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A. Backpropagation Training with Surrogate Gradients

Following the previous surrogate gradients works [8,7,9,10,14,12,6,13], we train
the weight parameters with surrogate gradients function in order to circumvent
non-differentiable problem of LIF neurons. Specifically, the output spikes oti are
generated if the membrane potential ut

i exceeds a firing threshold. Here, we use
arctan(·) function following the previous work [3]:
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We follow the loss function L used in [1] which accumulates cross-entropy
loss across all timesteps. The gradients for each weight are computed in both
spatial and time axis [14,9]. According to the chain rule, we can compute the
gradients of the weight parameters Wl as:
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Here, Ot
l and U t

l are the matrix form of output spikes and membrane potential
at time-step t for layer l, respectively.

B. Late Rewinding for SNNs

Frankle et al. [4] present Late Rewinding, which rewinds the network to the
weights at epoch i rather than initialization. This enables IMP to discover the
winning ticket with less performance drop in high sparsity regime by providing
a more stable starting point. As shown in Fig. 1, we found that Late Rewinding
shows better performance than the original IMP in deep SNNs. Throughout our
main paper, we apply Late Rewinding to IMP for experiments where we rewind
the network to epoch 20.
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Fig. 1. Original IMP vs. Late rewinding LTH.

C. Variation of KL Divergence at the Early Training Stage

We found that the normalized KL divergence metric (for each Tearly) shows high
variation in the first epoch, as shown in Fig. 2. After epoch 2, the standard
deviation of the normalized KL divergence metric goes smaller, and the mean
normalized KL divergence maintains a similar value across training. Therefore,
we train SNN for 2 epochs in order to stabilize the KL divergence metric while
minimizing training cost. Note, we can also select more higher number of epochs,
however, they will provide the same Tearly.
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Fig. 2. Normalized KL divergence between the predicted class probabilities from dif-
ferent timesteps. We show mean/standard deviation from 5 random runs.

D. Time Cost for VGG and ResNet Architectures

To provide the reference on search time measured in the main paper, we show
time cost for one training iteration (feedforward + backward) on VGG16 and
ResNet19 in Table 1. We use SpikingJelly which provides optimized LIF neuron
implementation on NVIDIA RTX 2080ti GPU and Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz processor. The execution time is proportional to the size of
the backward computational graph [2] which is affected by timesteps. The re-
sults show the execution time exponentially increases if the computational graph
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Table 1. Time cost for one iteration (feedforward + backward) with respect to the
number of timesteps. We use batch size 128 for the experiments.

Method
(unit:seconds)

Number of Timesteps

T=1 T=2 T=3 T=4 T=5

VGG16 [11] 26.45 29.15 32.44 37.26 44.49
ResNet19 [5] 27.57 31.14 39.76 49.85 61.50

Table 2. Ablation studies on a metric for Tearly selection. We use JSD and KLD for
experiments. Note, the value at T=2 is fixed to 1 as a reference. We report mean and
stdandard deviation from 5 runs.

Method Jensen–Shannon Divergence Kullback-Leibler Divergence

T=2 T=3 T=4 T=2 T=3 T=4

VGG16 [11] 1± 0.00 0.281± 0.028 0.167± 0.027 1± 0.00 0.274± 0.052 0.158± 0.063
ResNet19 [5] 1± 0.00 0.375± 0.010 0.233± 0.021 1± 0.00 0.367±0.031 0.243± 0.038

goes larger. Also, we observe that ResNet19 requires more execution time than
VGG16, and the difference increase with higher timesteps.

E. Experiments on Early Time (ET) tickets

In Table 3, we report the change in accuracy and search speed gain from apply-
ing ET to IMP and EB, on SVHN, Fashion-MNIST, CIFAR10, and CIFAR100
datasets. The results support our hypothesis that important weight connectivity
of the SNN can be discovered from shorter timesteps.

F. Applying Various Distance Metrics

To discover Tearly, we use Kullback-Leibler Divergence (KLD) between the class
probabilites across different timesteps (refer Algorithm 1 in the main paper). In
this section, we measure the normalized Jensen–Shannon Divergence (JSD), a
symmetric version of KLD, in Table 2. We can observe that both KLD and JSD
show a similar distance for VGG16 and ResNet19 architecture. This implies that
our Tearly algorithm is robust to the distance metric.

G. Experiments on deep/shallow networks

To further validate the existence of LTH in SNNs, we ran the experiments with
ResNet34 on TinyImageNet. In Fig.3 Left, we found that Winning Ticket exists
even in deep networks on larger dataset with various pruning methods includ-
ing IMP, EB, IMP+ET, and EB+ET. We also report a random pruning as a
baseline, which implies Winning Ticket is difficult to be discovered with a näıve
approach. We also evaluate AlexNet on CIFAR10 in Fig.3 Right. The results
corroborate our statement in which LTH can be applied to SNNs.
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Fig. 3. Accuracy comparison of pruning methods on two settings. Left: ResNet34 on
TinyImageNet. Right: AlexNet on CIFAR10. We show mean/standard deviation from
5 random runs.
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Table 3. Effect of the proposed Early-Time ticket. We compare the accuracy and
search time of Iterative Magnitude Pruning (IMP), Early-Bird (EB) ticket, Early-Time
(ET) ticket on four sparsity levels. We show search speed gain and accuracy change
from applying ET. Note, ResNet19 requires 1.06 ∼ 1.38× forward+backward time
compared to VGG16 because of a large computational graph from multiple timesteps.

