger, the channel-wise
Real Spike was used. For a fair comparison, we made our architectures consis-
tent with SEW-ResNets, which are not typical SNNs, where the IF model and
modified residual structure are adopted. Results show that, even with 120 fewer
epochs of training (200 for ours, 320 for SEW-ResNets), the channel-wise Real
Spike-based SNNs can still outperform SEW-ResNets. In particular, our method
achieves a 0.5% increment on ResNet18 and a 0.65% increment on ResNet34.
Moreover, Real Spike-based ResNet34 with 4 timesteps still outperforms STBP-
tdBN-based RersNet34 with 6 timesteps by 3.97% higher accuracy.

CIFAR10-DVS. To further verify the generalization of the Real Spike, we
also conducted experiments on the neuromorphic dataset CIFAR10-DVS. Us-
ing ResNet20 as the backbone, Real Spike achieves the best performance with
78.00% accuracy in 10 timesteps. For ResNet19, Real Spike obtains 5.05% im-
provement compared with STBP-tdBN. It’s worth noting that, as a more com-
plex model, ResNet19 performs worse than ResNet20. This is because that neu-
romorphic datasets usually suffer much more noise than static ones, thus more
complex models are easier to overfit on these noisier datasets.

5 Conclusions

In this work, we focused on the difference between SNNs and DNNs and spec-
ulated that the unshared convolution kernel-based SNNs would enjoy more ad-
vantages than those with shared convolution kernels. Motivated by this idea,
we proposed Real Spike, which aims at enhancing the representation capacity
for an SNN by learning real-valued spikes during training and transferring the
rich representation capacity into inference-time SNN by re-parameterizing the
shared convolution kernel to different ones. Furthermore, a series of Real Spikes
in different granularities were explored, which are enjoy shared convolution ker-
nels in both training and inference phases and friendly to both neuromorphic
and non-neuromorphic hardware platforms. Proof of why Real Spike has a
better performance than vanilla SNNs was provided. Extensive experiments ver-
ified that our proposed method consistently achieves better performance than
the existed state-of-the-art SNNs.

Real Spike 15

References

1. Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
Imam, N., Nakamura, Y., Datta, P., Nam, G.J., et al.: Truenorth: Design and
tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE
transactions on computer-aided design of integrated circuits and systems 34(10),
1537–1557 (2015) 2

2. Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks
for energy-efficient object recognition. International Journal of Computer Vision
113(1), 54–66 (2015) 4

3. Carnevale, N.T., Hines, M.L.: The NEURON book. Cambridge University Press
(2006) 5

4. Cheng, X., Hao, Y., Xu, J., Xu, B.: Lisnn: Improving spiking neural networks with
lateral interactions for robust object recognition. In: IJCAI. pp. 1519–1525 (2020)
7

5. Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H., Dimou,
G., Joshi, P., Imam, N., Jain, S., et al.: Loihi: A neuromorphic manycore processor
with on-chip learning. Ieee Micro 38(1), 82–99 (2018) 2

6. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in computational neuroscience 9, 99 (2015)
4

7. Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., Tian, Y., other contrib-
utors: Spikingjelly. https://github.com/fangwei123456/spikingjelly (2020) 5

8. Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., Tian, Y.: Deep residual
learning in spiking neural networks. Advances in Neural Information Processing
Systems 34, 21056–21069 (2021) 11, 13

9. Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., Tian, Y.: Incorporating
learnable membrane time constant to enhance learning of spiking neural networks.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 2661–2671 (2021) 13

10. Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4),
1430 (2007) 5

11. Goodman, D.F., Brette, R.: The brian simulator. Frontiers in neuroscience p. 26
(2009) 5

12. Guo, Y., Tong, X., Chen, Y., Zhang, L., Liu, X., Ma, Z., Huang, X.: Recdis-snn:
Rectifying membrane potential distribution for directly training spiking neural
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 326–335 (June 2022) 4

13. Han, B., Roy, K.: Deep spiking neural network: Energy efficiency through time
based coding. In: European Conference on Computer Vision. pp. 388–404. Springer
(2020) 4

14. Hao, Y., Huang, X., Dong, M., Xu, B.: A biologically plausible supervised learning
method for spiking neural networks using the symmetric stdp rule. Neural Networks
121, 387–395 (2020) 4

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 5

16. Huh, D., Sejnowski, T.J.: Gradient descent for spiking neural networks. Advances
in neural information processing systems 31 (2018) 4

https://github.com/fangwei123456/spikingjelly

16 Guo, Y. et al.

17. Khan, M.M., Lester, D.R., Plana, L.A., Rast, A., Jin, X., Painkras, E., Furber, S.B.:
Spinnaker: mapping neural networks onto a massively-parallel chip multiprocessor.
In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence). pp. 2849–2856. Ieee (2008) 2

