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Appendices

A Architecture of Custom-CNN

In order to assess the performance of FedLTN and other FL algorithms on a small
neural network (feasible to be deployed on resource-constrained edge devices) we
use a custom-built CNN with the architecture shown in Figure A.1. It has two
convolutional layers with max-pooling followed by three fully-connected layers.
Consequently, the model size is a fraction of ResNet18, with the custom CNN’s
62,006 parameters only taking up 240KB of memory.

Conv2d-1
MaxPool2d-2
Conv2d-3

MaxPool12d-4
Linear-5

Fig. A.1: Architecture of custom CNN.

Notably, no batch normalization is present for any of the layers. As such, in
limiting the network size, we also sacrifice the BN-preservation component of
our proposed FedLTN framework. Furthermore, the performance of FedBN is
the same as vanilla Federated Averaging.

B Effect of Rewinding

We conduct experiments with rewinding to iteration 0 after pruning. We find
that rewinding performs poorer than our method with no rewinding in terms of
pruning rate, convergence speed, and communication cost.
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Fig. B.2: Left (a): Comparision of validation accuracies at each round. We ob-
serve that our method converges faster without rewinding to round 0. Right (b):
Comparison of pruning rate at each round. Skipping rewinding increases the
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pruning speed and thus overall reducing the communication cost.

C Custom CNN Results on CIFAR-10

Dataset Algorithm Avg Test Accuracy% Min Test Accuracy%
FedAvg 50.0 50.0
LotteryFL(0.1) 72.6 51.8
LotteryFL(0.5) 71.6 52.3
LotteryFL(0.9) 70.6 57.5
CIFAR-10 FedLTN (0.1) 79.4 62.0
Custom CNN FedLTN(0.5) 78.0 61.0
No BN Layers FedLTN(0.9) 72.98 57.5
FedLTN(0.1; rewind) 72.95 57.3
FedLTN(0.5; rewind) 64.6 48.8
FedLTN(0.9; rewind) 64.3 50.0

Table C.1: Performance of FedLTN against baselines for a custom CNN model

with no BN layers.
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D Jump-Start for TinyImageNet
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Fig.D.3: Mean prune rate for ResNet18 on TinylmageNet using 25 Jump-Start
and 25 FedLTN rounds. 50% participation rate and 10% prune step was used for
all rounds. We set a max prune of 30% for Jump-Start and 90% for FedLTN.

E Performance on FEMNIST (LEAF benchmark)

Table E.2 compares FedLTN’s performance with other baselines on the FEM-
NIST dataset. We use the same hyperparameters as used for CIFAR-10 and
TinyImageNet.

Algorithm ‘Avg Test
FedAvg 60.95
LotteryFL(0.5) 61.45
FedLTN(0.9) 66.95

FedLTN(0.9; jumpstart)| 65.55
Table E.2: Performance on the FEMNIST (LEAF) dataset
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