
On the Angular Update and Hyperparameter
Tuning of a Scale-Invariant Network

Juseung Yun1⋆, Janghyeon Lee2, Hyounguk Shon1, Eojindl Yi1,
Seung Hwan Kim2, and Junmo Kim1

1 Korea Advanced Institute of Science and Technology
2 LG AI Research

{juseung yun,hyounguk.shon,djwld93,junmo.kim}@kaist.ac.kr
{janghyeon.lee,sh.kim}@lgresearch.ai

Abstract. Modern deep neural networks are equipped with normaliza-
tion layers such as batch normalization or layer normalization to enhance
and stabilize training dynamics. If a network contains such normalization
layers, the optimization objective is invariant to the scale of the neural
network parameters. The scale-invariance induces the neural network’s
output to be only affected by the weights’ direction and not the weights’
scale. We first find a common feature of good hyperparameter combina-
tions on such a scale-invariant network, including learning rate, weight
decay, number of data samples, and batch size. Then we observe that hy-
perparameter setups that lead to good performance show similar degrees
of angular update during one epoch. Using a stochastic differential equa-
tion, we analyze the angular update and show how each hyperparameter
affects it. With this relationship, we can derive a simple hyperparameter
tuning method and apply it to the efficient hyperparameter search.

Keywords: scale-invariant network, normalization, effective learning rate,
angular update, hyperparameter tuning

1 Introduction

Many recent deep neural network architectures are equipped with normalization
layers such as batch normalization (BN) [12], layer normalization (LN) [1], group
normalization (GN) [31], or instance normalization (IN) [27]. Such a normaliza-
tion layer stabilizes deep neural networks’ training and boosts generalization
performance. These normalization layers make the optimization objective scale-
invariant to its parameter, i.e., the weight magnitude does not affect the output
of the neural network; only direction does. In stochastic gradient descent (SGD)
of a weight x and learning rate η, the direction update of x is proportional
to the effective learning rate η/∥x∥2 [6,35,28]. Similarly, Wan et al. [29] also
proposed a concept of angular update, which is the angle between the current
and previous weights. Intriguingly, unlike the traditional concept of weight de-
cay (WD), which regularizes the neural network’s capacity by preventing the

⋆ Work done during an internship at LG AI Research.

2 J. Yun et al.

growth of weight norm, scale-invariant networks have the same expressive power
regardless of the weight norm. However, weight decay still implicitly regulates
the training dynamics by controlling the effective learning rate [6,35,28].

Recent studies have examined the relationship between hyperparameters and
SGD dynamics on a scale-invariant network [3,25,24,18,19,29,15,7]. Li et al. [18]
showed that SGD with fixed learning rate and weight decay is equivalent to the
exponentially increasing learning rate schedule without weight decay. However,
as the learning rate exponentially increases, the weight norms gradually overflow
in calculations, making practical use difficult. Some studies have investigated the
relationship between batch size and learning rate [3,25,24]. Goyal et al. [3] pro-
posed a simple linear scaling rule, that is, when the minibatch size is multiplied
by α, the learning rate is multiplied by α. Several studies [25,24,23,19] adopted
stochastic differential equation (SDE), which captures the stochastic gradient
noise to derive this linear scaling rule. However, this rule only considers learn-
ing rate, momentum, and batch size, disregarding factors such as weight decay
and the number of training data samples. Yun et al. [33] proposed a weight de-
cay scheduling method according to the number of data samples but without
analyzing other hyperparameters.

Contribution. This study investigates the relationship between hyperparame-
ters including learning rate η, momentum µ, weight decay λ, batch size B, and
the number of data samples N of SGD, especially on a scale-invariant network
with a fixed epoch budget.

Thus far, we have attempted to find a common feature of hyperparameter
combinations with good performance in Section 3. Specifically, we tune the learn-
ing rate and weight decay to find the optimal combination that yields the best
performance. Then, we observe three factors: effective learning rate, effective
learning rate per epoch, and angular update per epoch. Although N , B, η, and
λ are different, well-tuned hyperparameter combinations show similar angular
updates during one epoch (See Figure 2a).

Based on the novel findings, we propose a simple hyperparameter tuning
rule for SGD. We aim to find the relationship between the angular update per
epoch and hyperparameters. Then, conversely, if we keep the relation between
hyperparameters, the neural network would show similar angular updates and
also show good performance. Here, we adopt SDE to derive the angular up-
date formula. The result shows that we should keep the tuning factor Nηλ

B(1−µ)

for optimum performance. For instance, when B is multiplied by α, multiply λ
by α. Or, when N is multiplied by α, we divide λ by α. We apply the tuning
factor for efficient hyperparameter search and show that we can find near opti-
mum hyperparameters even with a small portion of training samples. Although
the hyperparameter tuning rule might not be the precise optimal policy and is
overly simplified, it is expected to provide valuable insight on how to tune the
hyperparameters efficiently.

On the angular update and hyperparameter tuning 3

Scope of this work. Our goal is not to prove why the angular update per epoch
is important for tuning but to provide empirical evidence for the interesting
observation on the angular update, and simultaneously highlight some insight
into our observation. This work only considers training with SGD and a fixed
epoch budget. We also assume that SDE can approximate SGD. The theoretical
justification for this approximation is provided in [16,20]

2 Preliminaries

SGD and SDE approximation. In SGD, the update of the neural network
parameter xk ∈ Rd for a randomly sampled mini-batch Bk at k-th step is

xk+1 ← xk − η∇L(xk;Bk), (1)

where η is the learning rate and L (xk;Bk) is the averaged mini-batch loss.
Previous studies [2,16,19,17,30,25] used SDE as a surrogate for SGD with a
continuous time limit. Assume that the gradient of each sample is independent
and follows a short-tailed distribution. Then, the gradient noise, which is the
difference between expected gradient L (x) = EB [L (x;B)] and mini-batch gra-
dient L (x;B), can be modeled by Gaussian noise with zero mean and covariance
Σ(x) := EB[(∇L(x;B)−∇L(x))(∇L(x;B)−∇L(x))⊤]. The corresponding SDE
for the Equation 1 is

dXt = −∇L(Xt)dt+ (ηΣ(Xt))
1
2 dWt, (2)

where the time correspondence is t = kη, i.e., Xt ≈ xk, and Wt ∈ Rd is
the standard Wiener process on interval t ∈ [0, T], which satisfies Wt −Ws ∼
N (0, (t−s)Id). Here, N (0, Id) is a normal distribution with zero mean and unit
variance. Li et al. [17] rigorously proved this continuous time limit approximation
holds for infinitesimal learning rate. Li et al. [20] showed that the approximation
is also valid for finite learning rate and theoretically analyzed the conditions for
the approximation to hold. Smith et al. [25,23] used the SDE to derive the linear
scaling rule [3].

