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Abstract. Allocating different bit widths to different channels and quan-
tizing them independently bring higher quantization precision and accu-
racy. Most of prior works use equal bit width to quantize all layers or
channels, which is sub-optimal. On the other hand, it is very challenging
to explore the hyperparameter space of channel bit widths, as the search
space increases exponentially with the number of channels, which could
be tens of thousand in a deep neural network. In this paper, we address
the problem of efficiently exploring the hyperparameter space of channel
bit widths. We formulate the quantization of deep neural networks as
a rate-distortion optimization problem, and present an ultra-fast algo-
rithm to search the bit allocation of channels. Our approach has only
linear time complexity and can find the optimal bit allocation within a
few minutes on CPU. In addition, we provide an effective way to im-
prove the performance on target hardware platforms. We restrict the bit
rate (size) of each layer to allow as many weights and activations as pos-
sible to be stored on-chip, and incorporate hardware-aware constraints
into our objective function. The hardware-aware constraints do not cause
additional overhead to optimization, and have very positive impact on
hardware performance. Experimental results show that our approach
achieves state-of-the-art results on four deep neural networks, ResNet-
18, ResNet-34, ResNet-50, and MobileNet-v2, on ImageNet. Hardware
simulation results demonstrate that our approach is able to bring up to
3.5× and 3.0× speedups on two deep-learning accelerators, TPU and
Eyeriss, respectively.

Keywords: Deep Learning, Quantization, Rate-Distortion Theory

1 Introduction

Deep Learning [20] has become the de-facto technique in Computer Vision, Nat-
ural Language Processing, Speech Recognition, and many other fields. However,
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Fig. 1. Channel-wise bit allocation plus hardware-aware constraints (HA) achieves the
best performance on Eyeriss and TPU. Channel-wise bit allocation outperforms layer-
wise bit allocation because of higher quantization precision. Inference Rate: number of
images processed per second.

the high accuracy of deep neural networks [19] comes at the cost of high compu-
tational complexity. Due to the large model size and huge computational cost,
deploying deep neural networks on mobile devices is very challenging, especially
on tiny devices. It is therefore important to make deep neural networks smaller
and faster through model compression [12], to deploy deep neural networks on
resource-limited devices.

Quantization [12] is one of the standard techniques for neural network com-
pression. One problem existed in prior works is that they typically use equal
bit width to quantize weights and activations of all layers, which is sub-optimal
because weights and activations in different layers react differently on quanti-
zation. They should be treated independently and quantized with un-equal bit
widths. Moreover, most of prior works only consider the model size and accuracy
in their methods and do not consider the system-level performance when deploy-
ing quantized models on hardware platforms. As illustrated in prior works [30],
a well quantized network can not guarantee superior performance on hardware
platforms. To address these two issues, the recently proposed mixed-precision
quantization methods assign un-equal bit widths across layers, and optimize the
hardware metrics directly in the quantization mechanism. For example, HAQ
[30] proposed a reinforcement learning method to learn the bit widths of weights
and activations across layers and minimized latency and energy in their objective
function directly.

Although noticeable improvement has been obtained by mixed-precision quan-
tization, the layer-wise bit allocation scheme is still sub-optimal, since all chan-
nels in a CONV layer are quantized with equal bit width. In fact, different chan-
nels react very distinctively to quantization. Higher precision can be obtained
if allocating un-equal bit widths to channels. However, the challenge is that the
hyperparameter space of channel bit widths increases exponentially with the
number of channels. Given N channels and C bit widths, the search complexity
is O(CN ), where in a deep neural network, N can be tens of thousand or even
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more. Such huge search space could make it unaffordable for a heuristic search
method, like reinforcement learning [27], to find solution within limited time.

In this paper, we propose a new approach to efficiently explore the hyperpa-
rameter space of channel bit widths. We apply the classic coding theories [28],
and formulate the quantization of weights and activations as a rate-distortion
optimization problem. Since the output distortion is highly related to accuracy,
by minimizing the output distortion induced by quantization, our approach is
able to well maintain the accuracy at very low bit widths. We then search the
optimal bit allocation across channels in a rate-distortion optimized manner.
Through utilizing the additivity property of output distortion, we present an
ultra-fast algorithm with linear time complexity to find the optimal channel-
wise bit allocation, by using Lagrangian formulation. Our algorithm only costs
a few minutes on CPU for a deep neural network.