Setting Method
Accuracy Winning Ticket Search Time (hours)

p=68.30% p=89.91% p=95.69% p=98.13% p=68.30% p=89.91% p=95.69% p=98.13%
IMP 95.53 95.56 95.41 95.18 7.42 14.99 20.56 26.09
IMP + ET 95.25 95.15 94.36 94.28 5.48 11.03 15.09 19.14

SVHN ∆ Acc. / Speed Gain -0.28 -0.41 -1.05 -0.90 ×1.35 ×1.35 ×1.36 ×1.36
VGG16 EB 95.15 95.29 94.81 94.09 0.76 0.23 0.11 0.08

EB + ET 94.85 94.86 94.26 94.08 0.56 0.18 0.09 0.07
∆ Acc. / Speed Gain -0.30 -0.43 -0.55 -0.01 ×1.34 ×1.29 ×1.22 ×1.18

IMP 96.08 96.05 95.90 95.51 10.25 20.59 28.74 35.87
IMP + ET 95.62 95.70 95.46 94.84 6.62 13.25 18.22 22.68

SVHN ∆ Acc. / Speed Gain -0.46 -0.35 -0.44 -0.67 ×1.54 ×1.55 ×1.57 ×1.58
Res19 EB 95.75 95.38 95.39 94.56 1.44 0.80 0.35 0.12

EB + ET 95.53 95.68 95.20 94.34 0.56 0.18 0.09 0.07
∆ Acc. / Speed Gain -0.22 +0.30 -0.19 -0.22 ×1.51 ×1.49 ×1.43 ×1.25

IMP 94.81 94.74 94.63 94.52 7.52 14.77 20.40 26.10
IMP + ET 94.87 94.97 94.57 93.61 5.59 11.00 15.05 19.13

FMNIST ∆ Acc. / Speed Gain +0.06 +0.23 -0.06 -0.91 ×1.34 ×1.34 ×1.35 ×1.36
VGG16 EB 94.04 93.92 93.69 93.16 0.81 0.32 0.08 0.06

EB + ET 93.68 93.73 93.21 92.25 0.60 0.24 0.07 0.05
∆ Acc. / Speed Gain -0.36 -0.19 -0.48 -0.91 ×1.34 ×1.31 ×1.18 ×1.12

IMP 95.00 94.96 94.96 94.68 10.35 20.63 28.92 35.90
IMP + ET 94.67 94.87 94.5 94.63 6.63 13.10 18.34 22.83

FMNIST ∆ Acc. / Speed Gain -0.33 -0.09 -0.46 -0.05 ×1.56 ×1.57 ×1.57 ×1.57
Res19 EB 94.21 94.14 93.98 93.60 1.53 0.76 0.20 0.10

EB + ET 93.94 93.89 93.48 92.51 1.01 0.51 0.15 0.08
∆ Acc. / Speed Gain -0.27 -0.25 -0.50 -1.09 ×1.51 ×1.49 ×1.38 ×1.16

IMP 92.66 92.54 92.38 91.81 14.97 29.86 40.84 51.99
IMP + ET 92.49 92.09 91.54 91.10 11.19 22.00 30.11 38.26

CIFAR10 ∆ Acc. / Speed Gain -0.17 -0.45 -0.84 -0.71 ×1.34 ×1.35 ×1.35 ×1.35
VGG16 EB 91.74 91.05 89.55 84.64 1.96 0.74 0.11 0.09

EB + ET 91.27 90.66 88.95 84.86 1.44 0.55 0.07 0.06
∆ Acc. / Speed Gain -0.47 -0.39 -0.60 +0.22 ×1.36 ×1.34 ×1.18 ×1.12

IMP 93.47 93.49 93.22 92.43 21.01 42.20 58.91 73.54
IMP + ET 93.10 92.72 92.68 91.36 13.35 26.62 37.27 46.40

CIFAR10 ∆ Acc. / Speed Gain -0.37 -0.77 -0.54 -1.07 ×1.57 ×1.59 ×1.58 ×1.58
Res19 EB 91.00 90.84 89.90 85.22 2.49 0.87 0.24 0.08

EB + ET 90.83 91.21 89.65 85.45 1.63 0.58 1.70 0.07
∆ Acc. / Speed Gain -0.17 +0.37 -0.50 -1.09 ×1.52 ×1.49 ×1.38 ×1.16

IMP 69.08 68.90 68.00 66.02 15.02 29.99 41.03 52.05
IMP + ET 68.27 67.99 66.51 64.41 11.24 22.42 30.53 38.32

CIFAR100 ∆ Acc. / Speed Gain -0.81 -0.91 -1.49 -1.61 ×1.33 ×1.34 ×1.34 ×1.36
VGG16 EB 67.35 65.82 61.90 52.11 2.27 0.99 0.32 0.06

EB + ET 67.26 64.18 61.81 52.77 1.66 0.73 0.24 0.05
∆ Acc. / Speed Gain -0.09 -1.64 -0.09 +0.66 ×1.36 ×1.35 ×1.31 ×1.12

IMP 71.64 71.38 70.45 67.35 21.21 42.29 59.17 73.52
IMP + ET 71.06 70.45 69.23 65.49 13.56 27.05 37.88 46.65

CIFAR100 ∆ Acc. / Speed Gain -0.58 -0.93 -1.22 -1.86 ×1.56 ×1.56 ×1.56 ×1.57
ResNet19 EB 69.41 65.87 62.18 52.92 3.08 1.71 0.43 0.09

EB + ET 68.98 65.76 62.20 51.50 2.00 1.12 0.29 0.07
∆ Acc. / Speed Gain -0.43 -0.12 +0.02 -1.42 ×1.53 ×1.52 ×1.45 ×1.16
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training high-performance spiking neural networks. Frontiers in neuroscience 12,
331 (2018)
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