From now on, with an abuse of notation, we will omit the mini-batch B in
the loss function L(x;B) for brevity, if the mini-batch dependency is clear from
the context. The stochastic gradient descent with momentum (SGDM) can be
written as the following updates

vk+1 = µvk − η∇L(xk)

xk+1 = xk + vk+1,
(3)

where µ is the momentum parameter, and v is the velocity. Similar to the SGD
case, the following SDE is an order-1 weak approximation of SGDM [16,17]:

dVt =
(
−η−1(1− µ)Vt −∇L (Xt)

)
dt+ (ηΣ (Xt))

1
2 dWt

dXt = η−1Vtdt.
(4)

4 J. Yun et al.

Scale-invariance. Let L(x) : Rd → R be the loss function of a neural network
parameterized by x. L(x) is said to be a scale-invariant function if it satisfies
L(αx) = L(x) for any x ∈ Rd and any α > 0, and the neural network is said
to be a scale-invariant neural network. For a scale-invariant function L(x), the
following properties hold:

1. ∇L(αx) = 1

α
∇L(x) (5)

2. ⟨x,∇L(x)⟩ = 0 (6)

3. ∥Σ(x)1/2x∥ =
√

x⊤Σ(x)x = 0, (7)

where ∥ · ∥ denots the L2 norm of a vector. These properties are previously
discussed [6,35,28,18,19], but we also derive them in the Appendix.

Effective learning rate. For a scale-invariant network parameterized by weight
x, the magnitude of x does not affect the output, and only the direction does.
Defining y := x

∥x∥ , then SGD update of unit vector y can be approximated as

follows:

yk+1 ≈ yk −
η

∥xk∥2
∇L (yk) . (8)

The result shows that the update of y is proportional to η/∥x∥2, or the effective
learning rate [28,6,35].

3 Common Feature of Good Hyperparameter
Combinations

This section finds a common property of hyperparameter combinations that per-
forms well, and demonstrates novel observations on an update of weight direc-
tion. These observations serve as a key intuition for our simple hyperparameter
tuning rule. We first describe the architectural modification to make a convolu-
tional neural network scale-invariant, and define novel indices – effective learning
rate per epoch and angular update per epoch – in Section 3.1. Then, we provide
experimental setups and observation results in Section 3.2.

3.1 Measuring Updates of a Scale-Invariant Network

Network modification. We first describe how to convert a neural network
scale-invariant. Many convolutional neural networks (CNNs) are equipped with
normalization layers and consist of several convolution→normalization→activation
function sequences. Before output there is a global average pooling and a fully
connected layer [5,34,11,4,32,9]. Such a network is invariant to all convolutional
parameters followed by a normalization layer. However, a normalization layer
(e.g., BN) also has an affine parameter and the last fully connected layer has

On the angular update and hyperparameter tuning 5

0 50 100 150 200 250 300
epoch t

0.00000

0.00005

0.00010

0.00015

0.00020
ef

fe
ct

iv
e

LR

(50000,256,0.4,0.0001)
(50000,512,0.1,0.0008)
(50000,1024,0.4,0.0004)
(25000,128,0.4,0.0001)
(12500,128,0.1,0.0008)
(6250,128,0.4,0.0004)

(a)

0 50 100 150 200 250 300
epoch t

0.000

0.002

0.004

0.006

0.008

0.010

0.012

ef
fe

ct
iv

e
LR

 *
N/

B

(50000,256,0.4,0.0001)
(50000,512,0.1,0.0008)
(50000,1024,0.4,0.0004)
(25000,128,0.4,0.0001)
(12500,128,0.1,0.0008)
(6250,128,0.4,0.0004)

(b)

Fig. 1: (a) Effective learning rate and (b) effective learning rate per epoch of
well-tuned hyperparameter combinations.

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

de
gr

ee

(50000,256,0.4,0.0001)
(50000,512,0.1,0.0008)
(50000,1024,0.4,0.0004)
(25000,128,0.4,0.0001)
(12500,128,0.1,0.0008)
(6250,128,0.4,0.0004)

(a)

0 50 100 150 200 250 300
epoch t

0

2

4

6

8

de
gr

ee

(50000,256,0.1,0.0001)
(50000,512,0.1,0.0001)
(50000,1024,0.1,0.0001)
(25000,128,0.1,0.0001)
(12500,128,0.1,0.0001)
(6250,128,0.1,0.0001)

(b)

Fig. 2: (a) Angular update per epoch of well-tuned hyperparameter combinations
and (b) poorly tuned hyperparameter combinations.

no followed normalization layer. To increase the reliability of the observation in
scale-invariant networks, we modify the ResNet [5] to make the training objec-
tive scale-invariant to all trainable parameters. We add normalization without
affine transform after global average pooling and fix the parameters of the FC
layer as done in [8,18,19]. We use ghost batch normalization (GBN) [7] with a
ghost batch size of 64 as the normalization layers. GBN is often used in large
batch training [24,23] to ensure the mean gradient is independent of batch size
[25]. We name this modified architecture as scale-invariant ResNet. However,
we also observe the result on unmodified ResNet in Section 5.2.