What’s more, we present an alternative way to improve the system-level
performance when deploying quantized networks on target hardware platforms.
Prior works typically optimize the hardware metrics of a whole network directly,
and need real-time feedback from simulators in their learning procedure, which
could cause additional overhead to optimization. Instead, our approach improves
hardware performance by restricting the size of each individual layer, and does
not require feedback from simulators. Our key insight is that the volume of
weights and activations in some layers is particularly significant, which exceeds
the capacity of on-chip memory. As a result, these layers significantly prolong
the inference time due to the necessity of slow data access to off-chip memory.
We thus constrain the size of these large layers to ensure that all variables can
be stored on-chip.

To our best knowledge, only one prior work, AutoQ [22], finds channel-wise
bit allocation, and optimizes the performance on hardware platforms simultane-
ously. AutoQ employs reinforcement learning to solve the bit allocation problem,
which is time-consuming, and could fall into a local optimum in their heuristic
search method. Our approach adopts Lagrangian formulation for fast optimiza-
tion, and is able to find global optimal solution in a rate-distortion optimized
manner. We summarize the main contributions of our paper as following:

– We formulate the quantization of deep neural networks as a rate-distortion
optimization problem, and optimize the channel-wise bit allocation for higher
accuracy. We present an ultra-fast algorithm with linear time complexity to
efficiently explore the hyperparameter space of channel bit widths.

– We present a simple yet effective way to improve the performance on target
hardware platforms, through restricting the size of each individual layer and
incorporating hardware-aware constraints into our objective function. The
hardware-aware constraints can be integrated seamlessly, without causing
additional overhead to optimization.

– Our approach achieves state-of-the-art results on various deep neural net-
works on ImageNet. Hardware simulation results demonstrate that our ap-
proach is able to bring considerable speedups for deep neural networks on
two hardware platforms.
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Table 1. A comparison with prior mixed-precision quantization works.

Approach
Bit Allocation Hardware

Optimization Complexity
Scheme -Aware

ReLeQ [7] Layer-Wise No Reinforcement Learning High
HAQ [30] Layer-Wise Yes Reinforcement Learning High
DNAS [31] Layer-Wise No Neural Architecture Search High
DQ [29] Layer-Wise No Training from Scratch High
HAWQ [6] Layer-Wise No Training from Scratch High
ALQ [23] Layer-Wise No Training from Scratch High
AQ [18] Element-Wise No Closed-Form Approximation Low
PTQ [1] Channel-Wise No Analytic Solution Low
FracBits [32] Channel-Wise No Training from Scratch High
DMBQ [34] Channel-Wise No Training from Scratch High
AutoQ [22] Channel-Wise Yes Reinforcement Learning High
RDO-Q (Ours) Channel-Wise Yes Lagrangian Formulation Low

2 Related Works

We discuss prior mixed-precision quantization works related to our work. ReLeQ
[7] proposed an end-to-end deep reinforcement learning (RL) framework to au-
tomate the process of discovering quantization bit widths. Alternatively, HAQ
[30] leveraged reinforcement learning to determine quantization bit widths, and
employed a hardware simulator to generate direct feedback signals to the RL
agent. DNAS [31] proposed a differentiable neural architecture search framework
to explore the hyperparameter space of quantization bit widths. Differentiable
Quantization (DQ) [29] learned quantizer parameters, including step size and
range, by training with straight-through gradients, and then inferred quantiza-
tion bit widths based on the learned step size and range. Hessian AWare Quan-
tization (HAWQ) [6] introduced a second-order quantizatino method to select
the quantization bit width of each layer, based on the layer’s Hessian spectrum.
Adaptive Loss-aware Quantization (ALQ) [23] directly minimized network loss
w.r.t. quantized weights, and used network loss to decide quantization bit widths.
Layer-wise bit allocation scheme is employed in all the above methods.