18. Kim, J., Kim, H., Huh, S., Lee, J., Choi, K.: Deep neural networks with weighted
spikes. Neurocomputing 311, 373–386 (2018) 13

19. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced
research). URL http://www. cs. toronto. edu/kriz/cifar. html 5(4), 1 (2010) 11

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25
(2012) 5, 11

21. Kugele, A., Pfeil, T., Pfeiffer, M., Chicca, E.: Efficient processing of spatio-temporal
data streams with spiking neural networks. Frontiers in Neuroscience 14, 439
(2020) 13

22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) 5

23. Lee, C., Sarwar, S.S., Panda, P., Srinivasan, G., Roy, K.: Enabling spike-based
backpropagation for training deep neural network architectures. Frontiers in neu-
roscience p. 119 (2020) 13

24. Li, H., Liu, H., Ji, X., Li, G., Shi, L.: Cifar10-dvs: an event-stream dataset for
object classification. Frontiers in neuroscience 11, 309 (2017) 11

25. Li, Y., Deng, S., Dong, X., Gong, R., Gu, S.: A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In: International Conference
on Machine Learning. pp. 6316–6325. PMLR (2021) 4

26. Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., Gu, S.: Differentiable spike: Re-
thinking gradient-descent for training spiking neural networks. Advances in Neural
Information Processing Systems 34, 23426–23439 (2021) 4

27. Lu, S., Sengupta, A.: Exploring the connection between binary and spiking neural
networks. Frontiers in Neuroscience 14, 535 (2020) 13

28. Ma, D., Shen, J., Gu, Z., Zhang, M., Zhu, X., Xu, X., Xu, Q., Shen, Y., Pan, G.:
Darwin: A neuromorphic hardware co-processor based on spiking neural networks.
Journal of Systems Architecture 77, 43–51 (2017) 2

29. Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Processing Magazine 36(6), 51–63 (2019) 4

30. Park, S., Kim, S., Choe, H., Yoon, S.: Fast and efficient information transmission
with burst spikes in deep spiking neural networks. In: 2019 56th ACM/IEEE Design
Automation Conference (DAC). pp. 1–6. IEEE (2019) 13

31. Park, S., Kim, S., Na, B., Yoon, S.: T2fsnn: Deep spiking neural networks with time-
to-first-spike coding. In: 2020 57th ACM/IEEE Design Automation Conference
(DAC). pp. 1–6. IEEE (2020) 13

32. Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., Wang, G., Zou, Z., Wu,
Z., He, W., et al.: Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature 572(7767), 106–111 (2019) 2, 3

33. Rathi, N., Roy, K.: Diet-snn: Direct input encoding with leakage and threshold
optimization in deep spiking neural networks. arXiv preprint arXiv:2008.03658
(2020) 7, 11, 13

34. Rathi, N., Srinivasan, G., Panda, P., Roy, K.: Enabling deep spiking neural net-
works with hybrid conversion and spike timing dependent backpropagation. arXiv
preprint arXiv:2005.01807 (2020) 13

Real Spike 17

35. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems 28 (2015) 5

36. Sengupta, A., Ye, Y., Wang, R., Liu, C., Roy, K.: Going deeper in spiking neural
networks: Vgg and residual architectures. Frontiers in neuroscience 13, 95 (2019)
4, 11, 13

37. Shrestha, S.B., Orchard, G.: SLAYER: Spike layer error reassignment in time.
In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 31.
pp. 1419–1428. Curran Associates, Inc. (2018), http://papers.nips.cc/paper/
7415-slayer-spike-layer-error-reassignment-in-time.pdf 4

38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014) 5

39. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)
5

40. Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., Shi, L.: Direct training for spiking
neural networks: Faster, larger, better. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 33, pp. 1311–1318 (2019) 7, 13

41. Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J.J., Qian,
H.: Fully hardware-implemented memristor convolutional neural network. Nature
577(7792), 641–646 (2020) 3

42. Zhang, W., Li, P.: Temporal spike sequence learning via backpropagation for deep
spiking neural networks. Advances in Neural Information Processing Systems 33,
12022–12033 (2020) 13

43. Zheng, H., Wu, Y., Deng, L., Hu, Y., Li, G.: Going deeper with directly-trained
larger spiking neural networks. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence. vol. 35, pp. 11062–11070 (2021) 13

http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf

	Real Spike: Learning Real-valued Spikes for Spiking Neural Networks