Measure for directional updates. As described in Section 2, the effective
learning rate is defined as

ηeff := η/∥x∥2. (9)

We define a novel index, effective learning rate per epoch ηepoch as

ηepoch := ηeff
N

B
=

ηN

∥x∥2B
. (10)

6 J. Yun et al.

The number of iterations during one epoch is N/B, and thus ηepoch means ηeff
multiplied by the number of updates per epoch. We also propose another new
index, angular update per epoch ∆θ for measuring directional change of a vector.
At e-th epoch, ∆θ is defined as

∆θ := ∡
(
xeN/B ,x(e−1)N/B

)
= arccos

(〈
xeN/B ,x(e−1)N/B

〉
∥xeN/B∥ · ∥x(e−1)N/B∥

)
. (11)

3.2 Observation

Experimental setup. This experiment trains a scale-invariant ResNet-18 [5]
on the CIFAR-10 dataset [13]. We train for 300 epochs regardless of the num-
ber of training samples using SGD with a momentum coefficient of 0.9. For all
setups, the learning rate is divided by 10 at epochs 150 and 225. We use stan-
dard augmentation settings such as resizing, cropping, and flipping. We tune the
learning rate and weight decay for six different hyperparameter combinations
(N,B, η, λ):

1. (50000, 256, η, 0.0001) 4. (25000, 128, η, 0.0001)

2. (50000, 256, 0.1, λ) 5. (12500, 128, 0.1, λ)

3. (50000, 1024, η, λ) 6. (6250, 128, η, λ) .

Values written in Arabic numerals are fixed, and hyperparameters written in
symbols are searched (although N is typically not regarded as a hyperparameter,
for convenience, we include it in the combination notation). When tuning only
η, we search η ∈ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2}. When tuning only λ, we search λ
∈ {0.0001, 0.0002, 0.0004, 0.00008, 0.0016, 0.0032}. When tuning both η and λ,
we search from (η, λ) = (0.1, 0.0001) to (0.8, 0.0008) while multiplying both with
a factor of

√
2. We evaluate the average performance of three runs for tuning.

Result. The searched values exhibiting the optimal test accuracy are shown
in legends of Figure 1 and Figure 2a. Figure 1 represents the effective learning
rate ηeff of the found hyperparameter combinations. In all cases, ηeff initially
increases and converges to a certain value until the first learning rate decays. It
implies ∥x∥ also converges to a certain value. However, we cannot find a common
feature of the converging value of ηeff . Figure 1b represents the effective learn-
ing rate per epoch ηepoch of the found hyperparameter combinations. For cases
with the same number of data, ηepoch showed similar values as training proceeded
(blue, orange, and green lines), although they differed at initial transient phases.
If the number of iterations is α times higher, a well-tuned hyperparameter com-
bination has α times smaller ηeff . However, for the cases with a different number
of data (red, purple, and brown lines), even ηepoch showed different values. Fig-
ure 2a shows the angular update per epoch ∆θ of well-tuned hyperparameter
combinations and Figure 2b shows the result of the poorly tuned combinations.

On the angular update and hyperparameter tuning 7

Although N , B, η, and λ were different, hyperparameter combinations result-
ing in good performance showed similar angular updates during one epoch. In
contrast, poorly tuned hyperparameter combinations showed different values of
ηepoch.

4 Angular Update

This section adopts SDE to describe the angular update according to the hyper-
parameters. Then we propose a simple hyperparameter tuning rule.

Angular update of SGD. Similar to Equation 2, we obtain the following SDE
by considering weight decay:

dXt = −∇L(Xt)dt− λXtdt+ (ηΣ(Xt))
1
2 dWt, (12)

where the time correspondence is t = kη, i.e., Xt ≈ xk. In such a SDE, however,
the time scale does not include information on how many iterations the neural
network is trained. Assuming that the network is trained for the same number
of epochs, the number of entire training iterations is proportional to the ratio
of the number of data to batch size N/B. To make the time correspondence
inversely proportional to N/B, we rescale the time by B

N . We rescale the above

SDE by considering X̃t = XN
B t; then, we have

dX̃t = dXN
B t (13)

= −∇L(XN
B t)d

(
N

B
t

)
− λXN

B td

(
N

B
t

)
+
(
ηΣ(XN

B t)
) 1

2

dWN
B t (14)

= −N

B
∇L(X̃t)dt−

Nλ

B
X̃tdt+

(
ηΣ(X̃t)

) 1
2

dWN
B t, (15)

where the time correspondence is t = B
N kη, i.e., evolving for η time with the

above SDE approximates Ω(N/B) steps of SGD. Similar to deriving the linear
scaling rule [25,24,23,3], we also assume that during a small time interval η, the
parameters do not move far enough for the gradients to significantly change, i.e.,
∥X̃t∥ ≈ ∥X̃t+η∥ and ∇L(X̃) are nearly constant. Then, we obtain the update
as follows:

X̃t+η ≈ X̃t −
Nη

B
∇L(X̃t)−

Nηλ

B
X̃t +

(
ηΣ(X̃t)

) 1
2

WN
B η. (16)

Define Y = X̃
∥X̃∥ , then we get

Yt+η ≈
(
1− Nηλ

B

)
Yt −

Nη

B∥X̃∥2
∇L(Yt) +

1

∥X̃∥
(ηΣ(Yt))

1
2 WN

B η. (17)

8 J. Yun et al.

The angle between X̃t and X̃t+η is arccos ⟨Yt,Yt+η⟩. By Equation 6 and Equa-

tion 7, ⟨Yt,∇L (Yt)⟩ = 0,Y ⊤
t Σ(Yt)

1
2 = 0. Then, we have

⟨Yt,Yt+η⟩ ≈ 1− Nηλ

B
. (18)

The result suggests that for Θ(N/B) steps, the angular update is proportional to
1− Nηλ

B . Although we assumed that the parameters do not move far during the
update, we observed that such a relationship still holds for one epoch interval
(Section 5). For instance, when the number of data is multiplied by α, multiplying
η by 1/α can maintain the angular update per epoch. The result also coincides
with that of the linear scaling rule [3,24].

Angular update of SGDM. Similar to Equation 3, by considering weight
decay, we obtain the following combined SDE for SGDM

dVt =
(
−η−1(1− µ)Vt −∇L (Xt)− λXt

)
dt+ (ηΣ (Xt))

1
2 dWt, (19)

dXt = η−1Vtdt. (20)

To make time correspondence inversely proportional to N/B, we rescale the
above SDE by considering X̃t = XN

B t and Ṽt = VN
B t, which yields

dṼt = −
N

B

(
1− µ

η
Ṽt +∇L(X̃t) + λX̃t

)
dt+

(
ηΣ(X̃t)

) 1
2

dWN
B t, (21)

dX̃t =
N

Bη
Ṽtdt. (22)

Using Equation 21, we can rewrite the right hand side of Equation 22 as

N

Bη
Ṽtdt = −

1

1− µ
dṼt −

N

B(1− µ)

(
∇L(X̃t) + λX̃t

)
dt

+
1

1− µ

(
ηΣ(X̃t)

) 1
2

dWN
B t.