Adaptive Quantization (AQ) [18] found a unique, optimal precision for each
network parameter (element-wise), and provided a closed-form approximation
solution. Post Training Quantization (PTQ) [1] adopted channel-wise bit alloca-
tion to improve quantization precision, and provided an analytic solution to find
quantization bit widths, assuming that parameters obey certain distributions.
FracBits [32] generalized quantization bit widths to arbitrary real numbers to
make them differentiable, and learned channel-wise (or kernel-wise) bit alloca-
tion during training. Distribution-aware Multi-Bit Quantization (DMBQ) [34]
proposed loss-guided bit-width allocation strategy to adjust the bit widths of
weights and activations channel-wisely. AQ, PTQ, FracBits, and DMBQ all did
not take the impact on hardware platforms into account. AutoQ [22] proposed a
hierarchical deep reinforcement learning approach to find quantization bit widths
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of channels and optimize hardware metrics (e.g., latency and energy) simultane-
ously. Different with AutoQ, our approach provides an alternative way to quickly
explore the hyperparameter space of bit widths with linear time complexity, and
is able to find global optimal solution in a rate-distortion optimized manner.
Table 1 illustrates the differences between the mixed-precision quantization ap-
proaches.

One prior work [9] interpreted neural network compression from a rate-
distortion’s perspective. The main focus of [9] was giving an upper bound analy-
sis of compression and discussing the limitations. [9] did not give a way to search
bit allocation, and there was no practical results provided.

3 Approach

We utilize classic coding theories [28], and formulate the quantization of deep
neural networks as a rate-distortion optimization problem [37, 36]. The differen-
tiability of input-output relationships for the layers of neural networks allows us
to relate output distortion to the bit rate (size) of quantized weights and activa-
tions. We add hardware-aware constraints into the objective function to improve
the performance on hardware platforms. We will discuss the formulation of our
approach and its optimization in this section.

3.1 Formulation

Let F denote a deep neural network. Given an input I, we denoteY as the output
of F , i.e. Y = F(I). When performing quantization on weights and activations, a

modified output vector Ŷ would be received. The output distortion is measured
by the distance between Y and Ŷ, which is defined as

δ = ∥Y − Ŷ∥22 (1)

Here Euclidean distance ∥.∥2 is adopted. Our approach allocates different quan-
tization bit widths to weight channels and activation layers. We aim to minimize
the output distortion under the constraint of bit rate (size). Given the bit rate
constraint r, the rate-distortion optimization problem is formulated as

min δ = ∥Y − Ŷ∥22 s.t.

l∑
i=1

ni∑
j=1

Rw
i,j +

l∑
i=1

Ra
i ≤ r, (2)

where Rw
i,j denotes the bit rate of weight channel j in layer i, Ra

i denotes the bit
rate of activations in layer i, ni denotes the number of channels in layer i, and l
denotes the total number of layers. Specifically, Rw

i,j equals to the quantization
bit width of channel j in layer i, denoted as Bw

i,j , multiplied by the number of
weights in that channel; Ra

i equals to the quantization bit width of activations
in layer i, denoted as Ba

i , multiplied by the number of activations in that layer.
We noticed that output distortion is highly related to network accuracy. By

minimizing output distortion induced by quantization, our approach is able to
maintain the accuracy at very high compression ratio.
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Fig. 2. Examples of finding optimal bit allocation w/ and w/o hardware-aware con-
straints.

3.2 Optimizing Channel-Wise Bit Allocation

We explored the additivity property of output distortion when performing quan-
tization on weight channels and activation layers, and found that the additivity
property holds, similar to the observation made in [39, 37]. Utilizing the addi-
tivity property, we develop an efficient Lagrangian formulation method to solve
the bit allocation problem.

Specifically, let δwi,j and δai denote the output distortion caused by quantiz-
ing an individual weight channel and an individual activation layer, respectively.
The output distortion δ, caused by quantizing all weight channels and activa-
tion layers, equals the sum of output distortion due to the quantization of each
individual item

δ =

l∑
i=1

ni∑
j=1

δwi,j +

l∑
i=1

δai (3)

Equation (3) can be derived mathematically by linearizing the output distortion
using Taylor series expansion with the assumption that the neural network is
continuously differentiable and quantization errors can be considered as small
deviations. The mathematical derivation of Equation (3) is provided in supple-
mentary material.