(23)

We also assume that during a short time interval η, the parameters do not
move far enough for the gradients and velocity to change significantly. Then, by
integrating Equation 22 from t to t+ η, we get

X̃t+η ≈ X̃t −
Ṽt+η − Ṽt

1− µ
− Nη

B(1− µ)

(
∇L(X̃t) + λX̃t

)
+

1

1− µ

(
ηΣ(X̃t)

) 1
2

WN
B η.

(24)

We define Y = X̃
∥X̃∥ ; futher, the direction update is

Yt+η ≈ Yt −
Ṽt+η − Ṽt

(1− µ)∥X̃t∥
− Nη

B(1− µ)∥X̃t∥
∇L(Yt)−

Nηλ

B(1− µ)
Yt

− 1

(1− µ)∥X̃t∥
(ηΣ(Yt))

1
2 WN

B η.

(25)

On the angular update and hyperparameter tuning 9

Thus, the angle between Yt and Yt+η is arccos ⟨Yt,Yt+η⟩ and we get

⟨Yt,Yt+η⟩ ≈ 1− Nηλ

B(1− µ)
−

〈
Yt, Ṽt+η − Ṽt

〉
(1− µ)∥X̃t∥

(26)

≈ 1− Nηλ

B(1− µ)
. (27)

We refer to Nηλ
B(1−µ) as the tuning factor, which determines how much the angular

update occurs during a single epoch of training. Thus, based on the observations
in Section 3 and Equation 27, we argue that rather than searching for a hyper-
parameter individually, one should search for the tuning factor Nηλ

B(1−µ) for an ef-

ficient tuning. Finding the tuning factor is sufficient for obtaining near optimum
performance, i.e., even if any hyperparameter is changed, a good performance
can still be obtained by maintaining the tuning factor. With an intuition for the
range of appropriate learning rate and momentum coefficient (e.g., 0.1 for initial
learning rate and 0.9 for momentum coefficient is used in many architectures)
and by choosing a moderate batch size considering GPU memory or computation
budget, we only need to search for a weight decay.

5 Experiments

In this section, we demonstrate that hyperparameter combinations with good
performance show similar angular updates per epoch. With the same tuning
factor, we can make these angular updates per epoch similar. We first show the
experimental results on a modified scale-invariant architecture in Section 5.1.
Next, we show the results on an unmodified architecture that is equipped with
BN but has scale-variant parameters in Section 5.2.

5.1 Scale-Invariant Network

Experimental setup. For clarity, in the main text, we only report experiments
using ResNet-18 [5] (or scale-invariant ResNet-18) on CIFAR-10 [13]; however,
we provide additional experiments using DenseNet-100 [11] on CIFAR-100 [13],
and ResNet-18 on Tiny ImageNet [14] in the appendix. We train for 300 epochs
regardless of the number of training samples, and the learning rate is divided
by 10 at epochs 150 and 225. For SGDM, we set the base values as LR=0.1
and WD=0.0001, search them by multiplying the factor of 2 or

√
2, and set

the momentum coefficient as 0.9. For SGD, we set the base value as LR=1,
which makes the value Nηλ

B(1−µ) the same as LR=0.1 for the SGDM setting. We

use the standard augmentation setting such as resizing, cropping, and flipping.
Because the tuning factor comprises five components (N,B, η, λ, µ), there are
many possible combinations. To validate the tuning factor, we categorize the
combinations into three: fixed B, fixed N , and fixed ηλ. We report the average
performance of three runs. However, if there is divergence among the three runs,
we exclude the run when calculating the average; if all runs diverge, we leave
the result table blank.

10 J. Yun et al.

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

An
gu

la
r U

pd
at

e
(°

) (3125,128,0.2,0.0001)
(6250,128,0.4,0.0001)
(12500,128,0.8,0.0001)
(25000,128,1.6,0.0001)
(50000,128,3.2,0.0001)

(a)

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

An
gu

la
r U

pd
at

e
(°

) (3125,128,0.5657,0.0005657)
(6250,128,0.4,0.0004)
(12500,128,0.2828,0.0002828)
(25000,128,0.2,0.0002)
(50000,128,0.1414,0.0001414)

(b)

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

An
gu

la
r U

pd
at

e
(°

) (3125,128,0.1,0.0002)
(6250,128,0.1,0.0004)
(12500,128,0.1,0.0008)
(25000,128,0.1,0.0016)
(50000,128,0.1,0.0032)

(c)

Fig. 3: Angular update per epoch of scale-invariant network with the batch size
128: (a) tuning LR, (b) tuning WD, and (c) tuning both LR and WD.

Table 1: Scale-invariant ResNet-18 on CIFAR-10 with SGDM and B=128.

LR WD 3125 6250 12500 25000 50000

6.4 0.0001 76.99 81.71 83.07 81.77 80.28
3.2 0.0001 78.28 83.70 86.93 89.25 89.92
1.6 0.0001 77.87 84.36 88.75 91.60 93.38
0.8 0.0001 76.73 84.69 88.93 92.75 94.79
0.4 0.0001 74.78 83.90 89.06 92.81 95.13
0.2 0.0001 73.17 83.34 88.70 92.76 95.08
0.1 0.0001 71.62 81.61 87.79 92.07 94.86

(a) Tuning LR

LR WD 3125 6250 12500 25000 50000

0.1 0.0064 77.31 81.71 82.94 83.79 80.18
0.1 0.0032 78.59 83.83 87.44 89.43 90.55
0.1 0.0016 77.57 85.22 89.06 91.94 93.39
0.1 0.0008 76.68 85.11 89.47 93.10 94.89
0.1 0.0004 74.14 84.06 89.31 92.90 95.13
0.1 0.0002 73.14 82.66 88.56 92.74 95.00
0.1 0.0001 71.62 81.61 87.79 92.07 94.86

(b) Tuning WD

LR WD 3125 6250 12500 25000 50000

0.8 0.0008 76.93 81.78 83.19 82.95 79.39
0.5657 0.0005657 78.48 84.00 87.18 89.21 90.63
0.4 0.0004 78.39 84.71 88.92 92.07 93.16

0.2828 0.0002828 76.67 84.80 89.63 92.86 94.95
0.2 0.0002 74.64 83.85 89.12 92.96 95.26

0.1414 0.0001414 73.66 82.93 88.62 92.44 95.09
0.1 0.0001 71.62 81.61 87.79 92.07 94.86

(c) Tuning LR,WD

Table 2: Scale-invariant ResNet-18 on CIFAR-10 with SGD and B=128.

LR WD 3125 6250 12500 25000 50000

64 0.0001 76.75 80.58 79.50 78.98
32 0.0001 78.85 84.36 88.07 90.27 91.43
16 0.0001 78.24 84.34 89.10 92.15 93.58
8 0.0001 77.08 84.72 89.19 92.53 94.80
4 0.0001 75.90 83.96 89.05 92.79 95.23
2 0.0001 74.90 83.46 88.49 92.65 95.14
1 0.0001 73.24 82.18 88.12 92.26 94.83

(a) Tuning LR

LR WD 3125 6250 12500 25000 50000

1 0.0064 77.28 81.53 78.34 78.76 78.95
1 0.0032 79.42 84.67 88.40 91.11 91.60
1 0.0016 79.06 85.14 89.63 92.52 94.02
1 0.0008 77.71 84.94 89.67 93.15 95.02
1 0.0004 75.86 84.22 89.34 92.96 95.10
1 0.0002 74.40 83.53 88.67 92.53 95.05
1 0.0001 73.24 82.18 88.12 92.26 94.83

(b) Tuning WD

LR WD 3125 6250 12500 25000 50000

8 0.0008 77.48 81.22 79.81 79.40 78.84
5.657 0.0005657 79.62 84.30 88.03 90.50 91.72
4 0.0004 78.75 84.68 89.19 92.32 94.03

2.828 0.0002828 77.19 85.08 89.25 92.70 94.96
2 0.0002 75.97 84.28 89.18 92.98 95.24

1.414 0.0001414 74.17 83.17 88.87 92.66 95.12
1 0.0001 73.24 82.18 88.12 92.26 94.83

(c) Tuning LR,WD

Experiment on fixed B. In these experiments, we fixed B as 128 and tuned
LR or (and) WD for each number of data samples. Table 1 and Table 2 show the
results on SGDM and SGD, respectively. Yellow-colored cells satisfy the tuning
factor Nηλ

B(1−µ) = 10
128 , and bold values represent the highest accuracy for each

column. For all columns, the best performance or the second best accuracy was
in the yellow cell. Figure 3 shows the angular update per epoch of the yellow
cells of Table 1. They show distinct aspects in an initial transient phase where
the weight changes rapidly. However, after 50 epochs, they show very similar
angular updates, indicating the tuning factor’s validity.

Experiment on fixed N . In these experiments, we fixed N at 50k and tuned
LR or (and) WD for each B. Table 3 and Table 4 show the results on SGDM and
SGD, respectively. Yellow color indicates the cells that satisfy the tuning factor
Nηλ

B(1−µ) = 10
128 , and bold values represent the highest accuracy for each column.

For all columns of Table 3, the best performance or the second-best accuracy

On the angular update and hyperparameter tuning 11

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

An
gu

la
r U

pd
at

e
(°

) (50000,128,0.2,0.0001)
(50000,256,0.4,0.0001)
(50000,512,0.8,0.0001)
(50000,1024,1.6,0.0001)
(50000,2048,3.2,0.0001)

(a)

0 50 100 150 200 250 300
epoch t

0

2

4

6

8

10

12

14

16

An
gu

la
r U

pd
at

e
(°

) (50000,128,0.1,0.0002)
(50000,256,0.1,0.0004)
(50000,512,0.1,0.0008)
(50000,1024,0.1,0.0016)
(50000,2048,0.1,0.0032)

(b)

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

An
gu

la
r U

pd
at

e
(°

) (50000,128,0.1414,0.0001414)
(50000,256,0.2,0.0002)
(50000,512,0.2828,0.0002828)
(50000,1024,0.4,0.0004)
(50000,2048,0.5657,0.0005657)

(c)

Fig. 4: Angular update per epoch of scale-invariant network with the number of
data being 50k. (a) Tuning the learning rate, (b) tuning the weight decay, and
(c) tuning both the learning rate and the weight decay.

Table 3: Scale-invariant ResNet-18 on CIFAR-10 with SGDM and 50k data sam-
ples.

LR WD 2048 1024 512 256 128

6.4 0.0001 94.52 93.89 91.90 88.55 80.28
3.2 0.0001 94.87 94.92 94.31 92.80 89.92
1.6 0.0001 94.74 94.91 95.03 94.66 93.38
0.8 0.0001 94.21 94.83 95.04 94.99 94.79
0.4 0.0001 93.71 94.44 94.87 95.13 95.13
0.2 0.0001 92.96 93.93 94.45 94.85 95.08
0.1 0.0001 92.36 93.31 93.85 94.50 94.86

(a) Tuning LR

LR WD 2048 1024 512 256 128

0.1 0.0064 94.87 94.23 92.41 89.27 80.18
0.1 0.0032 94.82 95.01 94.37 93.17 90.55
0.1 0.0016 94.74 95.05 95.02 94.78 93.39
0.1 0.0008 94.16 94.71 95.16 95.30 94.89
0.1 0.0004 93.46 94.17 94.76 95.19 95.13
0.1 0.0002 92.69 93.75 94.52 94.95 95.00
0.1 0.0001 92.36 93.31 93.85 94.50 94.86

(b) Tuning WD

LR WD 2048 1024 512 256 128

0.8 0.0008 94.69 94.22 92.44 89.43 79.39
0.5657 0.0005657 94.98 95.02 94.39 93.12 90.63
0.4 0.0004 94.76 95.05 95.13 94.79 93.16

0.2828 0.0002828 94.19 94.70 95.01 95.24 94.95
0.2 0.0002 93.75 94.49 94.76 95.11 95.26

0.1414 0.0001414 93.09 93.70 94.40 94.91 95.09
0.1 0.0001 92.36 93.31 93.85 94.50 94.86

(c) Tuning LR,WD

Table 4: Scale-invariant ResNet-18 on CIFAR-10 with SGD and 50k data sam-
ples.