We then apply Lagrangian formulation [26] to solve objective function (2).
The Lagrangian cost function of (2) is defined as

J = δ − λ ·
( l∑

i=1

ni∑
j=1

Rw
i,j +

l∑
i=1

Ra
i − r

)
, (4)
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in which λ decides the trade-off between bit rate and output distortion. Setting
the partial derivations of J to zero with respect to each Rw

i,j and Ra
i and utilizing

the additivity property in (3), we obtain the optimal condition

∂δwi,1
∂rwi,1

= ... =
∂δwi,ni

∂rwi,ni

=
∂δai
∂rai

= λ, (5)

for all 1 ≤ i ≤ l. Equation (5) expresses that the slopes of all rate-distortion
curves (output distortion versus bit rate functions) should be equal to obtain
optimal bit allocation with minimal output distortion. According to (5), we are
able to solve objective function (2) efficiently by enumerating slope λ and then
choosing the point on each rate-distortion curve with slope equal to λ as solution.

The algorithm works as follows. Before optimization, we quantize each weight
channel and activation layer with different bit widths and calculate the output
distortion caused by quantization to generate the rate-distortion curve for each
weight channel and activation layer. After that, we assign a real value to λ, and
select the point with slope equal to λ on each curve. The selected points on
all curves correspond to a group of solution for bit allocation. In practice, we
explore multiple values for λ until the network bit rate exceeds constraint r. We
randomly select 50 images from ImageNet dataset to calculate output distortion
caused by quantization. Given the number of λ evaluated, t, and the total number
of bit widths, b, the time complexity of optimization is O((l+

∑l
i=1 i) · t · b). The

algorithm has only linear time complexity, which can find the answer in a few
minutes on a normal CPU.

3.3 Choice of Quantizer

We adopt uniform quantizer in our approach. The quantization step size ∆ is
defined as a value of a power of 2, ranging from 2−16 to 20, where the one
with minimal quantization error is selected. We clip all weights by (−2b−1 ·∆,
(2b−1 − 1) ·∆) and all activations by (0, (2b − 1)), in which b is the quantization
bit width. Note that our approach is compatible with other quantizers, including
both uniform quantizer and non-uniform quantizer (e.g., K-Means [10]). Since
the focus of this paper is not the design of quantizer, we only evaluate uniform
quantizer in our approach. It is worth mentioning that applying a non-uniform
quantizer could further improve the accuracy, but non-uniform quantizers are
more complicated for computation, and require additional resources (e.g., look-
up tables) for implementation. Similar as prior mixed-precision methods [30, 22,
31], our approach employs uniform quantizer, as it is more hardware-friendly
and is straightforward for implementation.

3.4 Improving Performance on Hardware

We consider improving inference rate as a guide to the design of our quantization
mechanism. Inference rate is defined as the maximum number of images that
a neural network can process per unit time. Memory access, especially data
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on different hardware platforms.

movement from off-chip memory to on-chip memory, dominates inference time,
rather than convolutional operations [13, 12]. We thus aim to maintain as many
weights and activations as possible stored on-chip, and avoid data movement
from off-chip memory to improve inference speed.

Our key insight is that the volume of weights and activations in some layers
is particularly significant. As a result, part of weights and activations can not
be stored on-chip, which leads to significant memory-access traffic to off-chip
DRAM. Fig. 3 illustrates the number of parameters across layers and the on-
chip memory capacity on different hardware platforms. As we can see, on-chip
memory capacity is very limited, and the size of some layers exceeds the capacity.
To this end, we restrict the quantization bit widths in these large layers to
make sure that the size of these layers is less than on-chip memory capacity.
Specifically, for layer i, we have an independent bit rate constraint,

ni∑
j=1

(
Kw

i,j ·Bw
i,j

)
+Ka

i ·Ba
i ≤ mon, (6)

in which Kw
i,j denotes the number of weights of channel j in layer i, Ka

i denotes
the number of activations in layer i, and mon denotes the on-chip memory capac-
ity. In practice, we relax (6) into two items, and incorporate them to objective
function (2),