LR WD 2048 1024 512 256 128

64 0.0001 86.40 83.72 82.38 82.70
32 0.0001 91.25 93.62 94.31 93.17 91.43
16 0.0001 93.13 94.63 95.03 94.70 93.58
8 0.0001 93.50 94.69 95.15 95.06 94.80
4 0.0001 93.18 94.54 95.04 95.01 95.23
2 0.0001 93.06 93.76 94.33 94.76 95.14
1 0.0001 92.30 93.20 93.97 94.57 94.83

(a) Tuning LR

LR WD 2048 1024 512 256 128

1 0.0064 86.48 82.41 82.81 81.44 78.95
1 0.0032 92.63 93.66 94.46 93.95 91.60
1 0.0016 93.66 94.60 95.17 94.79 94.02
1 0.0008 93.79 94.66 95.00 95.22 95.02
1 0.0004 93.47 94.36 94.90 95.22 95.10
1 0.0002 92.63 93.62 94.31 94.85 95.05
1 0.0001 92.30 93.20 93.97 94.57 94.83

(b) Tuning WD

LR WD 2048 1024 512 256 128

8 0.0008 86.08 84.91 83.29 81.19 78.84
5.657 0.00056569 92.95 93.94 94.68 93.31 91.72
4 0.0004 93.28 94.75 95.16 94.92 94.03

2.828 0.00028284 93.72 94.68 95.10 95.21 94.96
2 0.0002 93.28 94.32 94.96 95.17 95.24

1.414 0.00014142 92.77 93.69 94.56 94.91 95.12
1 0.0001 92.30 93.20 93.97 94.57 94.83

(c) Tuning LR,WD

was in the yellow cell. An interesting point here is not only the LR linear scaling
rule but also a WD linear scaling rule is possible as batch size changes. For
SGD (Table 4), there exists a case in which even the second-best value is not
in yellows cells for B bigger than 512. This may because the excessively large
LR has caused unstable training. Figure 4 shows the angular update per epoch
of the yellow cells of Table 3. At the initial transient phase, where the weight
changes rapidly, they showed different aspects. However, after 50 epoch, they
showed very similar angular update, and it shows the validity of tuning factor.

Experiment on fixed LR×WD. In these experiments, we fixed the LR as 0.1
and WD as 0.0016, and then tuned B for each number of data samples. Table 5
shows the results on SGDM. We also used yellow to indicate cells that satisfy the

12 J. Yun et al.

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

An
gu

la
r U

pd
at

e
(°

) (3125,64,0.1,0.0016)
(6250,128,0.1,0.0016)
(12500,256,0.1,0.0016)
(25000,512,0.1,0.0016)
(50000,1024,0.1,0.0016)

Fig. 5: Angular update per
epoch of scale-invariant net-
work with η=0.1 and λ=0.0016.

B LR WD 3125 6250 12500 25000 50000

32 0.1 0.0016 78.64 83.10 85.30 87.08 87.44
64 0.1 0.0016 79.25 84.30 87.83 89.52 91.01
128 0.1 0.0016 77.57 85.22 89.06 91.94 93.39
256 0.1 0.0016 75.65 84.60 89.31 92.84 94.78
512 0.1 0.0016 72.02 82.90 89.10 92.78 95.02
1024 0.1 0.0016 68.19 79.62 87.90 92.58 95.05
2048 0.1 0.0016 51.51 74.71 85.90 91.41 94.74

Table 5: Scale-invariant ResNet-
18 on CIFAR-10 with SGDM,
η=0.1, and λ=0.0016.

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

An
gu

la
r U

pd
at

e
(°

) (3125,128,3.2,0.0001)
(6250,128,1.6,0.0001)
(12500,128,0.8,0.0001)
(25000,128,0.4,0.0001)
(50000,128,0.2,0.0001)

(a)

0 50 100 150 200 250 300
epoch t

0

2

4

6

8

10

12

14

16

An
gu

la
r U

pd
at

e
(°

) (3125,128,0.1,0.0032)
(6250,128,0.1,0.0016)
(12500,128,0.1,0.0008)
(25000,128,0.1,0.0004)
(50000,128,0.1,0.0002)

(b)

0 50 100 150 200 250 300
epoch t

0

2

4

6

8

10

12

14

16

An
gu

la
r U

pd
at

e
(°

) (3125,128,0.5657,0.0005657)
(6250,128,0.4,0.0004)
(12500,128,0.2828,0.0002828)
(25000,128,0.2,0.0002)
(50000,128,0.1414,0.0001414)

(c)

Fig. 6: Angular update per epoch of scale-invariant network with the number of
data = 50k and using cosine LR scheduling. (a) Tuning LR, (b) tuning WD, and
(c) tuning both LR rate and WD.

tuning factor Nηλ
B(1−µ) = 10

128 ; the bold values represent the highest accuracy for

each column. For all columns of Table 5, the best performance or the second-best
accuracy was in the yellow cell. Figure 5 shows the angular update per epoch
of the yellow cells of Table 5. They showed remarkably similar angular updates,
indicating the validity of the tuning factor.

Experiment on cosine LR scheduling. In these experiments, we fixed N
as 50k and tuned LR or (and) WD for each B, but used cosine LR scheduling.
Table 6 shows the results on SGDM. We also used yellow color to indidate cells
that satisfy the tuning factor Nηλ

B(1−µ) = 10
128 ; bold values represent the highest

accuracy for each column. Figure 6 shows the angular update per epoch of the
yellow cells of Table 6. The result shows that the tuning factor remains valid for
cosine LR scheduling.

5.2 Unmodified Network

Previously, we demonstrated the validity of the tuning factor on a scale-invariant
network. We now demonstrate that the tuning factor is still valid on a ResNet-
18 which is not modified, as described in Section 3.1. In the main text, we only

On the angular update and hyperparameter tuning 13

Table 6: Scale-invariant ResNet-18 on CIFAR-10 with SGDM,B=128, and cosine
learning rate scheduling.