Bw
i,j ≤

mon∑
j K

w
i,j +

β
1−βK

a
i

, Ba
i ≤ αmon

1−β
β

∑
j K

w
i,j +Ka

i

, (7)

for all 1 ≤ i ≤ l and 1 ≤ j ≤ ni, where α and β are two hyperparameters,
ranging from 0 to 1. Incorporating constraints (7) into (2), we have the objective
function with the bit rate of each weight channel and activation layer constrained
to improve hardware performance
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min δ = ∥Y − Ŷ∥22 s.t.

l∑
i=1

ni∑
j=1

Rw
i,j +

l∑
i=1

Ra
i ≤ r,

Bw
i,j ≤

mon∑
j K

w
i,j +

β
1−βK

a
i

, Ba
i ≤ α ·mon

1−β
β

∑
j K

w
i,j +Ka

i

(8)

Note that the optimization of (8) is the same as that of (2). The only differ-
ence is that in (8) we have different search range for quantization bit widths. In
(2), the range is from 1 to b where b = 16 is the maximal bit width, while in (8), it
is from 1 to mon∑

j Kw
i,j+

β
1−βKa

i

for weight channels, and is from 1 to αmon
1−β
β

∑
j Kw

i,j+Ka
i

for activation layers. Incorporating bit rate constraints into objective function
(2) does not increase the search time. Actually, it even slightly decreases the
time as it reduces the search range of bit widths. Fig. 2 illustrates examples of
the optimization procedure with and without constraints (7).

3.5 Discussion

Prior works [30, 22] typically use hardware simulators to guide the design of
quantizatino mechanism. Implementing a simulator is complicated and calculat-
ing simulation results costs time. Alternatively, we provide a simple yet effective
way to improve performance on hardware platforms. We directly restrict the bit
rate of each layer to have weights and activations saved on-chip. Our method
is easy to implement and does not cause additional overhead to optimization.
Another advantage is that, once the rate-distortion curves are generated, our
approach is able to find the bit allocation under any network size, by just chang-
ing the slope λ. This is better than most prior works which need to re-run the
whole method every time searching the bit allocation for a network size.

4 Experiments

We report experimental results in this section. We first show quantization re-
sults on four deep neural networks, ResNet-18 [14], ResNet-34, ResNet-50 and
MobileNet-v2 [25], on the ImageNet dataset [5]. We then report the results of
inference rate on two hardware platforms, Google TPU [16] and MIT Eyeriss [3].

4.1 Parameter Settings

We set hyperparameters α and β as values between 0 and 1, where the combi-
nation with best hardware performance is chosen. We enumerate slope λ from
−2−20 to −220 until network size meets constraint r. Similar as prior works [30,
22], we fine-tune the model after quantization up to 100 epochs with learning
rate 0.0001. Our approach is able to obtain high accuracy after 2 epochs, and can
almost converge after 5 to 10 epochs. We fine-tune 100 epochs to make sure that
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Method ResNet-18 ResNet-34 ResNet-50

Original [14] 69.3% 73.0% 75.5%
LQ-Nets [33] 64.9% 68.8% 71.5%
PTG [41] - - 70.0%
DSQ [11] 65.2% 70.0% -
QIL [17] 65.7% 70.6% -
ALQ [23] 66.4% 71.0% -
APoT [21] 67.3% 70.9% 73.4%
SAT [15] 65.5% - 73.3%
LSQ [8] 67.6% 71.6% 73.7%
AUXI [40] - - 73.8%
DMBQ [34] 67.8% 72.1% -
RDO-Q (Ours) 68.8% 72.6% 75.0%

Table 2. Top-1 image classification accuracy at 2 bits on ImageNet.

Method Top-1 Accuracy Top-5 Accuracy

Original [25] 71.8% 90.2%
HAQ [30] 67.0% (-4.8) 87.3 (-3.1)%
DQ [29] 69.7% (-2.1) -
DSQ [11] 64.8% (-7.0) -
AutoQ [22] 69.0% (-2.8) 89.4% (-0.8)
SAT [15] 71.1% (-0.7) 89.7% (-0.5)
LLSQ [35] 67.4% (-4.4) 88.0% (-2.2)
RDO-Q (Ours) 71.3% (-0.5) 90.0% (-0.2)

Table 3. Results on MobileNet-v2 at 4 bits on ImageNet.

the quantized network completely converges. Straight-through estimator (STE)
[2] is applied to perform back-propagation through non-differentiable quanti-
zation functions in fine-tuning. We randomly select 50 images from ImageNet
to generate the rate-distortion curves. We noticed that using more images to
generate the curve doesn’t affect the final accuracy.

4.2 Quantization Results

Table 2 and Table 3 list the results on four deep neural networks, ResNet-
18, ResNet-34, ResNet-50, and MobileNet-v2, when weights and activations are
quantized to very low bit widths (i.e., 2 bits or 4 bits). As our approach allo-
cates unequal bit widths to different weight channels and activation layers, we
report the results when networks are quantized to the target size on average for
fair comparison, same as prior works [29, 22]. Our approach, named as Rate-
Distortion-Optimized Quantization (RDO-Q), improves state-of-the-arts on the
four neural networks. Specifically, our approach outperforms SOTAs by 1.0%,
0.5%, and 1.2%, on ResNet-18, ResNet-34, and ResNet-50, respectively.
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Method
Accuracy Google MIT
top-1 TPU Eyeriss

ResNet-50

Original [14] 75.5% 361 5.6
DoReFa+PACT [4] 76.5% 646 12.6
DoReFa+PACT [4] 72.2% 920 13.7
RDO-Q+HA (Ours) 76.5% 769 13.9
RDO-Q+HA (Ours) 76.2% 904 15.0
RDO-Q+HA (Ours) 75.0% 1254 17.0

MobileNet-V2

Original [25] 71.1% 1504 64
DoReFa+PACT [4] 71.2% 1698 104
DoReFa+PACT [4] 70.4% 1764 108
HAQ [30] 71.2% 2067 124
HAQ [30] 68.9% 2197 128
RDO-Q+HA (Ours) 71.3% 2197 127
RDO-Q+HA (Ours) 71.0% 2207 128
RDO-Q+HA (Ours) 70.9% 2256 130

Table 4. Inference Rate on Google TPU and MIT Eyeriss. We show the results of our
approach with hardware-aware (HA) constrains in this table.
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Fig. 4. A breakdown for the compute time and memory time on two hardware plat-
forms, Google TPU and MIT Eyeriss.

4.3 Performance on Hardware Platforms

We examined the inference rate on two hardware platforms, Google TPU [16]
and MIT Eyeriss [3], both of which are state-of-the-art architectures, inspired by
current embedded and high-performance neural-network-targeted accelerators.
We adopt the SCALE-Sim software [24] to simulate the time cycles of ResNet-50
and MobileNet-v2, when mapped into the two considered hardware platforms.

Table 4 illustrates the inference rate on TPU and Eyeriss. Our approach sig-
nificantly improves the inference rate, compared with originally uncompressed
neural networks. We speed up the inference rate by 3.5x and 3.0x for ResNet-
50 on TPU and Eyeriss, and by 1.5x and 2.0x for MobileNet-V2 on TPU and
Eyeriss, without hurting the accuracy (loss ≤ 0.5%). We also compare our ap-
proach with the competitive mixed-precision quantization method, HAQ [30],
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and the competitive equal bit quantization method, DoReFa+PACT [38, 4]. Our
approach outperforms both HAQ and DoReFa+PACT. We notice that although
equal bit quantization method DoReFa+PACT obtains superior quantization
results, the performance on hardware platforms is not high. This is because
DoReFa+PACT is not hardware-aware as they do not optimize the hardware
performance in their quantization mechanism.

Note that both TPU and Eyeriss do not support computation with mixed
precision. The computation on TPU is with 8-bit integers, and that on Eyeriss
is with 16-bit integers. We clarify that we pad quantized parameters to 8-bit or
16-bit integers when we do the computation on TPU or Eyeriss, respectively.
Although TPU and Eyeriss do not support computation with mixed precision,
they still benefit from mixed-precision quantization, because the bottleneck of
deep neural networks is memory access and mixed-precision quantization helps to
further reduce the network size to reduce memory. Fig. 4 illustrates a breakdown
of the inference time for memory access and computation on TPU and Eyeriss.
We believe that hardware with specialized integer arithmetic units can further
improve the performance, since the computation can also be more efficient. As
the main focus of our paper is the quantization algorithm, we did not implement
a hardware architecture to support mixed-precision computation.