LR WD 3125 6250 12500 25000 50000

6.4 0.0001 78.36 83.08 85.96 87.98 87.36
3.2 0.0001 79.02 84.51 88.21 90.89 92.78
1.6 0.0001 78.35 84.97 89.32 92.52 94.30
0.8 0.0001 76.80 84.88 89.48 93.00 95.08
0.4 0.0001 75.18 84.09 88.99 92.89 95.32
0.2 0.0001 72.60 83.01 88.79 92.81 95.14
0.1 0.0001 71.12 82.15 87.89 92.12 94.92

(a) Tuning LR

LR WD 3125 6250 12500 25000 50000

0.1 0.0064 78.69 83.37 85.96 87.70 87.26
0.1 0.0032 79.42 84.74 88.40 91.17 92.95
0.1 0.0016 78.88 85.06 89.67 92.52 94.87
0.1 0.0008 76.13 84.94 89.64 93.18 95.39
0.1 0.0004 74.02 84.16 89.17 92.95 95.51
0.1 0.0002 71.53 82.05 88.82 92.74 95.25
0.1 0.0001 71.12 82.15 87.89 92.12 94.92

(b) Tuning WD

LR WD 3125 6250 12500 25000 50000

0.8 0.0008 78.92 83.06 85.98 87.92 87.39
0.5657 0.0005657 79.33 84.61 88.21 90.94 92.81
0.4 0.0004 78.53 85.20 89.57 92.32 94.69

0.2828 0.0002828 76.53 85.00 89.77 93.16 95.21
0.2 0.0002 74.61 84.21 89.29 92.83 95.37

0.1414 0.0001414 72.68 82.76 88.67 92.60 95.11
0.1 0.0001 71.12 82.15 87.89 92.12 94.92

(c) Tuning LR,WD

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

An
gu

la
r U

pd
at

e
(°

) (3125,128,3.2,0.0001)
(6250,128,1.6,0.0001)
(12500,128,0.8,0.0001)
(25000,128,0.4,0.0001)
(50000,128,0.2,0.0001)

(a)

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

An
gu

la
r U

pd
at

e
(°

) (3125,128,0.1,0.0032)
(6250,128,0.1,0.0016)
(12500,128,0.1,0.0008)
(25000,128,0.1,0.0004)
(50000,128,0.1,0.0002)

(b)

0 50 100 150 200 250 300
epoch t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

An
gu

la
r U

pd
at

e
(°

) (3125,128,0.5657,0.0005657)
(6250,128,0.4,0.0004)
(12500,128,0.2828,0.0002828)
(25000,128,0.2,0.0002)
(50000,128,0.1414,0.0001414)

(c)

Fig. 7: Angular update per epoch of ResNet-18 with SGDM, and B = 128. (a)
Tuning LR, (b) tuning WD, and (c) tuning both LR and WD.

Table 7: ResNet-18 on CIFAR-10 with SGDM, B=128.

LR WD 3125 6250 12500 25000 50000

6.4 0.0001
3.2 0.0001 73.58 77.20 82.51 83.25 79.93
1.6 0.0001 77.23 83.23 87.45 91.16 92.86
0.8 0.0001 77.35 84.26 89.01 92.62 94.69
0.4 0.0001 73.75 83.22 88.66 92.69 95.18
0.2 0.0001 71.86 82.69 88.48 92.58 95.09
0.1 0.0001 72.32 81.71 88.02 91.96 94.87

(a) Tuning LR

LR WD 3125 6250 12500 25000 50000

0.1 0.0064 77.43 80.63 81.95 80.19 81.90
0.1 0.0032 79.06 83.74 87.23 88.80 89.85
0.1 0.0016 79.20 84.88 89.38 92.38 93.90
0.1 0.0008 77.78 84.83 89.80 93.33 95.14
0.1 0.0004 75.23 83.75 89.43 93.06 95.37
0.1 0.0002 72.83 83.31 88.80 92.67 95.18
0.1 0.0001 72.32 81.71 88.02 91.96 94.87

(b) Tuning WD

LR WD 3125 6250 12500 25000 50000

0.8 0.0008 76.39 80.29 80.94 78.81 51.82
0.5657 0.0005657 77.98 83.49 87.12 89.10 89.71
0.4 0.0004 78.05 84.81 88.70 91.68 93.63

0.2828 0.0002828 75.89 84.67 89.48 92.99 94.86
0.2 0.0002 73.19 84.03 89.19 93.04 95.42

0.1414 0.0001414 72.98 83.07 88.68 92.64 95.06
0.1 0.0001 72.32 81.71 88.02 91.96 94.87

(c) Tuning LR,WD

report experiments with fixed batch size B = 128. We report other results in
the Appendix. Table 7 shows the results. Figure 7 shows the angular update per
epoch of the yellow cells of Table 7. Here, the angular update per epoch was
obtained with only scale-invariant weights.

6 Efficient Hyperparameter Search

In this section, we discuss a practical application for efficient hyperparameter
search. Finding the tuning factor is sufficient for obtaining near optimum per-
formance, i.e., even if any hyperparameter is changed, a good performance can
be obtained if the tuning factor is maintained. This motivates the question:
can we find a near optimal hyperparameter with a small portion of data sam-
ples? Here, we show that it is not necessary to use all the training data to find

14 J. Yun et al.

2-13
2-12

2-11
2-10 2-9

WD

42

43

44

45

46

47

Ac
cu

ra
cy

 (%
)

2-17
2-16

2-15
2-14

2-13
2-12

2-11

WD

74.0

74.5

75.0

75.5

Ac
cu

ra
cy

 (%
)

(a) (b)

Fig. 8: Classification accuracy of EfficientNet-B0 on ImageNet according to λ:
(a) N = 80k, and (b) N = 1.28M

the hyperparameter. We search the hyperparameter of training EfficientNet-B0
[26] on ImageNet dataset [22] which comprisis 1.28M samples. EfficientNet has
scale-variant parts, e.g., squeeze and excitation module [10] and SiLU activation
function [21]. We show that even in the presence of such scale-variant parts, the
tuning factor still works well as long as the network has a normalization layer.