4.4 Time Cost

Table 5 lists the time of our approach to find channel-wise bit allocation on four
deep neural networks. Our approach takes about a few minutes on a normal CPU
(Intel Core i7 6600U CPU with 2.60 GHZ) to find the solution. We also eval-
uated HAQ [30] — the competitive mixed-precision quantization method built
upon reinforcement learning. As we can see, the reinforcement-learning-based
approach requires several days on multiple GPUs to search the bit allocation
for one time, which is orders of magnitude slower. Our approach provides an
alternative way to quickly explore the hyperparameter space of bit widths, and
is particularly suitable for the case without powerful computation resources.

4.5 Distributions of Bit Rate Across Layers

Fig. 5 illustrates the distribution of the bit rate under different hardware-aware
constraints. Intuitively, by balancing the size between layers, our approach as-
signs lower bit widths to large layers and higher bit widths to small layers, to
meet the constraints. Fig. 6 illustrates the number of activations that hardware
platforms can accommodate, under different bit widths given to the activation
layer. We can see that on both ResNet-50 and MobileNet-v2, some layers have
more than 1 million activations, and the bit widths assigned to these layers have
to be very small when the on-chip memory capacity is only a few KBs.

4.6 Discussion of Additivity Property

Based on our mathematical analysis, the additivity property holds if quantization
errors can be considered as small deviations. In that case, second (or higher)
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Method HAQ [30] RDO-Q

Device GPU × 4 CPU × 1
ResNet-18 - 2 minites
ResNet-34 - 3 minites
ResNet-50 117 hours 7 minites

MobileNet-v2 79 hours 6 minites
Table 5. Time cost to find channel-wise bit allocation.
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order items in Taylor series expansion are small values, and we can use the zero
and first order items to approximate output distortion. We tested the Mean
Square Error (MSE) of quantized parameters in practice, and found that MSEs
are really small deviations. Moreover, we evaluated the relation between the
output distortion and the sum of individual distortion using real examples. The
practical results also consist with our theoretical analysis. The mathematical
analysis of additivity property is provided in supplementary material.

4.7 Implementation Details of Optimization

We formulate the quantization of weight channels and activation layers as a
rate-distortion optimization problem, as illustrated in Section 3. We utilize the
addtivity of the output distortion and apply the classical Lagrangian formulation
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to solve (2). The optimal condition in Equation (4) expresses that the slopes of all
output distortion versus bit rate curves should be equal. Based on this equation,
the optimziation problem can be solved by enumerating λ and selecting the point
with slope equal to λ on each rate-distortion curve.

Specifically, we first generate the rate-distortion curve for each channel and
activation layer. In our case, the rate-distortion curves are comprised of discrete
points. For example, if the range of bit width is from 1-bit to 8-bits, then a rate-
distortion curve is a discrete curve with 8 points. We enumerate λ and select
the point on each curve with slope equal to λ. We may enumerate different λ to
find the best solution with minimal output distortion under the size constraint.
Assume that we have N curves and M points on each curve. The total time
complexity to generate rate-distortion curves and find optimal bit allocation is
O(I · M · N · C + K · M · N) , where I denotes the number of images used
to generate rate-distortion curves, C is a constant which denotes the cost to
perform the inference, and K is the total number of slope λ to be evaluated.

5 Conclusion

Channel-wise bit allocation brings higher quantization precision and superior
accuracy. Our approach provides an ultra-fast way to explore the hyperparam-
eter space of channel bit widths with linear time complexity, using Lagrangian
Formulation. The quantization of deep neural networks is formulated as a rate-
distortion optimization problem, and the fast optimization method is proposed,
by utilizing the additivity of output distortion. Moreover, we consider the im-
pact on hardware platforms in the design of our quantization mechanism, and
present a simple yet effective method to improve hardware performance. We
restrict the bit rate of each layer to allow as many weights and activations as
possible saved on-chip, and add hardware-aware constraints in our objective
function to improve inference rate on target hardware platforms. The hardware-
aware constraints can be incorporated into our objective function seamlessly,
without incurring additional overhead for optimization. Extensive experiments
show that our approach improves state-of-the-arts on four deep neural networks.
Hardware simulation results demonstrate that our approach is able to accelerate
deep learning inference considerably on two hardware platforms.
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