We first find the tuning factor with 80k randomly sampled data, which is 1/16
of the entire sample. We apply data augmentation, including random horizontal
flip and resizing ratio between 0.08 and 1 and aspect ratio between 3/4 and 4/3.
We train for 200 epochs using SGD with batch size 512, LR 0.1, momentum
coefficient 0.9; the LR is divided by 10 at 100, 150, 180 epochs (50%, 75%, and
90% of the entire duration) and only the WD is tuned. Such a LR and momentum
values are typically used in many architectures [5,4,11] which are trained using
SGDM. The original EfficientNet study used an RMSprop optimizer with WD
1e-5 and an initial LR of 0.256 that decays by 0.97 every 2.4 epoch. Figure 8
(a) shows the result. The best result is obtained when λ = 0.0016; we obtain
the tuning factor 80k·0.1·0.0016

512·(1−0.9) . Thus, using the factor, we can expect that the

optimum is around λ = 1e-04 when trained with the entire data sample. Figure
8 (b) shows the result for the entire dataset. The best result can be seen when
λ = 5e-05; but the second best result is seen when λ = 1e-04. This shows that
we can find near optimal hyperparameters with significantly fewer iterations.

7 Conclusion

This study observed that if hyperparameters are well tuned, the scale-invariant
network shows a similar degree of angular update during an epoch. We derived
the relation between hyperparameters and angular update per epoch based on
this novel observation by adopting SDE. We proposed the concept of a tuning
factor, and performed rigorous hyperparameter tuning to show the validity. We
also proposed an efficient hyperparameter search method only using a small
portion of training samples.

Acknowledgements. This research was supported by the Engineering Re-
search Center Program through the National Research Foundation of Korea
(NRF) funded by the Korean Government MSIT (NRF-2018R1A5A1059921).

On the angular update and hyperparameter tuning 15

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

2. Gardiner, C.W., et al.: Handbook of stochastic methods, vol. 3. springer Berlin
(1985)

3. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

4. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. pp. 5927–5935
(2017)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

6. Hoffer, E., Banner, R., Golan, I., Soudry, D.: Norm matters: efficient
and accurate normalization schemes in deep networks. In: Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.
(eds.) Advances in Neural Information Processing Systems. vol. 31. Curran
Associates, Inc. (2018), https://proceedings.neurips.cc/paper/2018/file/

a0160709701140704575d499c997b6ca-Paper.pdf

7. Hoffer, E., Hubara, I., Soudry, D.: Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. arXiv preprint
arXiv:1705.08741 (2017)

8. Hoffer, E., Hubara, I., Soudry, D.: Fix your classifier: the marginal value of training
the last weight layer (2018)

9. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 1314–1324
(2019)

10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

12. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. PMLR (2015)

13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

14. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3
(2015)

15. Lewkowycz, A., Gur-Ari, G.: On the training dynamics of deep networks with l 2
regularization. arXiv preprint arXiv:2006.08643 (2020)

16. Li, Q., Tai, C., Weinan, E.: Stochastic modified equations and adaptive stochastic
gradient algorithms. In: International Conference on Machine Learning. pp. 2101–
2110. PMLR (2017)

17. Li, Q., Tai, C., Weinan, E.: Stochastic modified equations and dynamics of stochas-
tic gradient algorithms i: Mathematical foundations. The Journal of Machine
Learning Research 20(1), 1474–1520 (2019)

https://proceedings.neurips.cc/paper/2018/file/a0160709701140704575d499c997b6ca-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a0160709701140704575d499c997b6ca-Paper.pdf

16 J. Yun et al.

18. Li, Z., Arora, S.: An exponential learning rate schedule for deep learning. In: In-
ternational Conference on Learning Representations (2020), https://openreview.
net/forum?id=rJg8TeSFDH

19. Li, Z., Lyu, K., Arora, S.: Reconciling modern deep learning with traditional op-
timization analyses: The intrinsic learning rate. Advances in Neural Information
Processing Systems 33 (2020)

20. Li, Z., Malladi, S., Arora, S.: On the validity of modeling sgd with stochastic
differential equations (sdes). arXiv preprint arXiv:2102.12470 (2021)

21. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

22. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

23. Smith, S., Elsen, E., De, S.: On the generalization benefit of noise in stochastic
gradient descent. In: International Conference on Machine Learning. pp. 9058–
9067. PMLR (2020)

24. Smith, S.L., Kindermans, P.J., Ying, C., Le, Q.V.: Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489 (2017)

25. Smith, S.L., Le, Q.V.: A bayesian perspective on generalization and stochastic
gradient descent. arXiv preprint arXiv:1710.06451 (2017)

26. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning. pp. 6105–6114. PMLR
(2019)

27. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

28. Van Laarhoven, T.: L2 regularization versus batch and weight normalization. arXiv
preprint arXiv:1706.05350 (2017)

29. Wan, R., Zhu, Z., Zhang, X., Sun, J.: Spherical motion dynamics: Learning dynam-
ics of normalized neural network using sgd and weight decay. Advances in Neural
Information Processing Systems 34 (2021)

30. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dy-
namics. In: Proceedings of the 28th international conference on machine learning
(ICML-11). pp. 681–688. Citeseer (2011)

31. Wu, Y., He, K.: Group normalization. In: Proceedings of the European conference
on computer vision (ECCV). pp. 3–19 (2018)

32. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1492–1500 (2017)

33. Yun, J., Kim, B., Kim, J.: Weight decay scheduling and knowledge distillation
for active learning. In: European Conference on Computer Vision. pp. 431–447.
Springer (2020)

34. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: British Machine Vision
Conference 2016. British Machine Vision Association (2016)

35. Zhang, G., Wang, C., Xu, B., Grosse, R.: Three mechanisms of weight decay
regularization. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=B1lz-3Rct7

https://openreview.net/forum?id=rJg8TeSFDH
https://openreview.net/forum?id=rJg8TeSFDH
https://doi.org/10.1007/s11263-015-0816-y
https://openreview.net/forum?id=B1lz-3Rct7

	On the Angular Update and Hyperparameter Tuning of a Scale-Invariant Network

